Academic literature on the topic 'Catalyst chain growth polymerization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Catalyst chain growth polymerization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Catalyst chain growth polymerization"

1

Yokozawa, Tsutomu, Isao Adachi, Ryo Miyakoshi, and Akihiro Yokoyama. "Catalyst-Transfer Condensation Polymerization for the Synthesis of Well-Defined Polythiophene with Hydrophilic Side Chain and of Diblock Copolythiophene with Hydrophilic and Hydrophobic Side Chains." High Performance Polymers 19, no. 5-6 (October 2007): 684–99. http://dx.doi.org/10.1177/0954008307081212.

Full text
Abstract:
Chain-growth condensation polymerization of 2-bromo-5-chloromagnesio-3-[2-(2-metho-xyethoxy)ethoxy]methylthiophene (2) with Ni catalysts was studied, and the block copolymer of poly2 and poly(3-hexylthiophene) was synthesized by this polymerization method. The polymerization of 2 depended on the ligands of the Ni catalyst, and poly2 with the lowest polydispersity was obtained when 1,2-bis(diphenylphosphino)ethane (dppe) was used as the ligand. The linear relationships between the conversion of 2 and Mn of the polymer and between the feed ratio of 2 to the Ni catalyst and Mn of the polymer indicate that this polymerization proceeds in a chain-growth polymerization manner via a catalyst-transfer condensation polymerization mechanism. The block copolymerization of 2 and 2-bromo-5-chloromagnesio-3-hexylthiophene (1) was then carried out in four ways by changing the order of polymerization of the two monomers and the catalysts. It turned out that the block copolymer was obtained without the formation of the homopolymers by the polymerization of 1 with Ni(dppe)Cl2 or Ni(dppp)Cl2 (dppp = 1,2-bis(diphenylphosphino)propane), followed by the postpolymerization of 2. Of the two catalysts, Ni(dppe)Cl2 resulted in narrower polydispersity of the block copolymer.
APA, Harvard, Vancouver, ISO, and other styles
2

Schoeneberger, Elsa M., and Gerrit A. Luinstra. "Investigations on the Ethylene Polymerization with Bisarylimine Pyridine Iron (BIP) Catalysts." Catalysts 11, no. 3 (March 23, 2021): 407. http://dx.doi.org/10.3390/catal11030407.

Full text
Abstract:
The kinetics and terminations of ethylene polymerization, mediated by five bisarylimine pyridine (BIP) iron dichloride precatalysts, and activated by large amounts of methyl aluminoxane (MAO) was studied. Narrow distributed paraffins from initially formed aluminum polymeryls and broader distributed 1-polyolefins and (bimodal) mixtures, thereof, were obtained after acidic workup. The main pathway of olefin formation is beta-hydrogen transfer to ethylene. The rate of polymerization in the initial phase is inversely proportional to the co-catalyst concentration for all pre-catalysts; a first-order dependence was found on ethylene and catalyst concentrations. The inhibition by aluminum alkyls is released to some extent in a second phase, which arises after the original methyl groups are transformed into n-alkyl entities and the aluminum polymeryls partly precipitate in the toluene medium. The catalysis is interpretable in a mechanism, wherein, the relative rate of chain shuttling, beta-hydrogen transfer and insertion of ethylene are determining the outcome. Beta-hydrogen transfer enables catalyst mobility, which leads to a (degenerate) chain growth of already precipitated aluminum alkyls. Stronger Lewis acidic centers of the single site catalysts, and those with smaller ligands, are more prone to yield 1-olefins and to undergo a faster reversible alkyl exchange between aluminum and iron.
APA, Harvard, Vancouver, ISO, and other styles
3

Balcar, Hynek, Jan Sedláček, Jan Svoboda, Naděžda Žilková, Jiří Rathouský, and Jiří Vohlídal. "Hybrid Catalysts for Acetylenes Polymerization Prepared by Anchoring [Rh(cod)Cl]2 on MCM-41, MCM-48 and SBA-15 Mesoporous Molecular Sieves - The Effect of Support Structure on Catalytic Activity in Polymerization of Phenylacetylene and 4-Ethynyl-N-{4-[(trimethylsilyl)ethynyl]benzylidene}aniline." Collection of Czechoslovak Chemical Communications 68, no. 10 (2003): 1861–76. http://dx.doi.org/10.1135/cccc20031861.

Full text
Abstract:
Hybrid catalysts for polymerization of acetylenes were prepared by anchoring, via (3-aminopropyl)trimethoxysilane linker, the [Rh(cod)Cl]2 complex on siliceous mesoporous molecular sieves differing in the pore size and architecture (MCM-41, MCM-48 and SBA-15). In comparison with [Rh(cod)Cl]2 used as homogeneous catalyst, all hybrid catalysts exhibited comparable or even higher catalytic activity in the polymerization of phenylacetylene and 4-ethynyl-N-{4-[(trimethylsilyl)ethynyl]benzylidene}aniline. The initial polymerization rate increased with increasing accessibility of mesoporous surface of catalysts in the order: MCM-41 < MCM-48 < SBA-15. Molecular weights of the prepared polymers increased in reverse order suggesting suppression of the chain growth termination reactions by space limitations in the pores. No effect of catalyst support on the microstructure of formed polymers was found.
APA, Harvard, Vancouver, ISO, and other styles
4

Gegenhuber, Thomas, Alexander M. Schenzel, Anja S. Goldmann, Per B. Zetterlund, and Christopher Barner-Kowollik. "A facile route to segmented copolymers by fusing ambient temperature step-growth and RAFT polymerization." Chemical Communications 53, no. 77 (2017): 10648–51. http://dx.doi.org/10.1039/c7cc06347d.

Full text
Abstract:
We introduce the facile synthesis of segmented copolymers via a catalyst-free Diels–Alder (DA) reaction at ambient temperature via step-growth polymerization and subsequent reversible addition fragmentation chain transfer (RAFT) polymerization.
APA, Harvard, Vancouver, ISO, and other styles
5

Echevskaya, L. G., M. A. Matsko, and V. A. Zakharov. "Kinetic Studies of Chain-Transfer Reactions in Polymerization of Hexene-1 over Highly Active Supported Titanium-Magnesium Catalysts." Kataliz v promyshlennosti 19, no. 2 (March 15, 2019): 104–13. http://dx.doi.org/10.18412/1816-0387-2019-2-104-113.

Full text
Abstract:
The influence of concentrations of the monomer, triethylaluminum, and hydrogen on the molecular mass of polyhexene obtained by polymerization of hexene-1 over a supported titanium-magnesium catalyst was studied. Ratios of rate constants of the transfer of polymer chain with the monomer, triethylaluminum (AlEt3) and hydrogen to the rate constant of the chain-growth were calculated.The data obtained allowed the contribution of individual reactions of chain transfer to molecular mass of the polymer to be estimated at various polymerization conditions and the polymerization conditions to be chosen deliberately in order to synthesize polyhexene with the required molecular mass. The discovered inhomogeneity of the centers active to the chain transfer with hydrogen in the presence of the AlEt3 co-catalyst caused changes in the polymer polydispersion upon changes in the hydrogen concentration in the reaction medium. Curves of the polyhexene molecular mass distribution in polyhexene samples with different polydispersion were analyzed using their resolution into Flory components.
APA, Harvard, Vancouver, ISO, and other styles
6

German, Ian, Wissem Kelhifi, Sébastien Norsic, Christophe Boisson, and Franck D'Agosto. "Telechelic Polyethylene from Catalyzed Chain-Growth Polymerization." Angewandte Chemie International Edition 52, no. 12 (February 13, 2013): 3438–41. http://dx.doi.org/10.1002/anie.201208756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Park, Kyung Lee, Jun Won Baek, Seung Hyun Moon, Sung Moon Bae, Jong Chul Lee, Junseong Lee, Myong Sun Jeong, and Bun Yeoul Lee. "Preparation of Pyridylamido Hafnium Complexes for Coordinative Chain Transfer Polymerization." Polymers 12, no. 5 (May 11, 2020): 1100. http://dx.doi.org/10.3390/polym12051100.

Full text
Abstract:
The pyridylamido hafnium complex (I) discovered at Dow is a flagship catalyst among postmetallocenes, which are used in the polyolefin industry for PO-chain growth from a chain transfer agent, dialkylzinc. In the present work, with the aim to block a possible deactivation process in prototype compound I, the corresponding derivatives were prepared. A series of pyridylamido Hf complexes were prepared by replacing the 2,6-diisopropylphenylamido part in I with various 2,6-R2C6H3N-moieties (R = cycloheptyl, cyclohexyl, cyclopentyl, 3-pentyl, ethyl, or Ph) or by replacing 2-iPrC6H4C(H)- in I with the simple PhC(H)-moiety. The isopropyl substituent in the 2-iPrC6H4C(H)-moiety influences not only the geometry of the structures (revealed by X-ray crystallography), but also catalytic performance. In the complexes bearing the 2-iPrC6H4C(H)-moiety, the chelation framework forms a plane; however, this framework is distorted in the complexes containing the PhC(H)-moiety. The ability to incorporate α-olefin decreased upon replacing 2-iPrC6H4C(H)-with the PhC(H)-moiety. The complexes carrying the 2,6-di(cycloheptyl)phenylamido or 2,6-di(cyclohexyl)phenylamido moiety (replacing the 2,6-diisopropylphenylamido part in I) showed somewhat higher activity with greater longevity than did prototype catalyst I.
APA, Harvard, Vancouver, ISO, and other styles
8

Balasubramanian, Arumugam, Ting-Chia Ku, Hong-Pin Shih, Alishetty Suman, Huang-Jyun Lin, Ting-Wen Shih, and Chien-Chung Han. "Chain-growth cationic polymerization of 2-halogenated thiophenes promoted by Brønsted acids." Polym. Chem. 5, no. 20 (2014): 5928–41. http://dx.doi.org/10.1039/c4py00521j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tkachov, Roman, Volodymyr Senkovskyy, Tetyana Beryozkina, Kseniya Boyko, Vasiliy Bakulev, Albena Lederer, Karin Sahre, Brigitte Voit, and Anton Kiriy. "Palladium-Catalyzed Chain-Growth Polycondensation of AB-type Monomers: High Catalyst Turnover and Polymerization Rates." Angewandte Chemie International Edition 53, no. 9 (February 12, 2014): 2402–7. http://dx.doi.org/10.1002/anie.201310045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tkachov, Roman, Volodymyr Senkovskyy, Tetyana Beryozkina, Kseniya Boyko, Vasiliy Bakulev, Albena Lederer, Karin Sahre, Brigitte Voit, and Anton Kiriy. "Palladium-Catalyzed Chain-Growth Polycondensation of AB-type Monomers: High Catalyst Turnover and Polymerization Rates." Angewandte Chemie 126, no. 9 (February 12, 2014): 2434–39. http://dx.doi.org/10.1002/ange.201310045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Catalyst chain growth polymerization"

1

Beigzadeh, Daryoosh. "Long-chain branching in ethylene polymerization using combined metallocene catalyst systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0020/NQ52024.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thomas, Sydney. "Measurement and modelling of long chain branching in chain growth polymerization." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0001/NQ42769.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Primpke, Sebastian. "Mechanism and Kinetics of Catalyzed Chain Growth." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://hdl.handle.net/11858/00-1735-0000-0022-5DA6-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khanduyeva, Natalya. "Conjugated Polymer Brushes (Poly(3-hexylthiophene) brushes): new electro- and photo-active molecular architectures." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1232556562686-70575.

Full text
Abstract:
The aim of the present work was to screen the main methods for the synthesis of conjugated polymers for their suitability in the preparation of conductive polymer brushes. The main focus was put on the grafting of intrinsically soluble substituted regioregular polyalkylthiophenes because of their excellent optoelectronic properties. The resulting polymer films were characterized and their optoelectrical properties studied. For the first time, a synthesis of conductive polymer brushes on solid substrates using “grafting-from” method was performed. The most important, from my opinion, finding of this work is that regioregular head-to-tail poly-3-alkylthiophenes – benchmark materials for organic electronics - can be now selectively grafted from appropriately-terminated surfaces to produce polymer brushes of otherwise soluble polymers - the architecture earlier accessible only in the case of non-conductive polymers. In particular, we developed a new method to grow P3ATs via Kumada Catalyst Transfer Polymerization (KCTP) of 2-bromo-5-chloromagnesio-3-alkylthiophene. Exposure of the initiator layers to monomer solutions leads to selective chain-growth polycondensation of the monomers from the surface, resulting into P3AT brushes in a very economical way. The grafting process was investigated in detail and the structure of the resulting composite films was elucidated using several methods. The obtained data suggests that the grafting process occurs not only at the poly(4-bromstyrene) (PS-Br)/polymerization solution interface, but also deeply inside the swollen PS-Br films, penetrable for the catalyst and for the monomer The grafting process was investigated in detail and the structure of the resulting composite film was elucidated using ellipsometry, X-ray Photoelectron Spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), and Conductive atomic force microscopy (C-AFM). The obtained data suggests that the grafting process occurs not only at the poly(4-bromostyrene), PS-Br/polymerization solution interface, but also deeply inside the swollen PS-Br film, which is penetrable for the catalyst and the monomer. The process results in an interpenetrated PS-Br/P3HT network, in which relatively short poly(3-hexylthiophene), P3HT grafts emanate from long, cross-linked PS-Br chains. A further method investigated during our work was to covalently graft regioirregular P3HT to substrates modified by macromolecular anchors using oxidative polymerization of 3HT with FeCl3. P3HT layers with variable thicknesses from 30 nm up to 200 nm were produced using two steps of polymerization reaction. The P3HT obtained by oxidative polymerization had always an irregular structure, which was a result of the starting monomer being asymmetric, which is undesired for electronic applications. The third method for the production of conductive polymer brushes was to graft regioregular poly(3,3''-dioctyl-[2,2';5',2'']terthiophene) (PDOTT) by electrochemical oxidative polycondensation of symmetrically substituted 3,3''-dioctyl-[2,2';5',2'']terthiophene (DOTT). A modification of the supporting ITO electrode by the self-assembled monolayers (SAMs) of compounds having polymerizable head-groups with properly adjusted oxidative potentials was found to be essential to achieve a covalent attachment of PDOTT chains. The polymer films produced show solvatochromism and electrochromism, as well as the previous two methods. After polymerization, the next step towards building organic electronic devices is applying the methods obtained in nano- and microscale production. Block copolymers constitute an attractive option for such surface-engineering, due to their ability to form a variety of nanoscale ordered phase-separated structures. However, block copolymers containing conjugated blocks are less abundant compared to their non-conjugated counterparts. Additionally, their phase behaviour at surfaces is not always predictable. We demonstrated in this work, how surface structures of non-conductive block copolymers, such as P4VP-b-PS-I, can be converted into (semi)conductive P4VP-b-PS-graft-P3HT chains via a surface-initiated polymerization of P3HT (Kumada Catalyst Transfer Polymerization (KCTP) from reactive surface-grafted block copolymers. This proves that our method is applicable to develop structured brushes of conductive polymers. We believe that it can be further exploited for novel, stimuli-responsive materials, for the construction of sensors, or for building various opto-electronic devices. The methods developed here can in principle be adapted for the preparation of any conductive block copolymers and conductive polymers, including other interesting architectures of conductive polymers, such as block copolymers, cylindrical brushes, star-like polymers, etc. To this end, one needs to synthesize properly-designed and multi-functional Ni-initiators before performing the polycondensation.
APA, Harvard, Vancouver, ISO, and other styles
5

Abboud, Mohammed K. [Verfasser]. "Video Microscopy Studies on Growth Kinetics of Single Catalyst Particles During Olefin Polymerization / Mohammed K Abboud." Aachen : Shaker, 2005. http://d-nb.info/1186577401/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fischer, Christoph Siegfried Winfried [Verfasser]. "Luminescent Conjugated Polymer Nanoparticles from Suzuki-Miyaura Chain-Growth Polymerization / Christoph Siegfried Winfried Fischer." Konstanz : Bibliothek der Universität Konstanz, 2015. http://d-nb.info/1105479110/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lohwasser, Ruth [Verfasser]. "Chain-Growth Polymerization of 3-Hexylthiophene Towards Well-Defined Semiconductor Block Copolymers / Ruth Lohwasser." Bayreuth : Universitätsbibliothek Bayreuth, 2012. http://d-nb.info/1019854103/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khanduyeva, Natalya. "Conjugated Polymer Brushes (Poly(3-hexylthiophene) brushes): new electro- and photo-active molecular architectures." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23635.

Full text
Abstract:
The aim of the present work was to screen the main methods for the synthesis of conjugated polymers for their suitability in the preparation of conductive polymer brushes. The main focus was put on the grafting of intrinsically soluble substituted regioregular polyalkylthiophenes because of their excellent optoelectronic properties. The resulting polymer films were characterized and their optoelectrical properties studied. For the first time, a synthesis of conductive polymer brushes on solid substrates using “grafting-from” method was performed. The most important, from my opinion, finding of this work is that regioregular head-to-tail poly-3-alkylthiophenes – benchmark materials for organic electronics - can be now selectively grafted from appropriately-terminated surfaces to produce polymer brushes of otherwise soluble polymers - the architecture earlier accessible only in the case of non-conductive polymers. In particular, we developed a new method to grow P3ATs via Kumada Catalyst Transfer Polymerization (KCTP) of 2-bromo-5-chloromagnesio-3-alkylthiophene. Exposure of the initiator layers to monomer solutions leads to selective chain-growth polycondensation of the monomers from the surface, resulting into P3AT brushes in a very economical way. The grafting process was investigated in detail and the structure of the resulting composite films was elucidated using several methods. The obtained data suggests that the grafting process occurs not only at the poly(4-bromstyrene) (PS-Br)/polymerization solution interface, but also deeply inside the swollen PS-Br films, penetrable for the catalyst and for the monomer The grafting process was investigated in detail and the structure of the resulting composite film was elucidated using ellipsometry, X-ray Photoelectron Spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), and Conductive atomic force microscopy (C-AFM). The obtained data suggests that the grafting process occurs not only at the poly(4-bromostyrene), PS-Br/polymerization solution interface, but also deeply inside the swollen PS-Br film, which is penetrable for the catalyst and the monomer. The process results in an interpenetrated PS-Br/P3HT network, in which relatively short poly(3-hexylthiophene), P3HT grafts emanate from long, cross-linked PS-Br chains. A further method investigated during our work was to covalently graft regioirregular P3HT to substrates modified by macromolecular anchors using oxidative polymerization of 3HT with FeCl3. P3HT layers with variable thicknesses from 30 nm up to 200 nm were produced using two steps of polymerization reaction. The P3HT obtained by oxidative polymerization had always an irregular structure, which was a result of the starting monomer being asymmetric, which is undesired for electronic applications. The third method for the production of conductive polymer brushes was to graft regioregular poly(3,3''-dioctyl-[2,2';5',2'']terthiophene) (PDOTT) by electrochemical oxidative polycondensation of symmetrically substituted 3,3''-dioctyl-[2,2';5',2'']terthiophene (DOTT). A modification of the supporting ITO electrode by the self-assembled monolayers (SAMs) of compounds having polymerizable head-groups with properly adjusted oxidative potentials was found to be essential to achieve a covalent attachment of PDOTT chains. The polymer films produced show solvatochromism and electrochromism, as well as the previous two methods. After polymerization, the next step towards building organic electronic devices is applying the methods obtained in nano- and microscale production. Block copolymers constitute an attractive option for such surface-engineering, due to their ability to form a variety of nanoscale ordered phase-separated structures. However, block copolymers containing conjugated blocks are less abundant compared to their non-conjugated counterparts. Additionally, their phase behaviour at surfaces is not always predictable. We demonstrated in this work, how surface structures of non-conductive block copolymers, such as P4VP-b-PS-I, can be converted into (semi)conductive P4VP-b-PS-graft-P3HT chains via a surface-initiated polymerization of P3HT (Kumada Catalyst Transfer Polymerization (KCTP) from reactive surface-grafted block copolymers. This proves that our method is applicable to develop structured brushes of conductive polymers. We believe that it can be further exploited for novel, stimuli-responsive materials, for the construction of sensors, or for building various opto-electronic devices. The methods developed here can in principle be adapted for the preparation of any conductive block copolymers and conductive polymers, including other interesting architectures of conductive polymers, such as block copolymers, cylindrical brushes, star-like polymers, etc. To this end, one needs to synthesize properly-designed and multi-functional Ni-initiators before performing the polycondensation.
APA, Harvard, Vancouver, ISO, and other styles
9

Wolpers, Arne. "Advances in chain-growth control and analysis of polymer: boosting iodine-mediated polymerizations and mastering band-broadening effects in size-exclusion chromatography." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://hdl.handle.net/11858/00-1735-0000-0023-9654-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siscan, Olga. "Single-chain technology using sequence-controlled precursors." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF012/document.

Full text
Abstract:
Dans cette thèse, de nouveaux systèmes macromoléculaires ont été conçus et synthétisés dans le but de former de nouvelles structures complexes basées sur des systèmes à chaîne polymère unique. Dans la première partie de ce projet, des chaînons contenant des groupements fonctionnels positionnés de manière précise ont été préparés avec succès dans le but de former des machines moléculaires de type rotaxane. Dans la seconde étude, des origamis macromoléculaires repliés ont été étudiés, et plus particulièrement des chaînes uniques à topologies complexes telles que des composés pseudocycliques ou noué. Ces topologies ont été obtenus en utilisant des ponts disulfures pouvant être positionnés à divers endroits de la chaîne polymère et grâce à des auto-associations intramoléculaires de type métal-ligand. Le placement des groupements fonctionnels et des ponts intramoléculaires dans les chaînes polymères a été rendu possible par le contrôle des séquences de monomères, en s’appuyant sur la cinétique de copolymérisation de monomères styrèniques (donneurs d’électrons) avec des monomères de type maléimides N-substitués (accepteurs). En effet, l’ajout de maléimides N-substitués à des temps contrôlés dans la chaîne de polystyrène en croissance, au moyen de techniques de polymérisations radicalaires contrôlées (vivantes) s’est avéré être une stratégie efficace et rapide pour la régulation de la séquence de monomères dans la chaîne polymère
In this thesis, new macromolecular systems for single-chain technology were designed and synthesized. In the first study, tracks containing precisely positioned functional groups for single-chain rotaxane-based molecular machines were successfully prepared. In the second study, folded macromolecular origami were investigated, and specifically single-chain complex topologies such as pseudocyclic (Q-shaped) and knotted (α-shaped) using positionable disulfide bridges and intramolecular metal-ligand self-associations. The placement of functional moieties and intramolecular bridges in polymer chains was possible due to the monomer sequence control, by relying on the kinetics of copolymerization of donor styrenic monomer with acceptor N-substituted maleimide monomers. Indeed, time-controlled monomer additions of N-substituted maleimides into growing polystyrene chains by means of controlled/living radical polymerization techniques proved to be a convenient, rapid and scalable strategy for sequence regulation
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Catalyst chain growth polymerization"

1

Davis, Fred J., ed. Polymer Chemistry. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198503095.001.0001.

Full text
Abstract:
Polymer Chemistry: A Practical Approach in Chemistry has been designed for both chemists working in and new to the area of polymer synthesis. It contains detailed instructions for preparation of a wide-range of polymers by a wide variety of different techniques, and describes how this synthetic methodology can be applied to the development of new materials. It includes details of well-established techniques, e.g. chain-growth or step-growth processes together with more up-to-date examples using methods such as atom-transfer radical polymerization. Less well-known procedures are also included, e.g. electrochemical synthesis of conducting polymers and the preparation of liquid crystalline elastomers with highly ordered structures. Other topics covered include general polymerization methodology, controlled/"living" polymerization methods, the formation of cyclic oligomers during step-growth polymerization, the synthesis of conducting polymers based on heterocyclic compounds, dendrimers, the preparation of imprinted polymers and liquid crystalline polymers. The main bulk of the text is preceded by an introductory chapter detailing some of the techniques available to the scientist for the characterization of polymers, both in terms of their chemical composition and in terms of their properties as materials. The book is intended not only for the specialist in polymer chemistry, but also for the organic chemist with little experience who requires a practical introduction to the field.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Catalyst chain growth polymerization"

1

Prosenc, Marc-Heinrich, Frank Schaper, and Hans-Herbert Brintzinger. "Chain growth in zirconocene-catalyzed olefin polymerization - DFT studies on possible reaction paths and the influence of a second olefin ligand." In Metalorganic Catalysts for Synthesis and Polymerization, 223–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60178-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lodge, Timothy P., and Paul C. Hiemenz. "Chain-Growth Polymerization." In Polymer Chemistry, 83–124. Third edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429190810-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Anil, and Rakesh K. Gupta. "Chain-Growth Polymerization." In Fundamentals of Polymer Engineering, 175–226. Third edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. | Earlier edition by Anil Kumar, Rakesh K. Gupta. | “Includes bibliographical references and index.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429398506-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ravve, A. "Ionic Chain-Growth Polymerization." In Principles of Polymer Chemistry, 151–251. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2212-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yokozawa, Tsutomu, and Yoshihiro Ohta. "Chain-Growth Condensation Polymerization." In Encyclopedia of Polymeric Nanomaterials, 347–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ravve, A. "Ionic Chain-Growth Polymerization." In Principles of Polymer Chemistry, 81–166. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1283-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yokozawa, Tsutomu, and Yoshihiro Ohta. "Chain-Growth Condensation Polymerization." In Encyclopedia of Polymeric Nanomaterials, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_177-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ravve, A. "Ionic Chain-Growth Polymerization." In Principles of Polymer Chemistry, 103–92. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4227-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ravve, A. "Free-Radical Chain-Growth Polymerization." In Principles of Polymer Chemistry, 69–150. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2212-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ravve, A. "Free-Radical Chain-Growth Polymerization." In Principles of Polymer Chemistry, 41–102. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4227-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Catalyst chain growth polymerization"

1

Long, Timothy E., Casey L. Elkins, Lars Kilian, Taigyoo Park, Scott R. Trenor, Koji Yamauchi, Ralph H. Colby, Donald J. Leo, and Brian J. Love. "“Reversible Macromolecules” as Scaffolds for Adaptive Structures." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43010.

Full text
Abstract:
Self-healing macromolecular structures, submicron capsules and fibers with molecular recognition, stimuliresponsive molecules, solvent-free rheological reversibility, multivalency in rational drug design, and the emergence of new fields of adaptive and evolutive chemistry will require a predictive synergy of tailored non-covalent and covalent bonding in molecular design. Supramolecular chemistry has emerged as a stimulating focal point that will enable these scientific and technological discoveries, and biorecognition and biomolecular organization often serve as the inspiration for the future design of supramolecular assemblies. Linear and branched macromolecules are conventionally prepared using unique combinations of step-growth and chain polymerization strategies wherein the repeating units are irreversibly connected using stable covalent bonds. Moreover, optimum physical properties and commercial success of macromolecules are derived from our ability to prepare exceptionally high molecular weights in a controlled fashion. Although high molecular weight linear macromolecules are desirable for the optimization of physical performance and commercial impact, high molecular weights often compromise future solvent-free manufacturing, melt processability, thermal stability, and recyclability of the final products. Our recent efforts have demonstrated the utility of living anionic polymerization techniques to place functionality at desired positions on the polymer backbone. This control allowed investigation of the relationship between topology and tailored functionality, a fundamental investigation that may lead to interesting adaptive and smart applications. Specifically, the synthesis of polyisoprene homopolymers in a variety of topologies was performed, as well as the introduction of complementary hydrogen bonding to diverse families of hydroxyl containing polymeric and monomeric precursors.
APA, Harvard, Vancouver, ISO, and other styles
2

Sousa, Gustavo Gomes de, and José Roberto dos Santos Politi. "ASPECTOS ENERGÉTICOS E ELETRÔNICOS DA ZEÓLITA H-ZSM-5 NA AÇÃO CATALÍTICA DA REAÇÃO DE DESIDRATAÇÃO DE ÁLCOOIS." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol202087.

Full text
Abstract:
Due to the growth of ecological concerns and the need to reduce dependence on fossil fuels, the dehydration of alcohols by acid catalysis has been used for the production of various hydrocarbons. Inside this theme, the H-ZSM-5 zeolite has been widely used as a catalyst for this reaction because its high efficiency. Thus, in order to understand the catalyzed reaction mechanism of the alcohol dehydration reaction, this work used the computational methodology ONIOM to study the catalytic behavior of the H-ZSM-5. It was modeled the dehydration reaction process for several alcohols (ethanol, propanol, isopropanol, butanol and 2-butanol) by modeling these alcohols within the zeolite cavity. The study was divided into 3 stages: the adsorption and protonation of alcohols by zeolite, the description of the hydroxyl outlet, and the formation of the double bond. The analysis of the results indicates that the first stage of the reaction occurs with the contact of alcohol with the zeolite cavity, where acid hydrogen promotes the protonation of alcohols, occurring differently for each alcohol. The dehydration process occurs, preferably, via E2 type elimination mechanisms. However, the profile of the energy curves indicates that for larger alcohols, the mechanism is intermediate between the elimination mechanisms E2 with some features of E1 (E2[E1]). Therefore, the zeolite converts alcohols to hydrocarbons in a specific way. Primary, lower-chain alcohols follow E2 mechanism, while secondary and longer-chain alcohols react by a slightly different mechanism, namely E2[E1].
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Xun, and Yunhan Xiao. "Predicting the Performance of System for the Co-Production of Fischer-Tropsch Synthetic Liquid and Power From Coal." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27693.

Full text
Abstract:
A co-production system based on FT synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of low temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline and LPG. Tail gas composed of unconverted syngas and F-T light component was fed to gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity, expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. A correlation model based on Mobil’s two step pilot plant was applied. This model proposed triple chain-length-dependent chain growth factors and set up correlations among reaction temperature with wax yield, methane yield, and C2-C22 paraffin and olefin yields. Oxygenates in hydrocarbon phase, water phase and vapor phase were also correlated with methane yield. It was suitable for syngas, iron catalyst and slurry bed. It can show the effect of temperature on products’ selectivity and distribution. Deviations of C5+ components yields and distributions with reference data were less than 3%. To light gas components were less than 2%. User models available to predict product yields, distributions, cooperate with other units and do sensitive studies were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. The simulated performance assumed that the expander operates under choked conditions and turbine inlet temperature equals to NG fired gas turbine. A “F” technology gas turbine was selected to generate power. Various cases were investigated so as to match FT synthesis island, power island and gasification island in co-production systems. Effects of CO2 removal/LPG recovery, co-firing, CH4 content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel and LPG was 136g-155g/NM3(CO+H2). At coal feed 21.9kg/s, net electricity exported to grid was higher than 100MW. Total production of diesel and gasoline (and LPG) was 118,000 tons(134,000tons)/Year. Under economic analysis conditions assumed in this paper, co-production system was economic feasible. The after tax profits can research 17 million EURO. Payback times were ranged from 6-7 years.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography