Academic literature on the topic 'Cassures double brin de l'ADN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cassures double brin de l'ADN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cassures double brin de l'ADN"
Foray, N., C. F. Arlett, and E. P. Malaise. "Cassures double-brin de l'ADN, cassures chrosomiques et létalité des cellules humaines irradiées." Journal de Chimie Physique et de Physico-Chimie Biologique 95, no. 4 (April 1998): 739–46. http://dx.doi.org/10.1051/jcp:1998188.
Full textJoubert, A., and N. Foray. "Radiosensibilité intrinsèque et cassures double–brin de l'ADN dans les cellules humaines." Cancer/Radiothérapie 11, no. 3 (May 2007): 129–42. http://dx.doi.org/10.1016/j.canrad.2007.01.003.
Full textHennequin, C., N. Giocanti, D. Averbeck, and V. Favaudon. "La protéine kinase dépendante de l'ADN (DNA-PK), une enzyme clé de la religation des cassures double-brin de l'ADN." Cancer/Radiothérapie 3, no. 4 (July 1999): 289–95. http://dx.doi.org/10.1016/s1278-3218(99)80070-5.
Full textSALLES, Bernard. "INHIBITION DE LA RÉPARATION DES CASSURES DOUBLE-BRIN DE L'ADN: QUEL INTÉRÊT EN RADIOTHÉRAPIE ET PHARMACOLOGIE ANTITUMORALE?" Bulletin de l'Académie vétérinaire de France, no. 1 (2012): 225. http://dx.doi.org/10.4267/2042/48211.
Full textForsyth, V. T., and I. M. Parrot. "Études par diffraction de fibres de l'ADN double brin." Journal de Physique IV (Proceedings) 130 (November 2005): 63–74. http://dx.doi.org/10.1051/jp4:2005130004.
Full textDUCOS, A., B. BED'HOM, H. ACLOQUE, and B. PAIN. "Modifications ciblées des génomes : apports et impacts pour les espèces d’élevage." INRA Productions Animales 30, no. 1 (June 14, 2018): 3–18. http://dx.doi.org/10.20870/productions-animales.2017.30.1.2226.
Full textBuisson, Rémi, and Jean-Yves Masson. "Fonction des suppresseurs de tumeur PALB2 et BRCA2 dans la réparation des cassures double-brin de l’ADN." médecine/sciences 29, no. 3 (March 2013): 301–7. http://dx.doi.org/10.1051/medsci/2013293017.
Full textOudira, H., and A. Saifi. "Quantification des cassures simple et double brin suite à la désintégration de l’iode-125in situdans la fibre chromosomique." Radioprotection 45, no. 1 (January 2010): 83–102. http://dx.doi.org/10.1051/radiopro/2009031.
Full textRass, E., A. Grabarz, P. Bertrand, and B. S. Lopez. "Réparation des cassures double-brin de l’ADN, un mécanisme peut en cacher un autre : la ligature d’extrémités non homologues alternative." Cancer/Radiothérapie 16, no. 1 (February 2012): 1–10. http://dx.doi.org/10.1016/j.canrad.2011.05.004.
Full textOudira, H., D. Djamai, and A. Saifi. "Application d’un modèle déterministe à l’étude de l’influence des molécules radioprotectrices sur les rendements des cassures simple et double brin de la molécule d’ADN." Radioprotection 43, no. 3 (July 2008): 389–408. http://dx.doi.org/10.1051/radiopro:2008006.
Full textDissertations / Theses on the topic "Cassures double brin de l'ADN"
Foray, Nicolas. "Cassures double brin de l'adn, cassures chromosomiques et radiosensibilite des cellules humaines." Paris 11, 1997. http://www.theses.fr/1997PA11T021.
Full textBoubakour-Azzouz, Imenne. "Réparation des cassures double brin de l'ADN et stabilité génomique dans les cellules de mammifères." Paris 7, 2006. http://www.theses.fr/2006PA077221.
Full textRepair of DNA double-strand breaks (DSBs) is critical for cell survival. However, both DSBs repair mechanisms, end-joining (EJ) and, to a lesser extent, homologous recombination (HR), can be mutagenic. The aim of my thesis work was to determine whether specific stress conditions can affect the balance between efficiency and fidelity of DSBs repair in murine embryonic stem cells (ES). In a fîrst study, we investigated whether two colinear DSBs induced by the méganuclease l-Scel 9 kbp apart, in two non-homologous regions, can trigger genomic rearrangements by end-joining. In a second study, we have developed a strategy based on plasmids recombination. Linear plasmids, used to mimic DSBs, are transfected in ES cells where they are repaired by EJ or HR with a plasmid sharing a homologous region. We analysed the effects of a growth-limiting stress (serum starvation) on the respective contributions of NHEJ and HR, and their fidelity. The Systems did not allow us to precisely determine the NHEJ and HR frequencies. However, our studies showed that in stress conditions induced by multiple DSBs, repair fidelity can be increased
Moretton, Amandine. "Mécanismes de maintenance de l'intégrité de l'ADN mitochondrial humain suite à des cassures double-brin." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC047/document.
Full textMitochondria are organelles that possess their own genome, the mitochondrial DNA (mtDNA). Repair of oxidative damages, defective replication, or various exogenous sources, such as chemotherapeutic agents or ionizing radiations, can generate double-strand breaks (DSBs) in mtDNA. MtDNA encodes for essential proteins involved in ATP production and maintenance of integrity of this genome is thus of crucial importance. Mutations in mtDNA are indeed found in numerous pathologies such as mitochondrial myopathies, neurodegenerative disorders or cancers. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown.To elucidate this question, we have generated mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSBs repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content, followed by reamplification of intact mtDNA molecules. We have demonstrated that none of the known mitochondrial nucleases are involved in mtDNA degradation and that DNA loss is not due to autophagy, mitophagy or apoptosis but to a selective mechanism. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs. Global approaches are ongoing to identify proteins involved in degradation of damaged mtDNA following DSBs, mainly an RNAi screen targeting 80 nucleases. In parallel we are interested in a family of phosphohydrolases named Nudix and their putative protective role in sanitizing the nucleotides pool in mitochondria
Baudat, Frédéric. "Distribution des cassures double-brin meiotiques de l'adn sur le chromosome iii de saccharomyces cerevisiae." Paris 11, 1998. http://www.theses.fr/1998PA112020.
Full textBuisson, Rémi. "Rôles du suppresseur de tumeurs PALB2 dans la réparation des cassures double-brin de l'ADN." Doctoral thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/25970.
Full textUne personne sur trois au Canada sera affectée par une forme de cancer durant son existence. Aujourd’hui, il a été clairement démontré que les mutations dans l'information génétique sont l'événement initiateur du cancer. Les cassures double-brin de l'ADN font partie des lésions les plus dangereuses retrouvées dans les cellules puisqu'elles peuvent induire des mutations menant au cancer. La cellule possède plusieurs mécanismes pour réparer les cassures double-brin de l’ADN. La réparation par recombinaison homologue est le seul de ces mécanismes permettant aux cellules de réparer les cassures double-brin de l’ADN de manière fidèle sans créer d’autres mutations. Ce mécanisme dépend en majeure partie de la protéine RAD51 qui en catalyse les étapes essentielles. RAD51 a besoin d’autres cofacteurs appelés médiateurs, comme la protéine BRCA2, pour son fonctionnement. Récemment, PALB2 a été identifiée comme un régulateur clé de RAD51 et BRCA2, et donc de la réparation par recombinaison homologue. Les individus, avec des mutations de PALB2, possèdent une prédisposition au cancer du sein et à l’anémie de Fanconi. Le projet de mon doctorat consiste en la caractérisation biochimique de la protéine PALB2 afin de comprendre son rôle dans le contrôle et le fonctionnement de la réparation par recombinaison homologue. Nous avons montré que la protéine PALB2, comme BRCA2, est un médiateur de la recombinaison homologue. Dans les cellules, l’activité de PALB2 est contrôlée par sa dimérisation. En présence de dommages à l’ADN, la monomérisation de PALB2 provoque son activation et la stimulation de la formation du filament de RAD51. Finalement, nous avons découvert un nouveau partenaire des médiateurs PALB2 et BRCA2 : la polymérase r
Hoff, Grégory. "Réparation des cassures double-brin et variabilité chromosomique chez Streptomyces." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0288/document.
Full textIonizing radiation, desiccation or exogenous secondary metabolites are all factors that can cause DNA damage in soil bacteria, especially by triggering double strand breaks (DSB), the most detrimental harm for the cell. In prokaryotes, evolution selected two main DSB repair pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). HR is almost ubiquitous in bacteria and relies on an intact copy of the damaged DNA molecule as a template for DSB repair. In contrast to HR, NHEJ is only present in 20 to 25% of bacteria and is considered as a mutagenic pathway since DSB repair is performed without the need of any template and can lead to nucleotide addition or deletion at DSB site. In the bacterial model Mycobacterium, two partners are sufficient for a functional NHEJ pathway. Thus, Ku protein dimer recognizes and binds the DSB and then recruits the multifunctional LigD protein for extremities treatment and ligation thanks to its polymerase, nuclease and ligase domains. At the beginning of this work, few informations on DSB repair in Streptomyces were available. This bacteria exhibits remarkable genomic features including a large linear chromosome (6 to 12 Mb). Regarding HR, we focused on the late stage (post-synaptic step) in studying the role of RuvABC complex and RecG, involved in branch migration and Holliday junction resolution in E. coli. Construction of single and multiple mutants showed that although the genes encoding these proteins are highly conserved in Streptomyces, their deficiency in Streptomyces ambofaciens only results in a mild decrease of recombination after conjugation events. Besides, no decrease of intrachromosomal recombination efficiency could be observed. These results suggest that major alternative factors are still to be discovered in Streptomyces. This work was also the first occasion to decipher a NHEJ pathway in Streptomyces. An exhaustive genomic study revealed a great diversity in the number of factors potentially implicated in this pathway (Ku, LigDom, PolDom, NucDom) and in the organization of their encoding genes. Functional analyses revealed that all the factors, whatever they are conserved or not between species, were involved in the response to electron beam exposure, known to induce, amongst other things, DSB formation. Generation of DSB by I-SceI endonuclease cleavage was also used to evidence at a molecular level NHEJ type DSB repair (deletions or insertions of several nucleotides, integration of DNA fragments). Targeted breaks in the terminal regions of the chromosome were accompanied by large deletions (up to 2.1 Mb) and major rearrangements including chromosome circularizations and DNA amplifications. Consequences of DSB repair in S. ambofaciens are in all points similar to chromosome rearrangements observed spontaneously or by comparing genomes of different species. Thus, it is possible to link the genome plasticity to DSB repair. In addition, the integration of exogenous genetic material would be favoured during NHEJ repair which would give this repair system a major role in the horizontal transfer process, known to be a main evolution mechanism in bacteria
Landmann, Cedric. "Rôles et régulations de Polo et BubR1 sur les cassures double-‐brin de l'ADN en mitose." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0852/document.
Full textThe presence of DNA double strand breaks (DSB) during mitosis is challenging for the cell, as it produces fragments of chromosome lacking a centromere. If not processed, this situation can cause genomic instability resulting in improper segregation of the broken fragments into daughter cells. We uncovered a mechanism by which broken chromosomes are faithfully transmitted to daughter cells via the tethering of the two broken chromosome ends. Several proteins including the mitotic kinase BubR1 and Polo are recruited to the breaks and mediate the proper segregation of the broken fragments. However, the mechanism underlying Polo and BubR1 recruitment to DNA breaks is unknown. Moreover, the molecular mechanisms by which Polo and BubR1 mediate the proper segregation of the broken fragments remain to be elucidated. We first investigated the role and regulation of BubR1 on DNA breaks during mitosis. We show that BubR1 requires Bub3 to localize on the broken chromosome fragment and to mediate its proper segregation. We also find that FizzyCdc20, a co--‐factor of the E3 ubiquitin ligase Anaphase--‐Promoting--‐Complex/Cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box--‐dependent manner. A biosensor for APC/C activity demonstrates a BubR1--‐dependent local inhibition of APC/C around the segregating broken chromosome. These results are consistent with a model where Bub3/BubR1 complex on DNA breaks functions to inhibit the APC/C locally via the sequestration of FizzyCdc20, thus preserving key substrates from degradation, which promotes proper transmission of broken chromosomes. In a second study, we investigated the dependency relationship between Polo and BubR1/Bub3/Fizzy on DNA breaks in mitosis. We used a pulsed UV laser to break one chromosome at a define time during mitosis. We immediately follow the recruitment of GFP--‐tagged proteins to laser--‐induced DNA breaks. My study reveals that Polo is promptly recruited to DNA breaks and precedes BubR1, Bub3 and Fizzy. In addition, while BubR1, Bub3 and Fizzy dissociation from the breaks coincide with telophase and the nuclear envelope reformation, Polo remains on the breaks well into interphase. We further show that the appearance of BubR1, Bub3 and Fizzy on DNA breaks is delayed in polo mutant, indicating that Polo is required for the robust and efficient recruitment of BubR1, Bub3 and Fizzy to DNA breaks. Finally, the timely accumulation of Polo, BubR1 and Bub3 to DNA breaks depends on two components of the DNA Damage Response, the MRN complex (Mre11--‐Rad50--‐Nbs1) and ATM (ataxia--‐telangiectasia mutated). This work gives us a better understanding on how Polo and BubR1, Bub3 and FizzyCdc20 are recruited to DNA breaks in mitosis and how they promote broken chromosomes segregation
Jacquemont, Céline. "Rôle des gènes BRCA et FANC dans la réponse cellulaire aux cassures double brin de l'ADN." Paris 5, 2004. http://www.theses.fr/2004PA05N01S.
Full textThe aim of my thesis work was to better understand the role of BRCA and FANC genes, respectively implicated in familial breast and ovarian cancers and in Fanconi anemia (predisposing to leukaemia), in cellular response to DNA double strand breaks (DSB). The cell cycle progression in the presence of DSB and the recruitment of poteins involved in the processing of these lesions were studied. We demonstrated that a single mutated BRCA1 allele is sufficient to abrogate the intra S-phase checkpoint in the presence of DSB, and to impair the recruitment at sites of lesions of key proteins involved in DNA damage response. The severe reduction of the overall BRCA1 protein level observed in ionizing radiation-treated BRCA1 heterozygogous cells may be at origin of the observed defects. In contrast, in BRCA2 +/- and BRCA2 -/-/ FANCD1cells, the arrest of cell cycle progression is fully efficient in response to DSB
Arnould, Coline. "Rôle de l'organisation 3D de la chromatine dans la réparation des cassures double-brin de l'ADN." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30141.
Full textDNA Double-Strand Breaks (DSBs) repair is essential to safeguard genome integrity. Upon DSBs, the ATM PI3K kinase rapidly triggers the establishment of a megabase-sized, ƴH2AXdecorated chromatin domains which further act as seeds for the formation of DNA Damage Response (DDR) foci. How these foci are rapidly assembled in order to establish a "repairprone" environment within the nucleus is yet unclear. Topologically Associating Domains (TADs) are a key feature of 3D genome organization that regulate transcription and replication, but little is known about their contribution to DNA repair processes. We found that TADs are functional units of the DDR, instrumental for the correct establishment of ƴH2AX/53BP1 chromatin domains in a manner that involves cohesin-mediated loop extrusion on both sides of the DSB. Indeed, we showed that H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. This work highlights the critical impact of chromosome conformation in the maintenance of genome integrity and provides the first example of a chromatin modification established by loop extrusion. In another hand, we found that TADs of the wole genome are reinforced following DSB induction and that TADs play a major role in the down-regulation of the transcription which takes place in cis of DSBs. Finally, we found that damaged-TADs can move across the nucleus to cluster together in the G1 phase of the cell cycle. We also found that damaged-TADs clustering can lead to the formation of translocations, which are often at the origin of cancers
Saidj, Rachid. "Les gènes BRCA et FANC : implication dans la réparation des cassures double brin de l'ADN chez l'homme." Paris 5, 2006. http://www.theses.fr/2006PA05P609.
Full textThe BRCA and FANC genes (respectively implicated in breast cancer predisposition and in Fanconi anemia) are classified as “caretakers” tumor suppressor genes and are involved in the maintenance of genomic stability. These genes are tightly associated and could participate in a common pathway. The aim of my thesis work was to improve our understanding of there function in the DNA double strand break (DSB) repair in Human cells. By using molecular approaches based on intra- or extra- chromosomal substrates, carrying model-DSB, we studied the impact of siRNA mediated depletion of these factors on the two major DSB repair pathways in mammalian cells: End-joining (EJ) and Homologous Recombination (HR). We have shown that: (i) BRCA1 depletion severely impairs the EJ pathway, (ii) the novel interaction between BRCA1 and XRCC4 (a key actor of EJ), constitutes a molecular and functional link between BRCA1 and this repair pathway; (iii) depletion of the Fanconi genes products FANCF and FANCG, which belong to the core complex, leads to an impairment of EJ but does not affect HR; (iv) FANCJ and FANCD1/BRCA2 which act downstream of the complex, control HR. On conclusion, our work shows that the BRCA/FANC pathway is implicated in DSB repair, and suggests a tight specialisation of each gene
Book chapters on the topic "Cassures double brin de l'ADN"
GHILAIN, Claire, Éric GILSON, and Marie-Josèphe GIRAUD-PANIS. "Le complexe shelterine." In Les télomères, 61–106. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9097.ch3.
Full text