Academic literature on the topic 'Catalytic and optical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Catalytic and optical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Catalytic and optical properties"

1

Kryukov, A. I., A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Ya Kuchmii. "Optical and catalytic properties of Ag2S nanoparticles." Journal of Molecular Catalysis A: Chemical 221, no. 1-2 (2004): 209–21. http://dx.doi.org/10.1016/j.molcata.2004.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pastoriza-Santos, Isabel, Jorge Pérez-Juste, Susana Carregal-Romero, Pablo Hervés, and Luis M Liz-Marzán. "Metallodielectric Hollow Shells: Optical and Catalytic Properties." Chemistry – An Asian Journal 1, no. 5 (2006): 730–36. http://dx.doi.org/10.1002/asia.200600194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ding, Yi, and Mingwei Chen. "Nanoporous Metals for Catalytic and Optical Applications." MRS Bulletin 34, no. 8 (2009): 569–76. http://dx.doi.org/10.1557/mrs2009.156.

Full text
Abstract:
AbstractNanoporous metals (NPMs) made by dealloying represent a class of functional materials with the unique structural properties of mechanical rigidity, electrical conductivity, and high corrosion resistance. They also possess a porous network structure with feature dimensions tunable within a wide range from a few nanometers to several microns. Coupled with a rich surface chemistry for further functionalization, NPMs have great potential for applications in heterogeneous catalysis, electrocatalysis, fuel cell technologies, biomolecular sensing, surface-enhanced Raman scattering (SERS), and
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Jian, and Huaiyong Zhu. "Optical, Catalytic and Photocatalytic Properties of Gold Nanoparticles." Reviews in Advanced Sciences and Engineering 3, no. 1 (2014): 66–80. http://dx.doi.org/10.1166/rase.2014.1053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Jun, Xiao Zhang, Zhiyuan Ren, et al. "Influence of photon reabsorption on the optical and catalytic properties of carbon nanodots/titanium oxide composites." Applied Physics Letters 120, no. 21 (2022): 213902. http://dx.doi.org/10.1063/5.0093878.

Full text
Abstract:
To enhance the optical and catalytic properties of TiO2, carbon nanodots (CNDs) are incorporated to prepare hybrid CNDs/TiO2 materials with different precursor concentrations and the photocatalytic characteristics are evaluated systematically. When the CNDs/TiO2 materials are excited optically, some high-energy photons are reabsorbed by those in the lower energy states, indicating that photon reabsorption of CNDs plays a key role. The results enrich our understanding of the optical and catalytic mechanisms and provide insight into the design of CNDs-based composites.
APA, Harvard, Vancouver, ISO, and other styles
6

Sakkaki, Milad, and Seyed Mohammad Arab. "Non-catalytic applications of g-C3N4: A brief review." Synthesis and Sintering 2, no. 4 (2022): 176–80. http://dx.doi.org/10.53063/synsint.2022.24126.

Full text
Abstract:
The g-C3N4 which is well known as a polymeric non-metal semiconductor, has been fabricated by thermal polymerization. It has also been used in catalytic applications including, photo-catalysis, removal and degradation of pollutants in water, Friedel-Crafts reactions, oxygen reduction reaction and etc. It has drawn noticeable research attention due to its economical and affordable fabrication, non-toxicity, biocompatibility, good thermal and electrical conductivity, high hardness, Corrosion resistance, and fireproofing properties. Therefore, the g-C3N4 has found non-catalytic applications inclu
APA, Harvard, Vancouver, ISO, and other styles
7

Mykhailovych, Vasyl, Andrii Kanak, Ştefana Cojocaru, et al. "Structural, Optical, and Catalytic Properties of MgCr2O4 Spinel-Type Nanostructures Synthesized by Sol–Gel Auto-Combustion Method." Catalysts 11, no. 12 (2021): 1476. http://dx.doi.org/10.3390/catal11121476.

Full text
Abstract:
Spinel chromite nanoparticles are prospective candidates for a variety of applications from catalysis to depollution. In this work, we used a sol–gel auto-combustion method to synthesize spinel-type MgCr2O4 nanoparticles by using fructose (FS), tartaric acid (TA), and hexamethylenetetramine (HMTA) as chelating/fuel agents. The optimal temperature treatment for the formation of impurity-free MgCr2O4 nanostructures was found to range from 500 to 750 °C. Fourier transform infrared (FTIR) spectroscopy was used to determine the lattice vibrations of the corresponding chemical bonds from octahedral
APA, Harvard, Vancouver, ISO, and other styles
8

Das, Swapan K., Manas K. Bhunia, and Asim Bhaumik. "Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties." Dalton Transactions 39, no. 18 (2010): 4382. http://dx.doi.org/10.1039/c000317d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thota, Sravan, Yongchen Wang, and Jing Zhao. "Colloidal Au–Cu alloy nanoparticles: synthesis, optical properties and applications." Materials Chemistry Frontiers 2, no. 6 (2018): 1074–89. http://dx.doi.org/10.1039/c7qm00538e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

AKBAR, L., K. ALI, M. SAJJAD, et al. "ENHANCEMENT IN OPTICAL PROPERTIES OF COBALT DOPED TiO2 NANOPARTICLES." Digest Journal of Nanomaterials and Biostructures 15, no. 2 (2020): 329–35. http://dx.doi.org/10.15251/djnb.2020.152.329.

Full text
Abstract:
Cobalt doped titanium dioxide has consumed great consideration because of their photo catalytic activity and numerous utilizations in paints, white pigments and tooth paste. The co-precipitation technique was utilized in this present study to produce titanium dioxide nanoparticles using (TTIP) titanium tetra iso-propoxide and cobalt nitrate as a starting precursor. Cobalt doped TiO2nanoparticles were synthesized up to four to seven percent of cobalt composition. The Morphology of nanoparticles, crystal structure and optical characteristics were analyzed by XRD, UV-vis spectroscopy and scanning
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!