Dissertations / Theses on the topic 'Cassures double brin de l'ADN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Cassures double brin de l'ADN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Foray, Nicolas. "Cassures double brin de l'adn, cassures chromosomiques et radiosensibilite des cellules humaines." Paris 11, 1997. http://www.theses.fr/1997PA11T021.
Full textBoubakour-Azzouz, Imenne. "Réparation des cassures double brin de l'ADN et stabilité génomique dans les cellules de mammifères." Paris 7, 2006. http://www.theses.fr/2006PA077221.
Full textRepair of DNA double-strand breaks (DSBs) is critical for cell survival. However, both DSBs repair mechanisms, end-joining (EJ) and, to a lesser extent, homologous recombination (HR), can be mutagenic. The aim of my thesis work was to determine whether specific stress conditions can affect the balance between efficiency and fidelity of DSBs repair in murine embryonic stem cells (ES). In a fîrst study, we investigated whether two colinear DSBs induced by the méganuclease l-Scel 9 kbp apart, in two non-homologous regions, can trigger genomic rearrangements by end-joining. In a second study, we have developed a strategy based on plasmids recombination. Linear plasmids, used to mimic DSBs, are transfected in ES cells where they are repaired by EJ or HR with a plasmid sharing a homologous region. We analysed the effects of a growth-limiting stress (serum starvation) on the respective contributions of NHEJ and HR, and their fidelity. The Systems did not allow us to precisely determine the NHEJ and HR frequencies. However, our studies showed that in stress conditions induced by multiple DSBs, repair fidelity can be increased
Moretton, Amandine. "Mécanismes de maintenance de l'intégrité de l'ADN mitochondrial humain suite à des cassures double-brin." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC047/document.
Full textMitochondria are organelles that possess their own genome, the mitochondrial DNA (mtDNA). Repair of oxidative damages, defective replication, or various exogenous sources, such as chemotherapeutic agents or ionizing radiations, can generate double-strand breaks (DSBs) in mtDNA. MtDNA encodes for essential proteins involved in ATP production and maintenance of integrity of this genome is thus of crucial importance. Mutations in mtDNA are indeed found in numerous pathologies such as mitochondrial myopathies, neurodegenerative disorders or cancers. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown.To elucidate this question, we have generated mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSBs repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content, followed by reamplification of intact mtDNA molecules. We have demonstrated that none of the known mitochondrial nucleases are involved in mtDNA degradation and that DNA loss is not due to autophagy, mitophagy or apoptosis but to a selective mechanism. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs. Global approaches are ongoing to identify proteins involved in degradation of damaged mtDNA following DSBs, mainly an RNAi screen targeting 80 nucleases. In parallel we are interested in a family of phosphohydrolases named Nudix and their putative protective role in sanitizing the nucleotides pool in mitochondria
Baudat, Frédéric. "Distribution des cassures double-brin meiotiques de l'adn sur le chromosome iii de saccharomyces cerevisiae." Paris 11, 1998. http://www.theses.fr/1998PA112020.
Full textBuisson, Rémi. "Rôles du suppresseur de tumeurs PALB2 dans la réparation des cassures double-brin de l'ADN." Doctoral thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/25970.
Full textUne personne sur trois au Canada sera affectée par une forme de cancer durant son existence. Aujourd’hui, il a été clairement démontré que les mutations dans l'information génétique sont l'événement initiateur du cancer. Les cassures double-brin de l'ADN font partie des lésions les plus dangereuses retrouvées dans les cellules puisqu'elles peuvent induire des mutations menant au cancer. La cellule possède plusieurs mécanismes pour réparer les cassures double-brin de l’ADN. La réparation par recombinaison homologue est le seul de ces mécanismes permettant aux cellules de réparer les cassures double-brin de l’ADN de manière fidèle sans créer d’autres mutations. Ce mécanisme dépend en majeure partie de la protéine RAD51 qui en catalyse les étapes essentielles. RAD51 a besoin d’autres cofacteurs appelés médiateurs, comme la protéine BRCA2, pour son fonctionnement. Récemment, PALB2 a été identifiée comme un régulateur clé de RAD51 et BRCA2, et donc de la réparation par recombinaison homologue. Les individus, avec des mutations de PALB2, possèdent une prédisposition au cancer du sein et à l’anémie de Fanconi. Le projet de mon doctorat consiste en la caractérisation biochimique de la protéine PALB2 afin de comprendre son rôle dans le contrôle et le fonctionnement de la réparation par recombinaison homologue. Nous avons montré que la protéine PALB2, comme BRCA2, est un médiateur de la recombinaison homologue. Dans les cellules, l’activité de PALB2 est contrôlée par sa dimérisation. En présence de dommages à l’ADN, la monomérisation de PALB2 provoque son activation et la stimulation de la formation du filament de RAD51. Finalement, nous avons découvert un nouveau partenaire des médiateurs PALB2 et BRCA2 : la polymérase r
Hoff, Grégory. "Réparation des cassures double-brin et variabilité chromosomique chez Streptomyces." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0288/document.
Full textIonizing radiation, desiccation or exogenous secondary metabolites are all factors that can cause DNA damage in soil bacteria, especially by triggering double strand breaks (DSB), the most detrimental harm for the cell. In prokaryotes, evolution selected two main DSB repair pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). HR is almost ubiquitous in bacteria and relies on an intact copy of the damaged DNA molecule as a template for DSB repair. In contrast to HR, NHEJ is only present in 20 to 25% of bacteria and is considered as a mutagenic pathway since DSB repair is performed without the need of any template and can lead to nucleotide addition or deletion at DSB site. In the bacterial model Mycobacterium, two partners are sufficient for a functional NHEJ pathway. Thus, Ku protein dimer recognizes and binds the DSB and then recruits the multifunctional LigD protein for extremities treatment and ligation thanks to its polymerase, nuclease and ligase domains. At the beginning of this work, few informations on DSB repair in Streptomyces were available. This bacteria exhibits remarkable genomic features including a large linear chromosome (6 to 12 Mb). Regarding HR, we focused on the late stage (post-synaptic step) in studying the role of RuvABC complex and RecG, involved in branch migration and Holliday junction resolution in E. coli. Construction of single and multiple mutants showed that although the genes encoding these proteins are highly conserved in Streptomyces, their deficiency in Streptomyces ambofaciens only results in a mild decrease of recombination after conjugation events. Besides, no decrease of intrachromosomal recombination efficiency could be observed. These results suggest that major alternative factors are still to be discovered in Streptomyces. This work was also the first occasion to decipher a NHEJ pathway in Streptomyces. An exhaustive genomic study revealed a great diversity in the number of factors potentially implicated in this pathway (Ku, LigDom, PolDom, NucDom) and in the organization of their encoding genes. Functional analyses revealed that all the factors, whatever they are conserved or not between species, were involved in the response to electron beam exposure, known to induce, amongst other things, DSB formation. Generation of DSB by I-SceI endonuclease cleavage was also used to evidence at a molecular level NHEJ type DSB repair (deletions or insertions of several nucleotides, integration of DNA fragments). Targeted breaks in the terminal regions of the chromosome were accompanied by large deletions (up to 2.1 Mb) and major rearrangements including chromosome circularizations and DNA amplifications. Consequences of DSB repair in S. ambofaciens are in all points similar to chromosome rearrangements observed spontaneously or by comparing genomes of different species. Thus, it is possible to link the genome plasticity to DSB repair. In addition, the integration of exogenous genetic material would be favoured during NHEJ repair which would give this repair system a major role in the horizontal transfer process, known to be a main evolution mechanism in bacteria
Landmann, Cedric. "Rôles et régulations de Polo et BubR1 sur les cassures double-‐brin de l'ADN en mitose." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0852/document.
Full textThe presence of DNA double strand breaks (DSB) during mitosis is challenging for the cell, as it produces fragments of chromosome lacking a centromere. If not processed, this situation can cause genomic instability resulting in improper segregation of the broken fragments into daughter cells. We uncovered a mechanism by which broken chromosomes are faithfully transmitted to daughter cells via the tethering of the two broken chromosome ends. Several proteins including the mitotic kinase BubR1 and Polo are recruited to the breaks and mediate the proper segregation of the broken fragments. However, the mechanism underlying Polo and BubR1 recruitment to DNA breaks is unknown. Moreover, the molecular mechanisms by which Polo and BubR1 mediate the proper segregation of the broken fragments remain to be elucidated. We first investigated the role and regulation of BubR1 on DNA breaks during mitosis. We show that BubR1 requires Bub3 to localize on the broken chromosome fragment and to mediate its proper segregation. We also find that FizzyCdc20, a co--‐factor of the E3 ubiquitin ligase Anaphase--‐Promoting--‐Complex/Cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box--‐dependent manner. A biosensor for APC/C activity demonstrates a BubR1--‐dependent local inhibition of APC/C around the segregating broken chromosome. These results are consistent with a model where Bub3/BubR1 complex on DNA breaks functions to inhibit the APC/C locally via the sequestration of FizzyCdc20, thus preserving key substrates from degradation, which promotes proper transmission of broken chromosomes. In a second study, we investigated the dependency relationship between Polo and BubR1/Bub3/Fizzy on DNA breaks in mitosis. We used a pulsed UV laser to break one chromosome at a define time during mitosis. We immediately follow the recruitment of GFP--‐tagged proteins to laser--‐induced DNA breaks. My study reveals that Polo is promptly recruited to DNA breaks and precedes BubR1, Bub3 and Fizzy. In addition, while BubR1, Bub3 and Fizzy dissociation from the breaks coincide with telophase and the nuclear envelope reformation, Polo remains on the breaks well into interphase. We further show that the appearance of BubR1, Bub3 and Fizzy on DNA breaks is delayed in polo mutant, indicating that Polo is required for the robust and efficient recruitment of BubR1, Bub3 and Fizzy to DNA breaks. Finally, the timely accumulation of Polo, BubR1 and Bub3 to DNA breaks depends on two components of the DNA Damage Response, the MRN complex (Mre11--‐Rad50--‐Nbs1) and ATM (ataxia--‐telangiectasia mutated). This work gives us a better understanding on how Polo and BubR1, Bub3 and FizzyCdc20 are recruited to DNA breaks in mitosis and how they promote broken chromosomes segregation
Jacquemont, Céline. "Rôle des gènes BRCA et FANC dans la réponse cellulaire aux cassures double brin de l'ADN." Paris 5, 2004. http://www.theses.fr/2004PA05N01S.
Full textThe aim of my thesis work was to better understand the role of BRCA and FANC genes, respectively implicated in familial breast and ovarian cancers and in Fanconi anemia (predisposing to leukaemia), in cellular response to DNA double strand breaks (DSB). The cell cycle progression in the presence of DSB and the recruitment of poteins involved in the processing of these lesions were studied. We demonstrated that a single mutated BRCA1 allele is sufficient to abrogate the intra S-phase checkpoint in the presence of DSB, and to impair the recruitment at sites of lesions of key proteins involved in DNA damage response. The severe reduction of the overall BRCA1 protein level observed in ionizing radiation-treated BRCA1 heterozygogous cells may be at origin of the observed defects. In contrast, in BRCA2 +/- and BRCA2 -/-/ FANCD1cells, the arrest of cell cycle progression is fully efficient in response to DSB
Arnould, Coline. "Rôle de l'organisation 3D de la chromatine dans la réparation des cassures double-brin de l'ADN." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30141.
Full textDNA Double-Strand Breaks (DSBs) repair is essential to safeguard genome integrity. Upon DSBs, the ATM PI3K kinase rapidly triggers the establishment of a megabase-sized, ƴH2AXdecorated chromatin domains which further act as seeds for the formation of DNA Damage Response (DDR) foci. How these foci are rapidly assembled in order to establish a "repairprone" environment within the nucleus is yet unclear. Topologically Associating Domains (TADs) are a key feature of 3D genome organization that regulate transcription and replication, but little is known about their contribution to DNA repair processes. We found that TADs are functional units of the DDR, instrumental for the correct establishment of ƴH2AX/53BP1 chromatin domains in a manner that involves cohesin-mediated loop extrusion on both sides of the DSB. Indeed, we showed that H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. This work highlights the critical impact of chromosome conformation in the maintenance of genome integrity and provides the first example of a chromatin modification established by loop extrusion. In another hand, we found that TADs of the wole genome are reinforced following DSB induction and that TADs play a major role in the down-regulation of the transcription which takes place in cis of DSBs. Finally, we found that damaged-TADs can move across the nucleus to cluster together in the G1 phase of the cell cycle. We also found that damaged-TADs clustering can lead to the formation of translocations, which are often at the origin of cancers
Saidj, Rachid. "Les gènes BRCA et FANC : implication dans la réparation des cassures double brin de l'ADN chez l'homme." Paris 5, 2006. http://www.theses.fr/2006PA05P609.
Full textThe BRCA and FANC genes (respectively implicated in breast cancer predisposition and in Fanconi anemia) are classified as “caretakers” tumor suppressor genes and are involved in the maintenance of genomic stability. These genes are tightly associated and could participate in a common pathway. The aim of my thesis work was to improve our understanding of there function in the DNA double strand break (DSB) repair in Human cells. By using molecular approaches based on intra- or extra- chromosomal substrates, carrying model-DSB, we studied the impact of siRNA mediated depletion of these factors on the two major DSB repair pathways in mammalian cells: End-joining (EJ) and Homologous Recombination (HR). We have shown that: (i) BRCA1 depletion severely impairs the EJ pathway, (ii) the novel interaction between BRCA1 and XRCC4 (a key actor of EJ), constitutes a molecular and functional link between BRCA1 and this repair pathway; (iii) depletion of the Fanconi genes products FANCF and FANCG, which belong to the core complex, leads to an impairment of EJ but does not affect HR; (iv) FANCJ and FANCD1/BRCA2 which act downstream of the complex, control HR. On conclusion, our work shows that the BRCA/FANC pathway is implicated in DSB repair, and suggests a tight specialisation of each gene
Baldeyron, Céline. "Implication des gènes BRCA et FANC dans la réparation des cassures double brin de l'ADN chez l'Homme." Paris 7, 2003. http://www.theses.fr/2003PA077199.
Full textLaulier, Corentin. "Impact des protéines de la famille Bcl-2 sur la réparation des cassures double-brin de l'ADN." Paris 11, 2008. http://www.theses.fr/2008PA112136.
Full textIn addition to the canonical anti-apoptotic role of Bcl-2, there is also accumulating evidence showing that it has a negative impact on genome stability. In this thesis, we show that Bcl-2 family members, including the only-BH3 Bid protein, inhibit homologous recombination (HR) independently of their role in apoptosis. We show that while the BH3 domain of Bcl-2 is not required for HR repression, its transmembrane (TM) domain is essential for this process. We further show that recombinant Bcl-2 bearing a specific mitochondrial anchoring TM, but not a reticulum endoplasmic anchoring TM, causes full HR repression. Consistently, only HR-repressing Bcl-2 forms impair the foci formation of BRCA1 protein, a breast tumor suppressor essential for HR. Hence, our data uncover an important molecular end-point of the mitochondrial retrograde response that affects the maintenance of nuclear genome stability
Eschenbrenner, Anne. "Nature des cassures de l'ADN responsables des effets biologiques des rayonnements ionisants." Paris 6, 2005. http://www.theses.fr/2005PA066135.
Full textBombarde, Oriane. "La stabilité télomérique : étude fondamentale et applications thérapeutiques." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/785/.
Full textIn absence of telomerase, telomere decrease during cells divisions, until a limitant length which define the proliferative capacity of cells. Reactivation of telomerase causes a infinite proliferation of cells : it's cell immortalization, a key process of cancerogenesis. ID3-010 molecule had in vitro an affinity 10000 fold high for G-quadruplex (structures formed in telomere) rather than DNA duplex. Despite of a good inhibition of telomerase in vitro, this molecule can't inhibit cancer cell proliferation. Contrary to DNA double strand break (DSB), natural extremities of telomere don't react with ligation or signalization mechanisms. C-NHEJ mechanism (classical non-homologous end-joining) repairs most of DSB in human cells. In the second project of my thesis, I study the inhibition mechanism of C-NHEJ in telomere. I show with ligation and pulldown experiment that inhibition of C-NHEJ is supported by a competition between telomeric proteins TRF2/RAP1 and C-NHEJ proteins KU and DNA-PKcs. Paradoxically, KU and DNA-PKcs are necessary to telomeric stability. Indeed, lack of this proteins causes fusions with a alternative ligation mechanism (B-NHEJ). We propose a model of double protection of telomere against ligation in which TRF2/RAP1 inhibit C-NHEJ via a negative control of KU and DNA-PKcs, themselves inhibit B-NHEJ
Pouthier, Thomas. "Mise en évidence de cassures double brin de l'ADN induites par irradiation de kératinocytes humains en microfaisceau alpha." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00353412.
Full textDans ce contexte, un microfaisceau de particules a été développé au CENBG pour réaliser des irradiations ciblées à l'échelle sub-cellulaire avec une précision de quelques micromètres. Il est ainsi possible de contrôler le nombre exact de particules délivrées par cellule (jusqu'à la dose ultime d'un ion par cellule), de prédéterminer avec précision le point d'impact et d'irradier certaines cellules tout en vérifiant la réponse de cellules voisines.
La validation de ce dispositif a été réalisée au cours de ce travail de thèse, sur des kératinocytes humains exprimant une protéine recombinante nucléaire fluorescente (histone H2B-GFP) en mettant en évidence des dommages nucléaires radio-induits spécifiques et dose-dépendant. La combinaison de techniques telles que le microfaisceau d'ions, la microscopie confocale et l'analyse quantitative numérique a permis de mesurer, in situ et à l'échelle de la cellule unique, la cinétique de phosphorylation de la protéine histone H2A.X et d'aborder ainsi l'étude des processus de réparation de l'ADN et d'induction de l'apoptose. Les résultats expérimentaux ont validé la méthodologie développée en démontrant la reproductibilité du tir et le contrôle de la dose grâce à la mise en évidence d'une relation dose-effet qui a été également étudiée en fonction du temps.
Fedor, Yoann. "Nouveau biomarqueur en temps réel de cassures double-brin de l'ADN et génotoxicité de la cytolethal distensing toxin." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/2029/.
Full textHuman DNA is constantly damaged by endogenous (cellular metabolism) or exogenous (radiations, food contaminants) sources. Among these lesions, DNA double-strand breaks (DSB) are the most cytotoxic. To survive to these lesions, a cellular pathway is in charge for the detection and the signaling of DSB. This pathway involves recruitment and post-translationnal modifications of several proteins around the DSB site (like the phosphorylation of a H2A histone variant called H2AX). This signalization pathway elicits cellular checkpoints in order to stop proliferation, and stimulates DSB repair systems in order to restore DNA initial integrity. An error-prone repair of DSB can lead to base additions/deletions, or chromosomal aberrations that can induce cancer. In order to understand genotoxicity, it is important to elucidate causes and mechanisms responsible for DSB formation and to follow their management by the cell. Techniques allowing DSB formation analysis (immunofluorescence, pulse-field gel electrophoresis, neutral COMET assay. . . ) exist, but can only show DNA state for a given point. During the first part of my thesis work, I created a new tool to detect and follow DSB formation in real time, in human cells. This tool rely on nanobody technology, which are miniatures antibodies produced by camelidae species and some sharks. An intracellular nanobody directed against phosphorylated H2AX (gammaH2AX) has been expressed, and seems to relocate to microirradiation-induced DSB. In order to build this tool, anti-gammaH2AX peptides were designed to immunize a llama, and nanobodies coding sequences were isolated/cloned and gathered as a library. Nanobodies specific for gammaH2AX were selected by phage display. Fused to a fluorophore these nanobodies were expressed in human cells in order to analyze their relocalization to DSB in real time. The second part of my phD shed a new light on the mechanism of action of a bacterial génotoxine causing cancers in mouse models: the Cytolethal Distending Toxin (CDT). This toxin is secreted by commensal and pathogenous bacteria, translocate into the nucleus of targeted cells and induces DSB. CDT mechanism of action was previously described as those of a nuclease inducing DSB. But my work demonstrated for lower doses (equivalent to lethal dose 50), that CDT induced first single-strand breaks leading to double-strand breaks through DNA replication. Moreover, homologous recombination repair of these DSB is crucial in order for cells exposed to CDT to survive. In conclusion, thanks to my thesis work, I developed a new tool to analyze real time dynamic of DSB in human cells in one hand. And in another hand, my work shed a new light on the mechanism of action of CDT genotoxicity, a toxin displaying cancer hazard in mammalians. Contributions brought by this work are discussed here
SOUSTELLE, CHRISTINE. "Controle de la formation et de la reparation des cassures double-brin meiotiques de l'adn chez saccharomyces cerevisiae." Paris 11, 1998. http://www.theses.fr/1998PA112189.
Full textKapusta, Aurélie. "Réarrangements du génome chez Paramecium tetraurelia : ligases ADN et voies de End-Joining." Paris 11, 2010. http://www.theses.fr/2010PA112207.
Full textDuring the sexual cycle of the ciliate Paramecium, the somatic genome is spectacularly and reproducibly rearranged. This process involves two kinds of germline DNA elimination, including the precise excision of tens of thousands of short sequences (Internal Eliminated Sequences or IESs), each one flanked by two 5' - TA- 3' dinucleotides. These developmentally programmed rearrangements are initiated by DNA double-strand breaks (DSBs) that exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the actors involved in the final and precise assembly of somatic genes have remained unknown. My work has been focused on the last step of DNA repair, which first led me to characterize in silico the Paramecium ATP-dependent DNA ligases. Functional analysis of Ligase IV and its partner Xrcc4p, core components of a canonical cellular DSB repair pathway (non-homologous endjoining or NHEJ), showed their requirement both for the repair of IES excision sites and for the circularization of excised IESs. Moreover, my data provide direct evidence for the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end-joining. This led to a "cut-and-close" model, including confirmed or putative actors, mostly involved in the protection of broken ends and their controlled processing, key steps in a highly reproducible and precise repair. Paramecium may therefore be an excellent model organism to study precise DSB repair in genome-wide programmed rearrangements
Chanut, Pauline. "Comprendre et perturber le choix de la voie de réparation des cassures double brin de l'ADN pour augmenter l'efficacité et la sélectivité des agents anticancéreux génotoxiques." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30151.
Full textDNA double-strand break (DSB) is the most toxic DNA damage, because a single mis- or un-repaired DSB can lead to cell death. This toxicity is exploited in clinics to eradicate tumoral cells. So, among molecules currently used in chemotherapy, topoisomerase 1 (TOPO1) poisons such as camptothecin (CPT), are able to generate a particular type of DSB bearing one single end (seDSBs); these lesions are created when a replication fork collides with the TOPO1 blocked on the DNA. They are repaired by homologous recombination (HR) because, devoid of a second end, they cannot be ligated by non-homologous end-joining (NHEJ). The Ku heterodimer, the initiator of the NHEJ is both a major detector of the DSBs due to its nuclear abundance and strong affinity, and a powerful HR inhibitor. Therefore, the regulation of Ku binding to one-ended DSB is a crucial question for the understanding of mechanisms determining the choice of the suitable DSB repair pathway. In this context, my first thesis project aimed at deciphering the molecular mechanisms responsible for the DNA repair pathway choice at seDSBs. Firstly, using High Resolution Microscopy, I demonstrated that Ku and DNA-PKcs are rapidly recruited on seDSBs. Then, I showed that ATM-dependent phosphorylation of CtIP and the epistatic and coordinated actions of MRE11 and CtIP nuclease activities are required to limit the stable loading of Ku on seDSBs. I established that DNA-PKcs removal from seDSBs relies on ATM-dependent phosphorylation of the ABCDE cluster. Using a non-phosphorylable mutant of this cluster, I demonstrated that impaired DNA-PKcs removal prevents MRE11 from releasing Ku. However, my work also suggested the existence of an additional mechanism that contributes to prevent Ku accumulation at 50% of seDSBs. Finally, I demonstrated that Ku and DNA-PKcs persistence on seDSBs does not impair long range resection and RAD51 recruitment but compromises cell survival. My second thesis project was dedicated to target the DSB repair pathway choice mechanisms in order to potentiate the effect of CPT. Indeed, since ATM inhibition increases drastically the death of replicative cells treated with CPT, we may identify others sensitizers able to disrupt the repair pathway choice. On the basis of a cytotoxicity assay on mouse embryonic fibroblasts (MEFs), I performed a phenotypic screening of the NIH Clinical Collection and identified the antibiotic nitrofurantoin (NTF) and hydrocortisone acetate (HCA) as a sensitizer of MEFs to CPT. However, sensitization induced by NTF does not depend on Ku but rather seems to rely on Reactive Oxygen Species (ROS) generation by nitroreduction of the molecule and sensitization induced by HCA is not reproducible and is still under investigation. My work contributes to extend the knowledge of the repair pathway choice mechanisms involved in cell tolerance to CPT and opens new opportunities to potentiate its anticancerous property
Taty, Taty Gemael Cedrick. "Rôle des modifications de la chromatine dans la réparation des cassures double-brin de l'ADN et la stabilité génétique." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30190/document.
Full textThe human genome is constantly targeted by DNA damaging agents. These damages are many and varied, such as single and double strand breaks (DSBs). The DSB are highly toxic lesions whose origin can be multiple. Mammalian cells mainly use two DNA repair pathways to repair DSB, homologous recombination (RH), which is dependent on the presence of the intact homologous copy (the sister chromatid) and on the cell cycle stage and the non-homologous end joining (NHEJ) pathway, which is cell cycle independent and performs direct ligation of the two DNA ends. The repair of DNA damage takes place in a chromatin context that needs to be remodeled to give access to damaged sites. During my work, I studied the chromatin remodeler p400 and the histone variant H2A.Z both involved in chromatin remodeling, to understand their role in DSB repair and genome stability. p400, an ATPase of the SWI2/SNF2 family is involved in the incorporation of H2A.Z in chromatin. I have shown that H2A.Z depletion in the osteosarcoma cell line U2OS and in immortalized human fibroblasts did not alter DSB repair. These results are correlated with the lack of H2A.Z recruitment at DSB observed after local laser irradiation or Chromatin Immunoprecipitation. However, H2A.Z depletion affects cell proliferation and the cell cycle distribution. In addition, I have shown that the chromatin remodeler p400 is a brake to the use of alternative End Joining (alt-EJ) which is a highly mutagenic repair process. The increase in alt-EJ events observed in p400-depleted cells is dependent on CtIP- mediated resection of DNA ends. Moreover, p400 depletion leads to the recruitment of poly(ADP) ribose polymerase (PARP) and DNA ligase 3 at DSB, leading to selective cell killing by PARP inhibitors. Altogether these results show that p400 acts as a brake to prevent alt-EJ dependent genetic instability and underline its potential value as a clinical marker
Yuan, Ying. "Modulation of DNA double strand breaks end-joining pathway choice by single stranded oligonucleotides in mammalian cells." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30091.
Full textIn response to DNA damage, the choice made by the cells between DNA repair mechanisms is crucial for mutagenic and survival outcomes. In humans, DNA double-strand breaks are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3' single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. In this work, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. Under both conditions, we report that ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process. Our data bring new clues in the understanding of the cellular response to DNA double-strand breaks
Cabal, Ghislain. "Implications fonctionnelles de l’organisation de la chromatine : Rôles du pore nucléaire chez saccharomyces cerevisiae." Paris 11, 2007. http://www.theses.fr/2007PA112172.
Full textIn the nucleus of eukaryotic cells, chromatin and nuclear processes are not randomly distributed. During my PhD thesis, I have focused on the role of nuclear organization may play in regulating transcriptional regulation and DNA metabolism. To investigate this assumption, I developed an experimental system able to monitor the movement and sub-nuclear position of a single tagged genetic locus in the yeast Saccharomyces cerevisiae. When tracked in the nuclear volume over time, I found chromatin to undergo very constrained movement. Interestingly, I show that transcriptional activation of the GAL genes leads to the confinement of their motility towards the nuclear periphery. I further demonstrate that members of the SAGA transcription initiation complex and mRNA export factors mediate this recruitment by physically linking the activated GAL genes to nuclear pore complexes (NPC). These results prove for the first time that the ‘gene gating’ mechanism occurs in living cells. Additionally, I participated in a study showing that binding of chromosome ends to the NPC is essential for efficient DNA double strand break repair in subtelomeric region. I also performed a genetic screen revealing an exciting genetic interaction network of nucleoporins with the DNA repair machinery and chromatin remodeling complexes. Altogether the studies I carried out during my PhD uncover the role of the NPC in chromatin organization and consequently in regulating nuclear processes
Vannier, Jean-Baptiste. "Rôle de protéines de la réparation des cassures double brin dans l'homéostasie télomérique chez Arabidopsis thaliana." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00725958.
Full textChoudjaye, Jonathan. "Etude de l'organisation spatiale de la réparation des cassures double-brins de l'ADN." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30390.
Full textDNA Double Strand Breaks (DSBs) form a major threat to the genome stability. To circumvent the deleterious effects of DSBs, cells activate the DNA damage response (DDR), which comprises events that lead to detection and repair of these lesions, as well as a delay in cell cycle progression. This DDR largely rely on two members of the PI3K-like kinase family : ataxia telangiectasia mutated (ATM) and DNA Protein Kinase (DNAPK), whose respective functions during the DDR remains controversial. Using a cell line, expressing the AsiSI restriction enzyme, combined with high resolution ChIP-chip mapping, sequence-specific DSB repair kinetics analysis and advanced high resolution microscopy, we uncovered that both ATM and DNA-PK are recruited to a confined region surrounding DSBs. However, once present at the DSB site, they exhibit non-overlapping functions on end-joining and yH2AX domain establishment. At the repair level, DNAPK is absolutely required for end-joining while ATM is dispensable although promoting repair fidelity. By contrast, ATM is the main kinase required for the establishment of the histone mark yH2AX at all breaks. We also clearly demonstrated that multiple AsiSI-induced DSBs are able to associate within "repair foci", in a manner that strictly depends on ATM, but not DNAPK, activity. Our study shed light on the respective roles of ATM and DNAPK regarding end joining and yH2AX domain establishment. Lastly it allowed us to uncover a function of ATM in the spatial organisation of the repair, more precisely in the clustering of multiple breaks within "repair foci" in order to be repaired
Joshi, Niraj Gaurishankar. "Rôles et régulation des protéines de l'anémie de Fanconi dans les voies de réparation des cassures double-brin de l'ADN." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27340.
Full textFanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone marrow failure, DNA interstrand cross-links (ICLs) hypersensitivity, and cancer susceptibility. The FA pathway consists of at least 20 FANC genes (FANCA-FANCU), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA ICLs. The ICL-producing agents covalently cross-link two DNA strands and thus, are obstructions to processes which requires unwinding of the two DNA strands such as DNA replication, and transcription. FA pathway activation culminates in the monoubiquitination of FANCD2 and FANCI proteins by E3 ubiquitin ligase FANCL, a process dependent on other upstream FA proteins. The molecular complex formed by FANCI and FANCD2 coordinates multiple events in the FA pathway upon its monoubiquitination. Throughout my doctoral work, we studied various aspects of the FA pathway. We have demonstrated two major DNA binding motifs (DBMs) in FANCD2, comprising of six evolutionally conserved polar amino acids predominantly consisting of lysine, which contributed to the specific charge dependent DNA binding. One of the DBM also consisted of a nuclear localization sequence (NLS), disruption of which abrogated the nuclear localization of FANCD2. The cytoplasmic mutants of FANCD2 had abolished monoubiquitination and were unable to promote FANCI monoubiquitination and chromatin association. Complementation of the nuclear transport defect by a heterologous NLS resulted in the reduction of FANCD2 monoubiquitination. Our results suggest that the DNA binding and NLS identified in this study are crucial regions of FANCD2. DNA double-strand breaks (DSB) are produced as one of the structural intermediates upon ICL unhooking step. We assigned novel functions to the FA protein FANCG in limiting the DNA end-resection, and thus it affects the repair pathway choice. This function of FANCG is independent of other upstream FA proteins except FANCA. We also reveal new functions for FA/breast cancer proteins BRCA2 and PALB2 at blocked replication forks and show a role for these proteins in stimulating polymerase eta (Polη) to initiate DNA synthesis. PALB2 and BRCA2 interact with Polη, and are required to sustain the recruitment of Polη at blocked replication forks. PALB2 and BRCA2 stimulate Polη-dependent DNA synthesis on Displacement loop (D-loop) substrates. We conclude that PALB2 and BRCA2, in addition to their functions in stimulating D-loop formation by RAD51, play crucial roles in the initiation of recombination-associated DNA synthesis by Polη-mediated DNA repair.
Marcinkova, Zuzana. "Signalisation et réparation des cassures double-brin de l'ADN dans les gliomes : modulation de la réponse aux traitements chimio-radiothérapeutiques." Grenoble 1, 2007. http://www.theses.fr/2007GRE10098.
Full text6000 new cases of tumours of the nervous system are detected each year in France and their prognostic stay uncertain. This thesis aims to provide new insights in the molecular and cellular response ofbrain tumours to radio-chemotherapy. A DNA double-breaks repair depending on the MREII protein but independent of the phosphorylation of H2AX emerged from the study of artefacts of the immunofluorescence technique. The radiobiological characteristics of the 3 rodent glioma celllines and 7 human glioma celllines were analyzed. Functional impairments of the BRCAI protein in response to radiation and/or cisplatin were observed in the majority of the models tested, raising the question of the role of this protein in the anti-glioma treatments and in gliomagenesis. We studied the effect of sorne protein kinases inhibitors on the quality of damage repair by the recombination or the DNA end-joining repair. The defect of repair results from the blockade of signaling pathways caused by these targeted treatments. The radiobiological characteristics of the neurofibromatosis of the type 1 (NFl), a genetic syndrome associated the tumors of the peripheral and central nervous system, were analyzed. NFI appeared to be a syndrome with moderated radiosensitivity, associated with a weak deficiency ofDNA end-joining repair but with a strong activity ofMRE11
Vahidi, Ferdousi Leyla. "Etude de la réparation des cassures double-brin de l'ADN dans les cellules souches du muscle squelettique et leurs progéniteurs." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066335.
Full textDNA double strand breaks (DSBs) are dangerous DNA lesions that are generated byphysiological and environmental DNA agents. Mismanagement of DSBs in adult stem cellsthat are at the top of the hierarchy generating the differentiated tissue, can affect their selfrenewalcapacity and the fate of their progeny. Maintenance of genome stability throughrobust DNA repair is fundamental for tissue regeneration, and impairment of this processaccelerates aging and may lead to cancers (cancer stem cells).Adult muscle stem cells (satellite cells, SCs) sustain skeletal muscle homeostasis andregeneration. Upon activation, quiescent SCs proliferate thereby regenerating muscle fibersand reconstituting the satellite cell pool by self-renewing.This thesis project aims to study DSB repair in SCs and their progeny, duringdifferentiation. We showed that muscle SCs repair DSBs more efficiently and, surprisingly,more accurately than differentiated cells by implicating NHEJ and DNA-PK. The repairefficiency is more a function of the differentiation status than of the replication status ofmyogenic cells, and the niche has a minor effect on the repair efficiency of SCs. Moreover,experiments with DSB repair, apoptosis and differentiation mutants suggest that SCs repairDSBs through a specific mechanism, that may be linked to the distinct chromatin architectureof these cells. These studies should help understanding how the maintenance of genomestability preserves SCs pool, influence regeneration and aging and protect fromcarcinogenesis
Vahidi, Ferdousi Leyla. "Etude de la réparation des cassures double-brin de l'ADN dans les cellules souches du muscle squelettique et leurs progéniteurs." Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066335.
Full textDNA double strand breaks (DSBs) are dangerous DNA lesions that are generated byphysiological and environmental DNA agents. Mismanagement of DSBs in adult stem cellsthat are at the top of the hierarchy generating the differentiated tissue, can affect their selfrenewalcapacity and the fate of their progeny. Maintenance of genome stability throughrobust DNA repair is fundamental for tissue regeneration, and impairment of this processaccelerates aging and may lead to cancers (cancer stem cells).Adult muscle stem cells (satellite cells, SCs) sustain skeletal muscle homeostasis andregeneration. Upon activation, quiescent SCs proliferate thereby regenerating muscle fibersand reconstituting the satellite cell pool by self-renewing.This thesis project aims to study DSB repair in SCs and their progeny, duringdifferentiation. We showed that muscle SCs repair DSBs more efficiently and, surprisingly,more accurately than differentiated cells by implicating NHEJ and DNA-PK. The repairefficiency is more a function of the differentiation status than of the replication status ofmyogenic cells, and the niche has a minor effect on the repair efficiency of SCs. Moreover,experiments with DSB repair, apoptosis and differentiation mutants suggest that SCs repairDSBs through a specific mechanism, that may be linked to the distinct chromatin architectureof these cells. These studies should help understanding how the maintenance of genomestability preserves SCs pool, influence regeneration and aging and protect fromcarcinogenesis
Malivert, Laurent. "Analyse moléculaire des facteurs de réparation de l'ADN et de leur répercussion sur le système immunitaire : étude de Cernunnos, un facteur de NonHomologous End-Joining." Paris 7, 2009. http://www.theses.fr/2009PA077080.
Full textThe immune System is the target of lots of DNA double-strand breaks (dsb), issued from exogenic elements, but also programmed by the cell itself during important physiological processes like the V(D)J Recombination, which allows the development, diversity and maturatiom of the immune System. In mammals, the majority of DNA dsb are processed by the NonHomologous End-Joining pathway (NHEJ), composed of seven factors : Ku70, Ku80 , DNA-PKcs, Artemis, XRCC4, DNA LigaselV and Cernunnos (or XLF), the most recent factor identified by our team. A NHEJ defect leads to a severe combined immunodeficiency (SCID), to which developmental abnormalities and cancer prédisposition can be added. This Thesis work starts with the constitution of a SCID patients's cohort by an improved in vitro NHEJ assay and the identification of Cernunnos, the gene responsible of their defect. We also show that XRCC4 and Cernunnos share homologies of sequence and structure, but have distinct DNA Repair functions. We prove that Cernunnos is part of the ligation complex, constituted by XRCC4 and DNA Ligase IV and we report the interdependance of these partners within the complex. Then, by using in vitro generated Cernunnos mutants (point mutations, protein deletions, and chimeras between XRCC4 and Cernunnos) and different in vivo functional assays, we demonstrate for example that the C-terminal domain of Cernunnos is not required for its function, and define the interaction surface of Cernunnos with XRCC4. All these data establish that Cernunnos is a major component of the NHEJ machinery, even if its function stillneeds to be precised
Slade, Dea. "Mécanisme moléculaire de la réparation de l'ADN chez Deinococcus radiodurans." Paris 6, 2009. http://www.theses.fr/2009PA066758.
Full textChabot, Thomas. "Modulation de l'activité du Rad51 par le récepteur tyrosine kinase c-Met dans la réparation des cassures double-brin de l'ADN." Thesis, Nantes, 2020. http://archive.bu.univ-nantes.fr/pollux/show.action?id=360755d5-6a18-407f-9af7-fe215a83747f.
Full textGenomic instability due to deregulation of DNA repair pathways may be at the onset of cancer and subsequently lead to resistance to chemotherapy and radiotherapy. Understanding these biological mechanisms is therefore essential in the fight against cancer. RAD51 is the core protein of the homologous recombinant double-stranded DNA repair pathway. This repair leads to faithful DNA repair. The recombinase activity of the RAD51 protein is finely regulated by post-translational modifications such as phosphorylation. Over the last decade, more and more studies have suggested the existence of a relationship between receptors with tyrosine kinase activity, which are often overactivated and involved in aggressiveness and cancer proliferation; and DNA repair. Among these receptors with tyrosine kinase activity, the c-Met/HGF-SF duo is often mutated, over-expressed or constitutively activated in many cancers and its inhibition has been shown to induce a decrease in repair by homologous recombination. Through this thesis, we show for the first time that c-Met is able to phosphorylate the RAD51 protein on four tyrosine residues located mainly in the human recombinase nucleofilament monomer- monomer interface. We show the implication of these phosphorylations on the activity of RAD51 in the different steps of homologous recombination. All the results obtained suggest the possible role of these modifications in the regulation of RAD51 and underline the importance of c-Met in the response to DNA damage
Robert, Flavie. "TRRAP,une protéine plateforme : Fonction d'un co-facteur de l'acétylation des histones dans la réparation des cassures double brin de l'ADN." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/ROBERT_Flavie_2005.pdf.
Full textTranscription initiation is a key event in the regulated expression of protein-coding genes. The general transcription factor TFIID, containing TBP and TAFs (TBP associated factors), plays a central role in transcription, because it recognizes the promoter, and triggers pre-initiation complex formation. TFTC (TBP free TAF containing complex) is another complex able to initiate transcription. TFTC possesses Histone Acetyltransferase (HAT) activity and thus participates in chromatin opening. These studies focus on TRRAP, TFTC's largest subunit. Trrap gene is essential to embryonic development, and indirectly influences the cell cycle. Moreover, TRRAP protein is targeted by DNA binding activators of transcription. Despite the fact that TRRAP structurally belongs to the family of PI3K kinase, which regulates cellular response to genotoxic stress, its in vivo function is not well understood. Immunoprecipitation and mass spectrometry analysis, associated to biochemical controls, reveal a stable interaction between TRRAP and Mre11-Rad50-Nbs1 complex (MRN) independent of TFTC. MRN is a critical component of DNA double strand break (DSB) cellular response. Functional studies of the TRRAP-MRN complex have shown that it does not possess HAT activity. Nevertheless, in vitro and in vivo evidences demonstrate that TRRAP, like other members of the PIKK family, plays a specific role in DNA DSB repair and signalling. Taken together, our studies give an insight into TRRAP function as a transcription co-factor. We propose to discuss in which TRRAP acts as a molecular platform, allowing communication between the cellular processes of DNA transcription, DNA repair, and chromatin remodeling. Independently, this manuscript summarizes the results of another study, addressing the mass spectrometry characterisation of a mitosis-specific post-translational modification of histone H3
Hardy, Sara. "Etudes fonctionnelles des complexes multiprotéiques contenant la protéine TRRAP : Implication de hTRRAP dans la réparation des cassures double-brin de l'ADN." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/HARDY_Sara_2005.pdf.
Full textForand, Anne. "Caractérisation de la réponse des cellules germinales mâles néonatales à un stress génotoxique." Paris 7, 2008. http://www.theses.fr/2008PA077123.
Full textThe fertility of an individual and the integrity of the genome of its progeny depend partly on the number and the quality of the germ cells, which are set up during foetal and neonatal life. We were particularly interested in the neonatal gonocytes, which are the precursors of the spermatogonia stem cells. We studied their short and long-term in vivo response to genotoxic stress (y-rays) by comparing it with that of neonatal spermatogonia. We showed that gonocytes are more sensitive to the induction of DMA double strand breaks (DSBs) than spermatogonia. After irradiation in phase S of their cell cycle, gonocytes are blocked in the following G1 phase whereas spermatogonia are blocked preferentially in G2/M. In addition, the repair of DSBs is faster in gonocytes than ir spermatogonia. Even if a dose of 2 Gy does not alter the fertility of the irradiated animals, it induces a significant reduction in sperm counts. This suggests an impairment of the spermatogonial stem pool due to a strong apoptosis of gonocytes after activation of the intrinsic pathway. We showed that PUMA is an essential regulator of this pathway in gonocytes. Irradiatior of spermatogonia with the same dose induces cellular death, however compensatory mechanisms probably related to the presence of more radio-resistant stem cells, are activated. Thus, in the adult, neither the testicular histology, nor the sperm counts were affected. Altogether, these date suggest the existence of particularly sensitive mechanisms in germ cells, permitting to direct these cells towards death in response to genotoxic stress, rather than to risk the transmission o-mutations resulting from DMA lesion misrepair
Jacob, Sandrine. "Impact du système de réparation des mésappariements de bases dans la réponse des cancers colorectaux aux inhibiteurs de topoisomérases." Paris 6, 2004. http://www.theses.fr/2004PA066165.
Full textDelacote, Fabien. "La réparation des cassures double brin de l'ADN chez les mammifères:intervention séquentielle de la recombinaison non homologue puis de la recombinaison homologue." Paris 11, 2002. http://www.theses.fr/2002PA11T046.
Full textChayot, Romain. "Réparation des causes double brin de l'ADN par le mécanisme de non homologous end joining : des bactéries aux cellules souches." Paris 6, 2009. http://www.theses.fr/2009PA066028.
Full textMouche, Audrey. "Stabilité du génome et rôle des INGs dans la réponse aux dommages de l'ADN." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1B015.
Full textING2 and ING3 (Inhibitor of Growth 2 and 3) are tumor suppressor proteins belonging to the ING family (ING1 to ING5). The aim of my research project was to analyze the involvement of ING2 and ING3 proteins in response to DNA damages. The functions of ING3 as a tumor suppressor gene are little known. In the present study, we have investigated the impact of ING3 inhibition in response to DNA double strand breaks. Previous study in the lab showed . In addition, a previous study in the lab found that inhibition of ING2 protein is associated with the accumulation of H2AX, a marker of DNA double-strand breaks. Thus, we also demonstrate that ING2 plays a role in the signaling and repair of DNA double-strand breaks. In the present study, we describe for the first time the involvement of ING3 in the signaling and repair of DNA double-strand breaks. ING3 allowed the phosphorylation and activation of the ATM kinase and the repair of double strand breaks by NHEJ and HR as well as in immunoglobulin class switch recombination. We also show the involvement of ING2 in this process. Indeed, ING2 is necessary for 53BP1 recruitment in response to DNA damages and repair by the mechanism of NHEJ. ING2 was also an essential actor for the class switch recombination demonstrated that ING2 is an essential actor of the classical NHEJ pathway. This work identifies, for the first time, a "caretaker" function for ING3 in the response to DNA double strand breaks; and . We show a new caretaker function for ING2 that plays a role in the stability of the genome through its involvement in DNA damage response
Badie, Christophe. "Influence de la réparation sur la courbe de survie :les cassures double brin de l'ADN et les aberrations chromosomiques de lignées fibroblastiques humaines." Paris 11, 1995. http://www.theses.fr/1995PA11T015.
Full textBouton, Katia. "Identification et caractérisation de partenaires de la protéine SPO11 chez la souris." Montpellier 1, 2007. http://www.theses.fr/2007MON1T035.
Full textMézard, Christine. "Reparation des cassures double-brin de l'adn par recombinaison homologue, homeologue et illegitime au cours de la transformation de la levure saccharomyces cerevisiae." Paris 6, 1994. http://www.theses.fr/1994PA066191.
Full textDagva, Oyut. "Vers la compréhension du rôle de NucS dans l'évolution du génome de Streptomyces." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0031.
Full textStreptomyces are ubiquitous bacteria in forest soils known for their remarkable genomic plasticity. These bacteria possess a highly compartmentalized linear chromosome, with a central region shared across the genus. This central region is bordered by variable chromosomal ends or arms that are prone to recombination. The repair of double-strand breaks (DSB), the most harmful cellular damage, is a major driver of genome plasticity and genome evolution in Streptomyces. Recently, a potential source of DSB has been identified: the endonuclease NucS, which plays a pivotal role in the non-canonical mismatch repair system (MMR) present in archaea and sporadically in bacteria, particularly in actinobacteria. The objective of this study is to determine whether NucS activity is involved in stimulating recombination in Streptomyces. Our investigations unveil that NucS depletion results in a significant increase of the mutation rate and in a marked colonial phenotype. In vitro activity tests showed that NucS generates DSB at G/T, G/G, and T/T mismatches. Its activity is enhanced in the presence of the replication processivity factor β-clamp, indicating that NucS targets post-replicative mismatches. A long-term mutation accumulation experiment conducted over 60 sporulation cycles have demonstrated that NucS is more prone to correct mismatches leading to transitions than transversions. A crescent-increase in the number of transitions from the replication origin towards the chromosome ends is observed. This original finding suggests that NucS is more active in terminal regions and could promote recombination by generating DSB. The increased frequency of rearrangements in the terminal regions in a mutant exhibiting an elevated frequency of replicative mismatches supports this hypothesis. These findings advance our understanding of this paradoxical mechanism for maintaining genome integrity: why break the genome in order to repair it better? The genetic diversification arising from genome plasticity could explain the selection of such a repair mechanism. Finally, the diversification of specialized metabolism in these soil-dwelling bacteria is of great interest both for their adaptation to the ecosystem and for the identification of new molecules with biotechnological interets
Grabarz, Anastazja. "Réparation des cassures double brin de l'adn chez les mammifères : rôle des protéines MRE11 et BLM dans l’initiation de la ligature d’extrémités non homologues (NHEJ )." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112172.
Full textDNA double strand breaks (DSBs) are highly cytotoxic lesions, which can lead to genetic rearrangements. Two pathways are responsible for repairing these lesions : homologous recombination (HR) and non homologous end joining (NHEJ). In our laboratory, an intrachromosomal substrate has been established in order to measure the efficiency and the fidelity of NHEJ in living cells (Guirouilh-Barbat 2004). This approach led us to identify a KU-independent alternative pathway, which uses microhomologies in the proximity of the junction to accomplish repair – the alternative NHEJ (Guirouilh-Barbat 2004, Guirouilh-Barbat et Rass 2007). The goal of my thesis consisted in identifying and characterising major actors of this pathway. In the absence of KU, alternative NHEJ would be initiated by ssDNA resection of damaged ends. We showed that the nuclease activity of MRE11 is necessary for this mechanism. MRE11 overexpression leads to a two fold stimulation of NHEJ efficiency, while the extinction of MRE11 by siRNA results in a two fold decrease. Our results demonstrate that the proteins RAD50 and CtIP act in the same pathway as MRE11. Moreover, in cells deficient for XRCC4, MIRIN – an inhibitor of the MRN complex – leads to a decrease in repair efficiency, implicating MRE11 in alternative NHEJ. We also showed that MRE11 can act in an ATM-dependent and independent manner (Rass et Grabarz Nat Struct Mol Biol 2009). The initiation of break resection needs to be pursued by a more extensive degradation of DNA, which is accomplished in yeast by the proteins Exo1 and Sgs1/Dna2. In human cells, in vitro studies have recently proposed a similar model of a two-step break resection. We chose to elucidate the role of one of the human homologs of Sgs1 – the RecQ helicase BLM – in the resection process. Our experiments show, that he absence of BLM decreases the efficiency of end joining by NHEJ, accompanied by an increase in error-prone events, especially long-range deletions (>200nt). This suggests that BLM protects against extensive resection during alternative NHEJ. Furthermore, BLM is implicated in the protection against CtIP-dependent resection at the initiation of HR. In conclusion, our results show a major role of BLM in protecting against an excess of resection, mediated by the MRN cofactor – CtIP. BLM interacts with 53BP1 at sites of damage, in an ATM-dependent manner, in order to regulate the resection process and counteract BRCA1 activity. This underlines the novel role of BLM in the protection against resection and favouring gene conversion events without crossing-over, which is substantial for maintaining genomic integrity
Drouet, Jérôme. "Mobilisation de protéines de la voie de jonction d'extrémités non homologues en réponse aux cassures double-brin de l'ADN dans les cellules de mammifère." Toulouse 3, 2004. http://www.theses.fr/2004TOU30243.
Full textCells are constantly exposed to a variety of endogenic and exogenic factors likely to compromise their genome integrity. Among the various kinds of DNA lesions, double-strand breaks (DSB) are considered as the most cytotoxic damages due to potentially lethal, and possibly carcinogenic, effects. Facing this permanent danger, cells are equipped with adapted repairing enzymatic systems. The NHEJ (Non Homologous End Joining) is considered as the major DSB-repairing process in the case of superior eucaryotes. The precise biochemical mechanism used by the NHEJ is still not well known, and most of the present knowledge is based on in vitro experiments. In a first step, we have tested the physiological validity of the NHEJ biochemical model by an in vivo approach using optimized cell fractioning, based on a detergent-mediated extraction technique. We have confirmed the assembly of the major repairing complexes, DNA-PK and Xrcc4 / DNA ligase IV, in the presence of DSB in vivo, in several human cell lines. We have described for the first time a Xrcc4 recruitment, strictly dependent on the physical presence of DNA ligase IV, and we propose a model for the role of Xrcc4 phosphorylation on the optimized recruitment of DNA ligase IV in double-strand breakages. In addition, we observed a specific mobilization of the Xrcc4 / DNA ligase IV complex toward the nuclear matrix in response to DSB, and we propose that the nuclear matrix acts as a specialized DSB-repairing site exhibiting complex extremities. .
Cohen, Sarah. "Le rôle de senataxine dans la résolution des hybrides ARN : ADN aux cassures double brins de l'ADN." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30125.
Full textActively transcribed genes can be the source of genome instability through numerous mechanisms. Those genes are characterized by the formation of secondary structures such as RNA-DNA hybrids. They are formed when nascent RNA exiting RNA polymerase II hybridizes single stranded DNA. Numerous studies have shown that RNA-DNA hybrids accumulation can lead to DNA damages. Among those damages, DNA double strand breaks (DSB) are the most deleterious for cells since they can generate mutations and chromosomal rearrangements. Two major repair mechanisms exist in the cell: Non-Homologous End-Joining (NHEJ) and Homologous recombination (HR). My lab showed recently that DSB occurring in transcribed genes are preferentially repaired by HR. Moreover, multiple studies have shown a cross talk between transcription and DSB repair. Those results led us to propose that actively transcribed genes could be repaired by a specific mechanism implicating proteins associated with transcription: "Transcription-coupled DSB repair". During my PhD, using the DIvA (DSB Induction via AsiSI) cell line allowing the induction of annotated DSB through the genome, I worked on 2 projects focusing on DSB repair in transcribed genes. First, we showed that DSB repair in transcribed loci requires a known RNA: DNA helicase: senataxin (SETX). After DSB induction in an active gene, SETX is recruited which allows RNA-DNA hybrid resolution (mapped by DRIP-seq). We also showed that SETX activity allows RAD51 loading and limits DSB illegitimate rejoining and consequently promotes cell survival after DSB induction. This study shows that DSB in transcribed loci require specific RNA-DNA hybrids removal by SETX for accurate repair. Second, we showed an interplay between SETX and Bloom (BLM) a G4 DNA helicase in DSB repair induced in transcribed loci. We showed that BLM is also recruited at DSB in transcribed loci where it promotes resection and repair fidelity. Strikingly, we showed that BLM depletion rescued the survival defects observed in SETX depleted cells following DSB induction. Knock down of other G4-helicases (RTEL1, FANCJ) also promoted cell survival in SETX depleted cells upon damage. Those data suggest an interplay between G4 helicases and RNA: DNA resolution for DSB repair in active genes. Altogether, these studies promote a better understanding of the specificity of DSB repair in transcriptionally active genes, and notably identification of proteins involved in "Transcription-coupled DSB repair"
Wu, Pei-Yu. "Le complexe de ligation dans la réaction de réparation des cassures de l'ADN par recombination non homologué." Toulouse 3, 2008. http://www.theses.fr/2008TOU30064.
Full textDNA double-strand breaks (DSBs) are the most lethal threats among all the DNA damages in cells. They can arise not only endogenously from normal physiological processes such as V(D)J recombination or toxic lesions like DNA replication forks collapses, but also exogenously from DNA damaging agents like ionizing radiation (IR) or radiomimetic compounds. In mammals, DSBs are mainly repaired by homologous recombination (HR) during S and G2 phases of the cell cycle when sister chromatids are available, and, more predominantly, in all the phases of cell cycle by the non-homologous end-joining (NHEJ) pathway without any requirement for homology guidance. The NHEJ machinery is also involved in V(D)J recombination to rearrange B-cell immunoglobulin and T-cell receptor genes. Deficiency in NHEJ consequently results in hypersensitivity to IR, immunodeficiency, as well as chromosomal instability. After DSBs induction, Ku70/Ku80 heterodimer binds to free DNA ends, allowing the subsequent recruitment and activation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The resulting DNA-PK holoenzyme (i. E. Ku/DNA-PKcs or Complex-1) tethers two DNA termini and form the synaptic complex that may further activates DNA-PKcs by several (auto)phosphorylation events. Upon activation, Complex-1 undergoes conformational changes to accommodate the ligation complex (Complex-2) and accessory factors that make DNA ends compatible with ligation, when necessary. Complex-2 comprises XRCC4, DNA LigIV (LigIV) and the more recently identified factor Cernunnos-XLF (Cer-XLF). The three partners interact with each other and Complex-2 also binds Complex-1 and accessory factors, thus accounting for its highly efficient end-joining activity. In this work we aimed at characterizing the intimate interaction network between Complex-2 factors. .
Menchon, Grégory. "Criblage virtuel et fonctionnel sur le complexe XRCC4/ADN ligase IV/Cer-XLF de ligature des cassures double-brin de l'ADN : application en radiosensibilisation tumorale." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30395.
Full textRadiotherapy is a major weapon used against cancer. Radio-induced DNA double strand breaks (DSB) are the main lesions responsible for cell death. Non-homologous end-joining (NHEJ) is a predominant DSB repair mechanism which contributes to cancer cells resistance to radiotherapy. NHEJ is thus a good target for strategies which aim at increasing the radio-sensitivity of tumors. Through in silico screening and biophysical and biochemical assays, our objective was to find specific ligands for the XRCC4/Lig4 and XRCC4/Cer-XLF protein-protein interactions involved in NHEJ. Here, we isolated the first compounds able to prevent their interaction in vitro. These early stage inhibitors are promising tools for cancer therapy with the hope to develop more specific compounds for cellular assays through the 3D structure of the protein/inhibitor complexes
Marmignon, Antoine. "Couplage entre introduction et réparation des cassures double brin pendant les réarrangements programmés du génome de Paramecium tetraurelia." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00923174.
Full textMosbach, Valentine. "Contraction de répétitions de trinucléotides par induction ciblée d'une cassure double brin." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066040.
Full textTrinucleotides repeats are a specific class of microsatellites whose large expansions are responsible for many human neurological disorders. Myotonic dystrophy type 1 (DM1) is due to an expansion of CTG repeats in the 3’UTR of DMPK gene, which can reach thousands of repeats. Molecular mechanisms leading to these large expansions are poorly understood but in vitro studies have shown the capacity of these repeats to form secondary structures, which probably interfere with mechanisms involving DNA synthesis. We shown that a TALEN used to induce double-strand break (DSB) in DM1 CTG repeats integrated in the yeast Saccharomyces cerevisiae is specific and leads to highly efficient repeat contractions after repair. Mechanism involved in TALEN-induced DSB only depends of RAD50 and RAD52 genes, suggesting the formation of secondary structures at DSB ends that need to be removed for repair initiation, followed by an intramolecular recombinaison repair such as SSA between repeats leading to their contraction. We compared the efficiency and specificity of a CRISPR-Cas9 and the TALEN to contract CTG repeats in yeast. Surprisingly, CRISPR-Cas9 induction do not lead to repeat contraction but to chromosomal rearrangement, suggesting a lack of specificity and a different repair mechanism than with the TALEN. At last, we studied whether these nucleases could contract CTG repeats to a non-pathological length in mammalian cells. Finally, TALEN induction in DM1 transgenic mice cells, and in DM1 human fibroblasts show promising repeat contractions
Marangoni, Elisabetta. "La protéine KU86 : une cible pour la modulation de la radiosensibilité des cellules de mammifères." Paris 11, 2000. http://www.theses.fr/2000PA11T069.
Full text