Academic literature on the topic 'Catalytic application'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Catalytic application.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Catalytic application"
Kuliyev, S., and S. Fettah. "CATALYTIC HYDROGEN PRODUCTION SYSTEMS FOR PORTABLE POWER APPLICATION." Chemical Problems 17, no. 3 (2019): 393–402. http://dx.doi.org/10.32737/2221-8688-2019-3-393-402.
Full textFatimah, Is. "Metal Oxide and Metal Complex Immobilization Modified Smectite Clay For Green Catalysis and Photo-Catalysis Applications: A Mini Review." Chemical 3, no. 1 (January 6, 2018): 54–59. http://dx.doi.org/10.20885/ijcr.vol2.iss1.art7.
Full textSchörgenhumer, Johannes, Maximilian Tiffner, and Mario Waser. "Chiral phase-transfer catalysis in the asymmetric α-heterofunctionalization of prochiral nucleophiles." Beilstein Journal of Organic Chemistry 13 (August 22, 2017): 1753–69. http://dx.doi.org/10.3762/bjoc.13.170.
Full textRommel, Susanne, Christian Belger, Jeanne-Marie Begouin, and Bernd Plietker. "Dual [Fe+Phosphine] Catalysis: Application in Catalytic Wittig Olefination." ChemCatChem 7, no. 8 (April 2, 2015): 1292–301. http://dx.doi.org/10.1002/cctc.201500053.
Full textDabhane, Harshal, Suresh Ghotekar, Pawan Tambade, Shreyas Pansambal, Rajeshwari Oza, and Vijay Medhane. "MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations." European Journal of Chemistry 12, no. 1 (March 31, 2021): 86–108. http://dx.doi.org/10.5155/eurjchem.12.1.86-108.2060.
Full textOdularu, Ayodele Temidayo. "Bismuth as Smart Material and Its Application in the Ninth Principle of Sustainable Chemistry." Journal of Chemistry 2020 (July 22, 2020): 1–15. http://dx.doi.org/10.1155/2020/9802934.
Full textBeletskaya, Irina P., and Alexei D. Averin. "New trends in the cross-coupling and other catalytic reactions." Pure and Applied Chemistry 89, no. 10 (September 26, 2017): 1413–28. http://dx.doi.org/10.1515/pac-2016-1110.
Full textChaturvedi, Shalini, and Pragnesh N. Dave. "Environmental Application of Photocatalysis." Materials Science Forum 734 (December 2012): 273–94. http://dx.doi.org/10.4028/www.scientific.net/msf.734.273.
Full textTanabe, Kozo. "Catalytic application of niobium compounds." Catalysis Today 78, no. 1-4 (February 2003): 65–77. http://dx.doi.org/10.1016/s0920-5861(02)00343-7.
Full textNghiem, Tai-Lam, Deniz Coban, Stefanie Tjaberings, and André H. Gröschel. "Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis." Polymers 12, no. 10 (September 24, 2020): 2190. http://dx.doi.org/10.3390/polym12102190.
Full textDissertations / Theses on the topic "Catalytic application"
Iniesta, Beteta Ester. "Supramolecular Catalytic Systems: Synthesis, Characterization and Application in Catalysis." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/671551.
Full textEsta tesis doctoral abarca el diseño y desarrollo de catalizadores supramoleculares derivados de complejos de metales de transición para su aplicación como catalizadores en transformaciones de interés. La primera parte de esta tesis doctoral se centra en el desarrollo de catalizadores de cobre(I) regulados supramolecularmente para su aplicación en reacciones de inserción de especies carbénicas metálicas a enlaces O–H, generando derivados α-alquilo/arilo-α-alcoxi/ariloxi. Se abordó el diseño, preparación, caracterización y aplicación de los catalizadores de cobre(I) derivados de ligandos bisoxazolina. Estos estudios demostraron que la actividad catalítica podía modularse con el uso de moléculas externas (agentes de regulación), que interaccionaban con la cadena polioxietilénica del ligando (centro de regulación) a través de interacciones supramoleculares de tipo ion-dipolo. La eficiencia de esta aproximación se demostró en reacciones de inserción de carbenos metálicos sobre alcoholes estructuralmente diversos (derivados cicloalquílicos, alquílicos y arílicos). Esta metodología se utilizó también para preparar intermedios sintéticos avanzados de compuestos con relevancia biológica. La segunda parte de esta tesis doctoral se centra en el uso de interacciones de tipo halógeno para formar el esqueleto de complejos metálicos. Se describe la síntesis de nuevos complejos supramoleculares de platino(II) y paladio(II) mediante el ensamblaje de dos bloques constituyentes que contienen fosfinas como grupos coordinantes, así como grupos capaces de formar enlaces de tipo halógeno. Se caracterizó en disolución y en estado sólido un conjunto de complejos estructuralmente diversos de platino(II) y paladio(II) derivados de difosfinas (supramoleculares). Se realizó un estudio de los intermedios de reacción que condujeron a los complejos de platino(II) finales. Se propone una racionalización mecanística para la formación de los complejos de platino(II) resultantes. El complejo XBPhos-Pt fue inactivo en reacciones de ciclación de eninos e hidrofenilación del etileno. Se presentan estrategias de activación del complejo XBPhos-Pt y análogos para nuevas transformaciones químicas.
This doctoral thesis encompasses the design and development of supramolecular catalysts derived from transition metal complexes and their application as catalysts in transformations of interest. The first part of the thesis focusses on the development of supramolecularly regulated copper(I) catalysts for the insertion of metal carbenes into O–H bonds leading to synthetically useful α-alkyl/aryl-α-alkoxy/aryloxy derivatives. The design, preparation, characterization and application of supramolecularly regulated copper(I) catalysts derived from bisoxazoline ligands is described. Our studies demonstrate that the catalytic performance of these systems can be modulated by the use of an external molecule (i.e. the regulation agent), which interacts with the polyethyleneoxy chain on the ligand (i.e. the regulation site) via supramolecular ion-dipole interactions. This approach has been applied to an array of structurally diverse alcohols (cycloalkyl, alkyl and aryl derivatives). Moreover, this methodology has been used to synthesize advanced synthetic intermediates of biologically relevant compounds. The second part of this thesis focusses on the use of halogen bonding interactions to construct the skeleton of metal complexes. The synthesis of new supramolecular platinum(II) and palladium(II) complexes by assembling two building blocks that incorporate phosphines as ligating groups, as well as complementary binding motifs for the assembly through halogen bonding, are reported. A set of structurally diverse platinum(II) and palladium(II) complexes derived from (halogen-bonded) diphosphines have been characterized in solution and in the solid state. A broad study of the reaction intermediates that led to the platinum(II) complexes has been performed. A tentative mechanistic rationalization for the formation of the platinum(II) complexes is proposed. The complex XBPhos-Pt has proved to be unreactive as a catalyst in cyclizations of enynes and in the hydrophenylation of ethylene. Strategies towards the activation of XBPhos-Pt and analogues for new chemical transformations are presented.
Nieuwoudt, Josias Jakobus (Jako). "Catalytic distillation : design and application of a catalytic distillation column." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/2085.
Full textCatalytic Distillation (CD) is a hybrid technology that utilizes the dynamics of si- multaneous reaction and separation in a single process unit to achieve a more compact, economical, efficient and optimized process design when compared to the traditional multi-unit designs. The project goal (and key question) is (how) to design a cost-effective, simple and accurate laboratory-scale continuous CD system that will sufficiently and accurately supply useful data for model validation. The system to be investigated is the continuous hydrogenation of an a-olefin C6 (1-hexene) feed stream to the corresponding alkane (n-hexane) product with simultaneous reactant/product separation. Hypothetically, a system can be constructured to determine whether hydrogenation will benefit from the heat and mass transfer integration observed under CD conditions in terms of energy usage, temperature control and the catalyst's surface hydrogen concentration. System convergence with commercial distillation simulation packages ...
Zhao, Jin. "Synthesis and catalytic application of monomeric organomolybdenum complexes." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974439274.
Full textHoulding, T. K. "Application of radiofrequency heating in catalytic reaction engineering." Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.676521.
Full textOmer, Batoul Ahmed. "Application of segmented flow technique in catalytic organic syntheses." Thesis, Cardiff University, 2008. http://orca.cf.ac.uk/54720/.
Full textDeshpande, Atul Suresh. "Fabrication of porous metal oxides for catalytic application using templating techniques." Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/112/.
Full textEin Weg, um solche nanostrukturierte Materialien herzustellen, ist die sogenannte „Templatierungsmethode“. Das Templat besteht aus einem einzelnen Molekül, einer Ansammlung von Molekülen oder aus einem festen Objekt. Beim Aufbau des nanostrukturierten Materials wirkt das Templat als Schablone oder als Gussform und beeinflusst damit die Struktur des Endproduktes. Normalerweise besteht dieser Prozess aus mehreren Schritten. Zuerst wird der Raum um das Templat mit dem Ausgangsstoff umhüllt oder ausgefüllt, dann wird der Ausgangsstoff chemisch in das gewünschte Endprodukt umgewandelt, wobei das Templat die Endform kontrolliert und am Schluss wird das Templat entfernt. Das geschieht meistens durch Erhitzen. Als Ausgangsstoff können dabei einzelne Moleküle verwendet werden, die sich leicht in das Endprodukt umwandeln lassen, oder aber vorgeformte Partikelchen, die nur noch zur entsprechenden Form angeordnet werden müssen.
In dieser Arbeit wurden poröse Metalloxid-Kügelchen hergestellt, die aus einem Gemisch aus Titanoxid und entweder Aluminium-, Gallium- oder Indiumoxid bestehen. Als Template wurden poröse Kunststoffkügelchen eingesetzt, die man sonst für Chromatographiezwecke braucht. Bei der Synthese wurden die Poren der Kunststoffkügelchen mit dem Ausgangsmaterial gefüllt und mit Wasser in ein amorphes Netzwerk umgewandelt. Danach werden die Kügelchen erhitzt, wobei das Kunststofftemplat zersetzt wird. Gleichzeitig wird das amorphe Gerüst in stabile, kristalline Wände umgewandelt, die die Form der Kügelchen auch dann noch behalten, wenn das Templat verschwunden ist. Mit einem ähnlichen Prozess wurden auch Kügelchen aus Cer-Zirkonoxid erhalten. Als Ausgangsstoff wurden dabei aber vorgeformte Cer-Zirkonoxid-Nanopartikel eingesetzt, die in die Poren der Kunststofftemplatkügelchen hinein diffundieren. Diese Cer-Zirkonoxid-Nanopartikel lassen sich auch für die Herstellung von porösen Pulvern verwenden, wobei dann nicht Polymerkügelchen, sondern hochgeordnete Ansammlungen von Block Copolymeren als Template verwendet werden.
Form, Struktur und Eigenschaften all dieser Materialien wurden systematisch unter Anwendung verschiedenster Analysemethoden untersucht. Die auf Titanoxid-basierten Kügelchen wurden auch auf ihre photokatalytische Verwendung zum Abbau von umweltschädlichem 2-Chlorophenol untersucht. Die Cer-Zirkonoxid-Kügelchen wurden für die Herstellung von Wasserstoff aus Methanol getestet. Wasserstoff gilt als hoffungsvoller, sauberer Energieträger der Zukunft und kommt in Brennstoffzellen zum Einsatz.
Nanostructured materials are the materials having structural features on the scale of nanometers i.e. 10-9 m. the structural features can enhance the natural properties of the materials or induce additional properties, which are useful for day to technology as well as the future technologies
One way to synthesize nanostructured materials is using templating techniques. The templating process involves use of a certain “mould” or “scaffold” to generate the structure. The mould is called as the template, can be a single molecule or assembly of molecule or a larger object, which has its own structure. The product material can be obtained by filling the space around the template with a “precursor”, transformation of precursor into the desired material and then removal of template to get product. The precursor can be any chemical moiety that can be easily transformed in to the desired material. Alternatively the desired material is processed into very tiny bricks or “nano building blocks (NBB)” and the product is obtained by arrangement of the NBB by using a scaffold.
We synthesized porous metal oxide spheres of namely TiO2-M2O3: titanium dioxide- M-oxide (M = aluminum, gallium and indium) TiO2-M2O3 and cerium oxide-zirconium oxide solid solution. We used porous polymeric beads as templates. These beads used for chromatographic purposes. For the synthesis of TiO2-M2O3 we used metal- alkoxides as precursor. The pore of beads were filled with precursor and then reacted with water to give transformation of the precursor to amorphous oxide network. The network is crystallized and template is removed by heat treatment at high temperatures. In a similar way we obtained porous spheres of CexZr1-xO2. For this we synthesized nanoparticle of CexZr1-xO2 and used then for the templating process to obtain porous CexZr1-xO2 spheres.
Additionally, using the same nanoparticles we synthesized nano-porous powder using self-assembly process between a block-copolymers scaffold and nanoparticles.
Morphological and physico-chemical properties of these materials were studies systematically by using various analytical techniques
TiO2-M2O3 material were tested for photocatalytic degradation of 2-Chlorophenol a poisonous pollutant. While CexZr1-xO2 spheres were tested for methanol steam reforming reaction to generate hydrogen, which is a fuel for future generation power sources like fuel cells. All the materials showed good catalytic performance.
Guo, Mengqing. "Catalytic Modification of Oxygen Carriers for Chemical Looping Applications." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1564572229572212.
Full textXia, Wei. "Synthesis, characterization and catalytic application of Carbon- and Silica-based nanocomposites." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980311837.
Full textOsegueda, Chicas Oscar Antonio. "Development of a novel catalytic membrane reactor: application in wastewater treatment." Doctoral thesis, Universitat Rovira i Virgili, 2013. http://hdl.handle.net/10803/119612.
Full textChemical oxidation processes are the most universal tool for treatment of contaminated groundwater, industrial effluents and wastewater. Oxidation at mild conditions and based on the generation of highly reactive hydroxyl radicals (•OH) is referred to as advanced oxidation process (AOP). Even though this technique is considered as powerful regarding contaminant degradation, it faces several practical limitations in a large scale due to the cost of the system selected for •OH generation. The aim was to propose and test a novel strategy in order to extend the applicability of AOP, whereby the integration of catalytic membrane reactors (CMRs) plays a key role. The efforts were focused on the application of the CMRs for direct oxidation of a model organic compound by the in-situ generated hydrogen peroxide. The inherent properties of the CMRs permit the direct synthesis of hydrogen peroxide starting from H2 and O2 using noble metal as an active phase.
Zhao, Qiang. "The thermal stability and catalytic application of MnOx-ZrO2 oxide powders /." Philadelphia, Pa. : Drexel University, 2004. http://dspace.library.drexel.edu/handle/1860/286.
Full textBooks on the topic "Catalytic application"
Kunkeler, Paul. Modification and catalytic application. Delft: Delft University, 1998.
Find full textIoffe, I. I. Application of pattern recognition to catalytic research. Letchworth, Hertfordshire, England: Research Studies Press, 1988.
Find full textJan Cornelis van der Waal. Synthesis, characterization and catalytic application of zeolite titanium beta. Delft: Delft Univ. Press, 1998.
Find full textHayashi, Shun. Key Structural Factors of Group 5 Metal Oxide Clusters for Base Catalytic Application. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7348-4.
Full textH, Bartholomew Calvin, ed. Fundamentals of industrial catalytic processes. 2nd ed. Hoboken, N.J: Wiley, 2005.
Find full textLennon, D., Justin Hargreaves, and S. David Jackson, eds. Catalysis in Application. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847550347.
Full textDoble, Mukesh, ed. Homogeneous catalysis: Mechanisms and industrial applications. New York: Wiley-Interscience, 2000.
Find full textSong, Minsuh. Catalysis: Principles, types, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textBeller, Matthias, R. A. van Santen, and Albert Renken. Catalysis: From principles to applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
Find full textBook chapters on the topic "Catalytic application"
Zhu, Yinghuai. "Catalytic Application of Magnetic Nanocomposites." In Advances in Magnetic Materials, 627–63. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315371573-11.
Full textIbarra, Oscar H., and Hsu-Chun Yen. "On Deterministic Catalytic Systems." In Implementation and Application of Automata, 163–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11605157_14.
Full textBinder, Aneta, Rudolf Freund, Georg Lojka, and Marion Oswald. "Implementation of Catalytic P Systems." In Implementation and Application of Automata, 45–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30500-2_5.
Full textHussain, Najrul, Gitashree Darabdhara, and Manash R. Das. "Gold Nanoparticles-Graphene Composites Material: Synthesis, Characterization and Catalytic Application." In Advanced Catalytic Materials, 121–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118998939.ch4.
Full textWang, Yao, and Peng-Fei Xu. "APPLICATION OF ORGANOCATALYTIC CASCADE REACTIONS IN NATURAL PRODUCT SYNTHESIS AND DRUG DISCOVERY." In Catalytic Cascade Reactions, 123–44. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118356654.ch3.
Full textSmith, Kevin J. "Chapter 1. Introduction to the Application of Nitrides, Carbides, Phosphides and Amorphous Boron Alloys in Catalysis." In Alternative Catalytic Materials, 1–26. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788013222-00001.
Full textLee, Sumin, and Jaesook Yun. "Asymmetric Catalytic Borylation of α,β-Unsaturated Acceptors." In Synthesis and Application of Organoboron Compounds, 73–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13054-5_3.
Full textJohnson, Heather C., Thomas N. Hooper, and Andrew S. Weller. "The Catalytic Dehydrocoupling of Amine–Boranes and Phosphine–Boranes." In Synthesis and Application of Organoboron Compounds, 153–220. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13054-5_6.
Full textLam, Sze-Mun, Jin-Chung Sin, and Abdul Rahman Mohamed. "Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance." In Environmental Chemistry for a Sustainable World, 195–215. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12619-3_8.
Full textPeng, Mei Mei, Dong Seung Shin, Pushparaj Hemalatha, Mani Ganesh, Muthiahpillai Palanichamy, and Hyun Tae Jang. "AlSBA-1 Molecular Sieves: Synthesis, Characterization and Catalytic Application." In Communications in Computer and Information Science, 112–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35251-5_16.
Full textConference papers on the topic "Catalytic application"
Shiromura, Mariko, and Hiroshi Suzuki. "Application of catalytic effect to create innovation." In 2015 Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, 2015. http://dx.doi.org/10.1109/picmet.2015.7273109.
Full textSharma, Archana, Mushahid Husain, and Mohd Shahid Khan. "Anti-site defected MoS2 sheet for catalytic application." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028882.
Full textGuanglong, Zhang, Liang Lunhui, Chen Jiahua, and Zhao Xiuren. "Development and Application Experience of Diesel Catalytic Converters." In International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941773.
Full textGulati, Suresh T. "Cell Design for Ceramic Monoliths for Catalytic Converter Application." In 1988 SAE International Fall Fuels and Lubricants Meeting and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1988. http://dx.doi.org/10.4271/881685.
Full textShuang, Liang, Lu Duhui, and Luo Fangwei. "Application of Quantitative RBI on Residual Fluid Catalytic Cracking." In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/186191-ms.
Full textMarsh, Per, Filip Acke, Roman Konieczny, Rolf Brück, and Peter Hirth. "Application Guideline to Define Catalyst Layout for Maximum Catalytic Efficiency." In SAE 2001 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-0929.
Full textKil, Jeong-ki, and Gwon-koo Yeo. "Optimization of the Packing Design for Manifold Catalytic Converter Application." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960561.
Full textChou, Chih-Wei, and Ko-Hsin Chang. "Rapid synthesis and catalytic application of biocompatible HA-Au nanoparticles." In 2011 IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2011. http://dx.doi.org/10.1109/nems.2011.6017526.
Full textSchmid, C., and L. T. Biegler. "Application of Multistep Newton-Type Controllers to Fluid Catalytic Cracking." In 1990 American Control Conference. IEEE, 1990. http://dx.doi.org/10.23919/acc.1990.4790800.
Full textChatterjee, Daniel, Thomas Burkhardt, Brigitte Bandl-Konrad, Tillmann Braun, Enrico Tronconi, Isabella Nova, and Cristian Ciardelli. "Numerical Simulation of Ammonia SCR-Catalytic Converters: Model Development and Application." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-0965.
Full textReports on the topic "Catalytic application"
Monforte, J. A. Small catalytic RNA: Structure, function and application. Office of Scientific and Technical Information (OSTI), April 1991. http://dx.doi.org/10.2172/7045132.
Full textMonforte, Joseph Albert. Small catalytic RNA: Structure, function and application. Office of Scientific and Technical Information (OSTI), April 1991. http://dx.doi.org/10.2172/10159369.
Full textJin, Rongchao. Atomically Precise Metal Nanoclusters for Catalytic Application. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332684.
Full textDu, Guodong. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/835301.
Full textLiu, Kunlei, Ayokunle Omosebi, Zhen Fan, and Lisa Richburg. Application of Chemical Looping with Spouting Fluidized Bed for Hydrogen-Rich Syngas Production from Catalytic Coal Gasification. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1558795.
Full textDan, D., and J. Re. A new catalytic polarographic system for the determination of trace amounts of tungsten and its application in geoanalysis. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/193305.
Full textTakada, Yogo, Toshimasa Kotani, Kazuma Ito, Sang-kyu Kim, and Tomoyuki Wakisaka. Application of a Genetic Algorithm to the Numerical Analysis of Thermo-Fluid Flow and Catalytic Reaction in an Exhaust Gas Three-Way Catalyzer. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0487.
Full textEllzey, Janet L., Erica Belmont, and Colin H. Smith. Non-Catalytic Reforming with Applications to Portable Power. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada597121.
Full textBurch, S. D., M. A. Keyser, C. P. Colucci, T. F. Potter, D. K. Benson, and J. P. Biel. Applications and benefits of catalytic converter thermal management. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/266686.
Full textPfefferle, L. D., and A. Datye. Palladium Catalysis for Energy Applications. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/833766.
Full text