Academic literature on the topic 'Caspases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Caspases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Caspases"

1

Villa, Pascal, Scott H. Kaufmann, and William C. Earnshaw. "Caspases and caspase inhibitors." Trends in Biochemical Sciences 22, no. 10 (October 1997): 388–93. http://dx.doi.org/10.1016/s0968-0004(97)01107-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Ying, and Guo-Qiang Chen. "Effector Caspases and Leukemia." International Journal of Cell Biology 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/738301.

Full text
Abstract:
Caspases, a family of aspartate-specific cysteine proteases, play a major role in apoptosis and a variety of physiological and pathological processes. Fourteen mammalian caspases have been identified and can be divided into two groups: inflammatory caspases and apoptotic caspases. Based on the structure and function, the apoptotic caspases are further grouped into initiator/apical caspases (caspase-2, -8, -9, and -10) and effector/executioner caspases (caspase-3, -6, and -7). In this paper, we discuss what we have learned about the role of individual effector caspase in mediating both apoptotic and nonapoptotic events, with special emphasis on leukemia-specific oncoproteins in relation to effector caspases.
APA, Harvard, Vancouver, ISO, and other styles
3

Slee, Elizabeth A., Mary T. Harte, Ruth M. Kluck, Beni B. Wolf, Carlos A. Casiano, Donald D. Newmeyer, Hong-Gang Wang, et al. "Ordering the Cytochrome c–initiated Caspase Cascade: Hierarchical Activation of Caspases-2, -3, -6, -7, -8, and -10 in a Caspase-9–dependent Manner." Journal of Cell Biology 144, no. 2 (January 25, 1999): 281–92. http://dx.doi.org/10.1083/jcb.144.2.281.

Full text
Abstract:
Exit of cytochrome c from mitochondria into the cytosol has been implicated as an important step in apoptosis. In the cytosol, cytochrome c binds to the CED-4 homologue, Apaf-1, thereby triggering Apaf-1–mediated activation of caspase-9. Caspase-9 is thought to propagate the death signal by triggering other caspase activation events, the details of which remain obscure. Here, we report that six additional caspases (caspases-2, -3, -6, -7, -8, and -10) are processed in cell-free extracts in response to cytochrome c, and that three others (caspases-1, -4, and -5) failed to be activated under the same conditions. In vitro association assays confirmed that caspase-9 selectively bound to Apaf-1, whereas caspases-1, -2, -3, -6, -7, -8, and -10 did not. Depletion of caspase-9 from cell extracts abrogated cytochrome c–inducible activation of caspases-2, -3, -6, -7, -8, and -10, suggesting that caspase-9 is required for all of these downstream caspase activation events. Immunodepletion of caspases-3, -6, and -7 from cell extracts enabled us to order the sequence of caspase activation events downstream of caspase-9 and reveal the presence of a branched caspase cascade. Caspase-3 is required for the activation of four other caspases (-2, -6, -8, and -10) in this pathway and also participates in a feedback amplification loop involving caspase-9.
APA, Harvard, Vancouver, ISO, and other styles
4

Marsden, Vanessa S., Paul G. Ekert, Mark Van Delft, David L. Vaux, Jerry M. Adams, and Andreas Strasser. "Bcl-2–regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase-9." Journal of Cell Biology 165, no. 6 (June 21, 2004): 775–80. http://dx.doi.org/10.1083/jcb.200312030.

Full text
Abstract:
Apoptosis in response to developmental cues and stress stimuli is mediated by caspases that are regulated by the Bcl-2 protein family. Although caspases 2 and 9 have each been proposed as the apical caspase in that pathway, neither is indispensable for the apoptosis of leukocytes or fibroblasts. To investigate whether these caspases share a redundant role in apoptosis initiation, we generated caspase-2−/−9−/− mice. Their overt phenotype, embryonic brain malformation and perinatal lethality mirrored that of caspase-9−/− mice but were not exacerbated. Analysis of adult mice reconstituted with caspase-2−/−9−/− hematopoietic cells revealed that the absence of both caspases did not influence hematopoietic development. Furthermore, lymphocytes and fibroblasts lacking both remained sensitive to diverse apoptotic stimuli. Dying caspase-2−/−9−/− lymphocytes displayed multiple hallmarks of caspase-dependent apoptosis, including the release of cytochrome c from mitochondria, and their demise was antagonized by several caspase inhibitors. These findings suggest that caspases other than caspases 2 and 9 can promote cytochrome c release and initiate Bcl-2–regulated apoptosis.
APA, Harvard, Vancouver, ISO, and other styles
5

Chang, Howard Y., and Xiaolu Yang. "Proteases for Cell Suicide: Functions and Regulation of Caspases." Microbiology and Molecular Biology Reviews 64, no. 4 (December 1, 2000): 821–46. http://dx.doi.org/10.1128/mmbr.64.4.821-846.2000.

Full text
Abstract:
SUMMARY Caspases are a large family of evolutionarily conserved proteases found from Caenorhabditis elegans to humans. Although the first caspase was identified as a processing enzyme for interleukin-1β, genetic and biochemical data have converged to reveal that many caspases are key mediators of apoptosis, the intrinsic cell suicide program essential for development and tissue homeostasis. Each caspase is a cysteine aspartase; it employs a nucleophilic cysteine in its active site to cleave aspartic acid peptide bonds within proteins. Caspases are synthesized as inactive precursors termed procaspases; proteolytic processing of procaspase generates the tetrameric active caspase enzyme, composed of two repeating heterotypic subunits. Based on kinetic data, substrate specificity, and procaspase structure, caspases have been conceptually divided into initiators and effectors. Initiator caspases activate effector caspases in response to specific cell death signals, and effector caspases cleave various cellular proteins to trigger apoptosis. Adapter protein-mediated oligomerization of procaspases is now recognized as a universal mechanism of initiator caspase activation and underlies the control of both cell surface death receptor and mitochondrial cytochrome c-Apaf-1 apoptosis pathways. Caspase substrates have bene identified that induce each of the classic features of apoptosis, including membrane blebbing, cell body shrinkage, and DNA fragmentation. Mice deficient for caspase genes have highlighted tissue- and signal-specific pathways for apoptosis and demonstrated an independent function for caspase-1 and -11 in cytokine processing. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, J., and M. J. Lenardo. "Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies." Journal of Cell Science 113, no. 5 (March 1, 2000): 753–57. http://dx.doi.org/10.1242/jcs.113.5.753.

Full text
Abstract:
Caspases are a group of cysteine proteases critical for apoptosis of eukaryotic cells. Deletion of genes that encode murine caspases suggests that caspases are involved not only in apoptosis but also in cytokine maturation and cell growth and differentiation. Among them, caspase-1 and caspase-11 are primarily involved in the processing of pro-inflammatory cytokines. Caspase-3 and caspase-9 are essential for apoptosis during brain development. Caspase-8 is required for the development of heart muscle, cell proliferation in the hematopoietic lineage and death-receptor-mediated apoptosis. These studies suggest that caspases function in cell signaling events including apoptosis, cell growth and differentiation.
APA, Harvard, Vancouver, ISO, and other styles
7

Talanian, Robert V., XiaoHe Yang, Jane Turbov, Prem Seth, Tariq Ghayur, Carlos A. Casiano, Kim Orth, and Christopher J. Froelich. "Granule-mediated Killing: Pathways for Granzyme B–initiated Apoptosis." Journal of Experimental Medicine 186, no. 8 (October 20, 1997): 1323–31. http://dx.doi.org/10.1084/jem.186.8.1323.

Full text
Abstract:
We report that the serine protease granzyme B (GrB), which is crucial for granule-mediated cell killing, initiates apoptosis in target cells by first maturing caspase-10. In addition, GrB has a limited capacity to mature other caspases and to cause cell death independently of the caspases. Compared with other members, GrB in vitro most efficiently processes caspase-7 and -10. In a human cell model, full maturation of caspase-7 does not occur unless caspase-10 is present. Furthermore, GrB matured caspase-3 with less efficiency than caspase-7 or caspase-10. With the caspases fully inactivated by peptidic inhibitors, GrB induced in Jurkat cells growth arrest and, over a delayed time period, cell death. Thus, the primary mechanism by which GrB initiates cell death is activation of the caspases through caspase-10. However, under circumstances where caspase-10 is absent or dysfunctional, GrB can act through secondary mechanisms including activation of other caspases and direct cell killing by cleavage of noncaspase substrates. The redundant functions of GrB ensure the effectiveness of granule-mediated cell killing, even in target cells that lack the expression or function (e.g., by mutation or a viral serpin) of one or more of the caspases, providing the host with overlapping safeguards against aberrantly replicating, nonself or virally infected cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Boatright, Kelly M., and Guy S. Salvesen. "Caspase activation." Biochemical Society Symposia 70 (September 1, 2003): 233–42. http://dx.doi.org/10.1042/bss0700233.

Full text
Abstract:
Caspase activation is the 'point of no return' commitment to cell death. Synthesized as inactive zymogens, it is essential that the caspases remain inactive until the death signal is received. It is known for the downstream executioner caspases-3 and -7 that the activation event is proteolytic cleavage, and this had been assumed to apply to the initiator caspases as well. However, recent studies conducted on caspases-2, -8 and -9 have challenged this tenet of caspase activation. In this review we focus on the molecular details of caspase activation, with emphasis on recent work that provides a pleasing explanation for the differential requirements for the activation of executioner and initiator caspases.
APA, Harvard, Vancouver, ISO, and other styles
9

Flütsch, Andreas, Thilo Schroeder, Jonas Barandun, Rafael Ackermann, Martin Bühlmann, and Markus G. Grütter. "Specific targeting of human caspases using designed ankyrin repeat proteins." Biological Chemistry 395, no. 10 (October 1, 2014): 1243–52. http://dx.doi.org/10.1515/hsz-2014-0173.

Full text
Abstract:
Abstract Caspases play important roles in cell death, differentiation, and proliferation. Due to their high homology, especially of the active site, specific targeting of a particular caspase using substrate analogues is very difficult. Although commercially available small molecules based on peptides are lacking high specificity due to overlapping cleavage motives between different caspases, they are often used as specific tools. We have selected designed ankyrin repeat proteins (DARPins) against human caspases 1–9 and identified high-affinity binders for the targeted caspases, except for caspase 4. Besides previously reported caspase-specific DARPins, we generated novel DARPins (D1.73, D5.15, D6.11, D8.1, D8.4, and D9.2) and confirmed specificity for caspases 1, 5, 6, and 8 using a subset of caspase family members. In addition, we solved the crystal structure of caspase 8 in complex with DARPin D8.4. This binder interacts with non-conserved residues on the large subunit, thereby explaining its specificity. Structural analysis of this and other previously published crystal structures of caspase/DARPin complexes depicts two general binding areas either involving active site forming loops or a surface area laterally at the large subunit of the enzyme. Both surface areas involve non-conserved surface residues of caspases.
APA, Harvard, Vancouver, ISO, and other styles
10

Grinshpon, Robert D., Suman Shrestha, James Titus-McQuillan, Paul T. Hamilton, Paul D. Swartz, and A. Clay Clark. "Resurrection of ancestral effector caspases identifies novel networks for evolution of substrate specificity." Biochemical Journal 476, no. 22 (November 21, 2019): 3475–92. http://dx.doi.org/10.1042/bcj20190625.

Full text
Abstract:
Apoptotic caspases evolved with metazoans more than 950 million years ago (MYA), and a series of gene duplications resulted in two subfamilies consisting of initiator and effector caspases. The effector caspase genes (caspases-3, -6, and -7) were subsequently fixed into the Chordata phylum more than 650 MYA when the gene for a common ancestor (CA) duplicated, and the three effector caspases have persisted throughout mammalian evolution. All caspases prefer an aspartate residue at the P1 position of substrates, so each caspase evolved discrete cellular roles through changes in substrate recognition at the P4 position combined with allosteric regulation. We examined the evolution of substrate specificity in caspase-6, which prefers valine at the P4 residue, compared with caspases-3 and -7, which prefer aspartate, by reconstructing the CA of effector caspases (AncCP-Ef1) and the CA of caspase-6 (AncCP-6An). We show that AncCP-Ef1 is a promiscuous enzyme with little distinction between Asp, Val, or Leu at P4. The specificity of caspase-6 was defined early in its evolution, where AncCP-6An demonstrates a preference for Val over Asp at P4. Structures of AncCP-Ef1 and of AncCP-6An show a network of charged amino acids near the S4 pocket that, when combined with repositioning a flexible active site loop, resulted in a more hydrophobic binding pocket in AncCP-6An. The ancestral protein reconstructions show that the caspase-hemoglobinase fold has been conserved for over 650 million years and that only three substitutions in the scaffold are necessary to shift substrate selection toward Val over Asp.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Caspases"

1

Bryant, William Barton. "Caspases and caspase regulators in Lepidoptera and Diptera." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Monteiro, Paulo André de Moura. "Estratégias terapêuticas baseadas na modulação da atividade enzimática das caspases." Master's thesis, [s.n.], 2014. http://hdl.handle.net/10284/4637.

Full text
Abstract:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
A morte celular é um processo geneticamente determinado e importante em organismos multicelulares. Esta pode ocorrer através de vários mecanismos moleculares sendo a apoptose o mais conhecido. Na apoptose, os executores da morte celular são proteínas designadas por caspases. Estas enzimas são endoproteases, mais especificamente proteases de cisteína que atuam a seguir a um resíduo de ácido aspártico. De acordo com a sua função, podem ser classificadas em três grupos: caspases inflamatórias, caspases iniciadoras da apoptose e caspases efetoras da apoptose. Nos últimos anos, vários estudos têm demonstrado a importância da modulação da atividade enzimática das caspases para fisiopatologia celular. Um inibidor ideal de caspases deverá ser altamente seletivo, possuir uma boa biodisponibilidade e ser farmacologicamente ativo. Entre os inibidores das caspases foram descritos inibidores ortostéricos, inibidores alostéricos, inibidores peptidomiméticos, pequenas moléculas inibidoras não peptídicas e inibidores naturais. Em doenças associadas a uma desregulação do processo apoptótico, tais como as doenças oncológicas, as doenças neurodegenerativas ou doenças inflamatórias, a inibição/ativação da apoptose através da modulação da atividade enzimática das caspases representa uma estratégia terapêutica promissora. Este facto tem contribuído para o desenvolvimento da investigação sobre a modulação da actividade enzimática das caspases e, subsequentemente, para a descoberta e caracterização de novas moléculas inibidoras e ativadoras das caspases. O presente trabalho de revisão bibliográfica foi desenvolvido com o objetivo de rever e integrar esta informação. Cell death is a genetically determined process, which is important for multicellular organisms. This process occurs through several molecular mechanisms among which the best known is called apoptosis. In apoptosis the cell death executors are proteins, the caspases. These enzymes are endoproteases, more specifically cysteine proteases that cleave proteins after a residue of aspartic acid. According their function, caspases can be classified into three groups: inflammatory, initiators and effectors of apoptosis. In the last years, several studies have demonstrated the importance of the modulation of the enzymatic activity of caspases for cell pathophysiology. An ideal inhibitor should have high selectivity and bioavailability, and be pharmacologically active in vivo. Several caspase inhibitors have been described including ortosteric inhibitors, allosteric inhibitors, peptidomimetic inhibitors, non-peptide small molecule inhibitors and natural inhibitors. In diseases associated with dysregulation of the apoptotic process, such as oncologic diseases, neurodegenerative diseases or inflammatory diseases, the inhibition/activation of apoptosis through the modulation of the enzymatic activity of the caspases is likely to represent a promising therapeutic approach. This notion led to new research developments on the modulation of capase’s cell activity and, subsequently, to the identification and characterization of novel drugs acting as enzyme inhibitors or activators. The present work reviews the main findings published in the literature about this topic.
APA, Harvard, Vancouver, ISO, and other styles
3

Houri, Tarek. "Rôle des caspases au cours de la photodégénérescence rétinienne." Thesis, Clermont-Ferrand 1, 2012. http://www.theses.fr/2012CLF1PP04/document.

Full text
Abstract:
Quelque soit le type de dégénérescences rétiniennes, les cellules photoréceptrices à l'origine de la genèse du signal lumineux, meurent par un mécanisme commun : l'apoptose. Au laboratoire, nous avons mis en évidence que l'inhibition de la caspase-3, une caspase effectrice de l'apoptose, permet de réduire l'apoptose des cellules photoréceptrices (Perche et al. 2007). Dans la continuité de ces résultats, le but de nos travaux de thèse est d'identifier les molécules impliquées en amont de la caspase-3. Pour mener à bien notre projet, nous avons utilisées un modèle expérimentale de dégénérescence rétinienne induite par une exposition à la lumière (modèle de photodégénérescence rétinienne). Les atteintes rétiniennes sont quantifiées par : l'électrorétinographie in-vivo permettant d'évaluer la fonction rétinienne, l'histologie pour l'analyse morphométrique de la rétine aux quelles sont associés des dosages enzymatiques. Ainsi, nous avons montré que l'injection d'un inhibiteur de la caspase-12 à 0,4 ou à 0,8 mM, de la caspase-9 à 0,2 ou à 0,4 mM, ou de la caspase-8 à 0,2 mM, injecté dans le vitré n'a aucun effet toxique sur la rétine et n'a aucun effet protecteur contre l'apoptose des cellules photoréceptrices induites par la lumière. Ces résultats suggèrent que les caspases-8, 9 et 12 ne sont pas impliquées dans l'activation de la caspase-3 et donc dans l'initiation de l'apoptose des photorécepteurs induite par la lumière. Toutefois, après injection dans le vitré, les inhibiteurs inhibent leur cible respective uniquement transitoirement. Par conséquent, pour pouvoir conclure sur le rôle de ces caspases dans le processus dégénératif, il faudrait pouvoir inhiber les caspases de façon plus persistante. Il serait donc intéressant de reproduire des expérimentations similaires en augmentant la concentration de l'inhibiteur injecté ou en réduisant le délai entre l'injection de l'inhibiteur et l'induction du stress. De plus, la caspase-3 peut être activée indépendamment des caspases initiatrices, comme par exemple : les céramides, les cathepsines et les calpaïnes
No abstract available
APA, Harvard, Vancouver, ISO, and other styles
4

Chereau, David. "Fonctionnalité, activation, régulation allostérique des caspases, les effecteurs de l'apoptose : création de nouveaux inhibiteurs de caspases." Aix-Marseille 1, 2003. http://www.theses.fr/2003AIX11033.

Full text
Abstract:
Depuis sa découverte, l'apoptose, ou mort cellulaire programmée, a suscité un intérêt croissant de la part de la communauté scientifique internationale. Suivant un stimulus, le signal apoptotique est transmis et amplifié au sein de la cellule par une famille de protéases à cystéine appelée caspase. L'implication de l'apoptose dans un grand nombre de maladies humaines en a fait un sujet de recherche majeur. L'objectif de cette thèse de recherche est d'étudier les caspases, dans le but de créer une nouvelle génération de molécules thérapeutiques. Chaque caspase reconnaît spécifiquement une séquence tetrapeptidique donnée. Les divergences entre les sites actifs des différentes caspases reflètent leur sélectivité de substrat. A partir des structures tridimensionnelles de 4 caspases, les modèles structuraux de 7 autres caspases ont été créés. L'utilisation de paires d'inhibiteurs tetrapeptidiques a permis d'effectuer une étude fonctionnelle approfondie de chaque sous-site composant le site actif des caspases. Le lien entre ces analyses structurelle et fonctionnelle a mis en évidence les principales caractéristiques des sites actifs des caspases et devrait permettre d'améliorer le développement d'inhibiteurs compétitifs plus sélectifs. Le mécanisme d'activation des caspases sera également discuté. Finalement, l'identification d'un site de fixation des nucléotides dans caspase-9 sera traité. Cette enzyme est activée par sa fixation à Apaf-1, formant un complexe protéique appelé apoptosome. Ce site de fixation serait impliqué dans l'inhibition de l'activité de l'apoptosome par les nucléotides. L'implication au niveau cellulaire de ce phénomène sera discutée en détail ainsi que l'éventuelle utilisation d'analogues de nucléotides à des fins thérapeutiques. La concentration en nucléotides jouerait un rôle majeur dans la régulation de l'apoptose.
APA, Harvard, Vancouver, ISO, and other styles
5

Deng, Meihong. "Proteolytic cleavage of FOXM1 by caspases /." View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36396503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deng, Meihong, and 邓美虹. "Proteolytic cleavage of FOXM1 by caspases." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B45010675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dallaire, LeBlanc Philippe. "Novel functions of the inflammatory caspases." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121336.

Full text
Abstract:
Innate immunity stands at the front line of host defense and effects protection through constitutive and inducible means. Central to the host response to infection and injury is inflammation, a process initiated by various sensors of danger such as the NOD-like receptors (NLRs), a subfamily of cytosolic Pattern-Recognition Receptors (PRRs). NLRs are activated through oligomerization and assembly of cytosolic signaling platforms, including nodosomes and inflammasomes. While nodosomes activate inflammatory transcriptional pathways, inflammasomes interact with a subfamily of cytosolic enzymes called the inflammatory caspases. This thesis focuses on the functions of the inflammatory caspases within the context of the host response to infection. Expression of caspase-12, a member of the inflammatory caspase family that inhibits inflammasome signaling, is confined to a subset of individuals with African ancestry. This geographic restriction is thought to be related to an increased susceptibility to bacterial infection and sepsis lethality in individuals that express caspase-12. We found that caspase-12 dampened the mucosal immune response to the enteric attaching and effacing pathogen Citrobacter rodentium independently of its effects on the inflammasome. These effects were due to caspase-12 disrupting Nod signalosome assembly and downstream induction of antimicrobial effectors. We also show that High-mobility-group-box 1 (HMGB1), a previously identified mediator of sepsis lethality, is processed and activated by the inflammatory caspase-1. This processing releases two HMGB1 fragments with antagonistic activities that can modulate dendritic cell immunogenicity through the Rage and Tlr4 receptors in response to the tolerogenic signals transmitted by apoptotic cells. In a murine model of sepsis, we show that tolerance to a secondary infection and associated mortality can be regulated by adoptive transfer of dendritic cells treated with the caspase-1 generated HMGB1 fragments. This thesis therefore identifies novel functions of the inflammatory caspases and contributes to our understanding of inflammatory disease.
L'immunité innée se retrouve à la ligne de front des défenses de l'hôte. Ses protections sont conférées par l'entremise de défenses constitutives et inductibles. Centrale à la réponse de l'hôte à l'infection et aux stresses tissulaires est l'inflammation, un processus initié par différents capteurs cellulaires de dangers tels que les NLRs (NOD-like receptors), une sous-famille cytosolique de PRRs (Pattern-recognition receptors). Les NLRs sont activés par oligomerization et l'assemblage de plates-formes de signalisation cytoplasmiques, incluant les nodosomes et inflammasomes. Les nodosomes induisent l'activation de voies de transcription inflammatoires alors que les inflammasomes interagissent avec une sous-famille d'enzymes cytosoliques nommées les caspases inflammatoires. Cette thèse étudie les fonctions des caspases inflammatoires dans le cadre de la réponse de l'hôte à l'infection, l'inflammation et la mort cellulaire. Caspase-12, une caspase inflammatoire qui inhibe l'inflammasome, est exprimée uniquement dans un sous-ensemble de personnes d'ascendance africaine. Cette restriction géographique est crue être reliée à une susceptibilité accrue aux infections bactériennes et la septicémie chez les individus qui expriment cette enzyme. Nous avons constaté que la caspase-12 régule la réponse immunitaire au pathogène entérique Citrobacter rodentium indépendamment de ses effets sur l'inflammasome en diminuant la production de peptides antimicrobiens dans l'intestin. Ces effets sont dus à un assemblage défectueux du nodosome causé par la caspase-12 en aval de l'activation de NF-κB. Nous démontrons également que High-mobility-group-box-1 (HMGB1), un facteur cellulaire contribuant à la mortalité lors de la septicémie, est clivé et activé par la caspase inflammatoire caspase-1. Ce clivage libère deux fragments ayant des activités antagonistes pouvant moduler l'immunogénicité des cellules dendritiques par les récepteurs Rage et Tlr4 en réponse aux signaux tolérogènes transmis par les cellules apoptotiques. Dans un modèle murin de septicémie, nous démontrons que la tolérance à une infection secondaire ainsi que son taux de mortalité peuvent être réglementés par transfert adoptif de cellules dendritiques traitées avec les fragments HMGB1 produits par la caspase-1. Cette thèse contribue donc au savoir scientifique en identifiant des fonctions préalablement inconnues des caspases inflammatoires.
APA, Harvard, Vancouver, ISO, and other styles
8

Henzing, Alexander John. "Chemical & biochemical studies of Caspases." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/15007.

Full text
Abstract:
Caspases are cysteine-dependent aspartate-directed proteases responsible for the proteolysis of a plethora of substrates during programmed cell death. These include structural proteins of the cytoplasm and nucleus, components of the DNA repair machinery, protein kinases, signalling proteins and regulatory proteins. Caspases are synthesised as relatively inactive zymogens, that become activated by scaffold-mediated transactivation or via cleavage by upstream proteases in an intracellular cascade. The resulting heterotetrameric enzymes possess a unique absolute requirement for aspartate at the substrate cleavage site, and recognise a tetrameric sequence within the substrate. In order to assess the role of caspases in apoptotic execution, I set out to evaluate the synthesis of novel caspase inhibitors, which would enable the detection of active caspases from apoptotic whole cell extracts. First a 2,4-dinitrophenyl probe was designed for the affinity tagging of caspases in two-dimensional gel electrophoresis. Second, biotinylated peptidylaldehydes were prepared which will enable the affinity purification of caspases from apoptotic cytosolic extracts under non-denaturing conditions. To enable biochemical studies of caspases, I developed a method, which permits the affinity purification of caspases. Apoptotic chicken hepatoma cell-line extracts were purified over an avidin column using a biotinylated probe. Finally, to permit the appraisal of the caspase proteomic variability between different cell types, and methods of apoptotic induction, and the identification of post-translational modifications of caspases, I developed a reproducible system for the identification of caspases by two-dimensional gel electrophoresis.
APA, Harvard, Vancouver, ISO, and other styles
9

Hotti, Anneli. "Caspases in c-Myc-induced apoptosis." Helsinki : University of Helsinki, 2000. http://ethesis.helsinki.fi/julkaisut/laa/haart/vk/hotti/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boatright, Kelly M. "Activation of initiator caspases in apoptosis /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3144323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Caspases"

1

V. Bozhkov, Peter, and Guy Salvesen, eds. Caspases,Paracaspases, and Metacaspases. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0357-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caspases, paracaspases, and metacaspases: Methods and protocols. New York: Humana, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

R, Ruffolo Robert, Walsh Frank, and SmithKline Beecham Pharmaceuticals United States Research Symposium (11th : Collegeville, Pa.), eds. Apoptosis in health and disease. Australia: Harwood Academic, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lajambe, Roxanne. Affinity labelling of functionally active caspases in Sp2/0-Ag14 cells during l-glutamine deprivation. Sudbury, Ont: Laurentian University, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gil, Mor, and Alvero Ayesha B, eds. Apoptosis and cancer: Methods and protocols. Totowa, N.J: Humana Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1963-, Roberts Ruth, ed. Apoptosis in toxicology. London: Taylor & Francis, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mor, Gil, and Ayesha B. Alvero. Apoptosis and cancer: Methods and protocols. New York: Humana Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Die Geschichten des Herrn Casparis. München, D: C. H. Beck, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The Intrinsic Caspase Death Pathway in Stroke Neurodegeneration. [New York, N.Y.?]: [publisher not identified], 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Johnson, Kendra Vincia. Non-apoptotic Caspase-8 Signaling Mediates Retinal Angiogenesis. [New York, N.Y.?]: [publisher not identified], 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Caspases"

1

Hoyer, Daniel, Eric P. Zorrilla, Pietro Cottone, Sarah Parylak, Micaela Morelli, Nicola Simola, Nicola Simola, et al. "Caspases." In Encyclopedia of Psychopharmacology, 275. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_1070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murphy, Brona M., and Seamus J. Martin. "Caspases." In Essentials of Apoptosis, 3–12. Totowa, NJ: Humana Press, 2003. http://dx.doi.org/10.1007/978-1-59259-361-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gooch, Jan W. "Caspases." In Encyclopedic Dictionary of Polymers, 880. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dorstyn, Loretta, Makoto Kinoshita, and Sharad Kumar. "Caspases in Cell Death." In Results and Problems in Cell Differentiation, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-540-69185-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Riedl, Stefan J., and Fiona L. Scott. "Caspases: Activation, Regulation, and Function." In Essentials of Apoptosis, 3–24. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-381-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cade, Christine E., and A. Clay Clark. "Caspases – Key Players in Apoptosis." In Proteases in Apoptosis: Pathways, Protocols and Translational Advances, 31–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19497-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nagini, Siddavaram, and Satwinderjeet Kaur. "Caspases: Moonlighting Proteins with Theranostic Potential." In Proteases in Human Diseases, 375–93. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3162-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harvey, Natasha L., and Sharad Kumar. "The role of caspases in apoptosis." In Apoptosis, 107–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0102307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghayur, Tariq, Sheryl J. Hays, and Robert V. Talanian. "Caspase-1 (ICE) and other caspases as drug discovery targets: Opportunities and progress." In High Throughput Screening for Novel Anti-Inflammatories, 35–48. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8462-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jäättelä, Marja, and Marcel Leist. "From Caspases to Alternative Cell-Death Mechanisms." In Essentials of Apoptosis, 101–22. Totowa, NJ: Humana Press, 2003. http://dx.doi.org/10.1007/978-1-59259-361-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Caspases"

1

"Computer-assisted analysis of caspases molecular evolution." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Computer-assisted analysis of caspases molecular evolution." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chu, Jun, Liang Wang, Qingming Luo, and Zhihong Zhang. "Simultaneous imaging of two initiator caspases during cisplatin-induced HeLa apoptosis." In Biomedical Optics (BiOS) 2008, edited by Wei R. Chen. SPIE, 2008. http://dx.doi.org/10.1117/12.767864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Strobilanthes crispus Extract Induces Apoptosis Through Enhanced Caspases Activities in Cervical Cancer Cells." In International Conference on Biological, Environment and Food Engineering. International Institute of Chemical, Biological & Environmental Engineering, 2014. http://dx.doi.org/10.15242/iicbe.c814012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hulina, Andrea, Martina Bosnar, Marija Grdić Rajković, Dubravko Jelić, Daniela Belamarić, and Lada Rumora. "Activity of apoptotic and inflammatory caspases in THP-1 cells treated with extracellular Hsp70." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa1156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Faraoni, María, Lorena Milanesi, Darío Lincor, Florencia Musso, and Andrea Vasconsuelo. "EXTRACTS FROM Nicotiana glauca INDUCE APOPTOSIS THROUGH CASPASES IN SKELETAL MUSCLE CELLS." In The 21st International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/ecsoc-21-04784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cristaldi, Marta, Marco Buscetta, Maura Cimino, Agnese La Mensa, Paola Dino, Fabio Bucchieri, Francesca Rappa, et al. "Impact of cigarette smoke on caspases activation and gasdermin D cleavage in human macrophages." In ERS Lung Science Conference 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/23120541.lsc-2022.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bachor, Remigiusz, Aneta Paluch, Wioletta Rut, Marcin Darg, and Zbigniew Szewczuk. "On-bead Analysis of Substrate Specificity of Caspases using Peptide Modified by Qauternary AmmoniumGroup as Ionization Enhancers." In 35th European Peptide Symposium. Prompt Scientific Publishing, 2018. http://dx.doi.org/10.17952/35eps.2018.212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Min Jung, and Joon Myong Song. "Multicolor single cell imaging cytometry: A new drug screening platform for monitoring intracellular caspases as potential therapeutic targets." In 2010 IEEE 4th International Conference on Nano/Molecular Medicine and Engineering (NANOMED). IEEE, 2010. http://dx.doi.org/10.1109/nanomed.2010.5749843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cerna, David, Donna Carter, Naoko Takebe, C. Norman Coleman, Mansoor M. Ahmed, and Stephen Yoo. "Abstract 1599: Radiosensitization of GBM by a novel peptidomimetic of the Second Mitochondria-derived Activator of Caspases (SMAC)." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1599.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Caspases"

1

Yuan, Junying. Regulation of Apoptosis by Caspases. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada400005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Yi. Screening for Small Molecules That Disrupt IAP-Caspases Binding to Activate Caspases and Induce Apoptosis in Breast Cancers. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada446397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, XiaoHe. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada396794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, XiaoHe. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada428952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buchakjian, Marisa. Metabolic Regulation of Caspase 2 in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2009. http://dx.doi.org/10.21236/ada504651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Xiaohe. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada420325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Korobluth, Sally A. Caspase Pro-Domains and the Regulation of Apoptosis. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada390782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Xiaohe. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada390949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kornbluth, Sally. Caspase Pro-Domains and the Regulation of Apoptosis. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada393354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Buchakjian, Marisa. Metabolic Regulation of Caspase 2 in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada555952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography