Academic literature on the topic 'Catalytic chemical vapor deposition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Catalytic chemical vapor deposition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Catalytic chemical vapor deposition"
Matsumoto, Yasuhiro, Mario A. Reyes, and Arturo Escobosa. "SiO2 deposition approaches using catalytic chemical-vapor deposition method." Journal of Applied Physics 98, no. 1 (July 2005): 014909. http://dx.doi.org/10.1063/1.1954891.
Full textVargas-Garcia, J. R., and T. Goto. "Catalytic materials prepared by chemical vapor deposition." IOP Conference Series: Materials Science and Engineering 20 (March 1, 2011): 012001. http://dx.doi.org/10.1088/1757-899x/20/1/012001.
Full textLi, Bing Ju, Jun Li, Lei Shi, Zhou Jian Tan, and Ji Qiao Liao. "Progress in Catalytic Preparation of Carbon/Carbon Composites." Advanced Materials Research 634-638 (January 2013): 2004–8. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2004.
Full textYasui, Kanji, Hitoshi Miura, Masasuke Takata, and Tadashi Akahane. "SiCOI structure fabricated by catalytic chemical vapor deposition." Thin Solid Films 516, no. 5 (January 2008): 644–47. http://dx.doi.org/10.1016/j.tsf.2007.06.187.
Full textSu, Yi, Xiao Ping Zou, Jin Cheng, Guang Zhu, and Mao Fa Wang. "Carbon Nanofibers Synthesized by Ethanol Catalytic Chemical Vapor Deposition." Advanced Materials Research 60-61 (January 2009): 416–19. http://dx.doi.org/10.4028/www.scientific.net/amr.60-61.416.
Full textWeng, Mengting, Meiqi Zhang, Takashi Yanase, Fumiya Uehara, Taro Nagahama, and Toshihiro Shimada. "Catalytic chemical vapor deposition and structural analysis of MoS2nanotubes." Japanese Journal of Applied Physics 57, no. 3 (February 6, 2018): 030304. http://dx.doi.org/10.7567/jjap.57.030304.
Full textOgita, Yoh-Ichiro, Shinshi Iehara, and Toshiyuki Tomita. "Al2O3 formation on Si by catalytic chemical vapor deposition." Thin Solid Films 430, no. 1-2 (April 2003): 161–64. http://dx.doi.org/10.1016/s0040-6090(03)00097-x.
Full textMatsumura, Hideki. "Silicon nitride produced by catalytic chemical vapor deposition method." Journal of Applied Physics 66, no. 8 (October 15, 1989): 3612–17. http://dx.doi.org/10.1063/1.344068.
Full textVargas-Garcia, J. R., and T. Goto. "ChemInform Abstract: Catalytic Materials Prepared by Chemical Vapor Deposition." ChemInform 42, no. 28 (June 16, 2011): no. http://dx.doi.org/10.1002/chin.201128220.
Full textPurushothaman, V., P. Sundara Venkatesh, R. Navamathavan, and K. Jeganathan. "Direct comparison on the structural and optical properties of metal-catalytic and self-catalytic assisted gallium nitride (GaN) nanowires by chemical vapor deposition." RSC Adv. 4, no. 85 (2014): 45100–45108. http://dx.doi.org/10.1039/c4ra05388e.
Full textDissertations / Theses on the topic "Catalytic chemical vapor deposition"
Troville, Jonathan. "Multiscale Modeling of Carbon Nanotube Synthesis in a Catalytic Chemical Vapor Deposition Reactor." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1495839218743389.
Full textParamguru, Kamrakali. "Growth of carbon nanotubes on anodized titanium oxide templates by catalytic chemical vapor deposition technique." abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433346.
Full textCominos, Vanya. "Catalytic combustion of methane over axially non-uniform Pd catalytic monoliths prepared by chemical vapour deposition." Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395815.
Full textAyre, Gregory N. "On the mechanism of carbon nanotube formation by means of catalytic chemical vapour deposition." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/205661/.
Full textLiu, JingJing. "Carbon nanotubes developed on ceramic constituents through chemical vapour deposition." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9967.
Full textFischer, Marcel Vinícius Theisen. "SÍNTESE DE NANOTUBOS DE CARBONO PELA TÉCNICA DE DEPOSIÇÃO CATALÍTICA QUÍMICA EM FASE VAPOR." Universidade Franciscana, 2010. http://tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/248.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The carbon nanotubes (CNT) are small cylinders with diameters in order of nanometers (10-9 m) and, of some micrometers (10-6 m) of length. Carbon nanotubes are conceptually built considering the rolling up of a strip of graphene sheet. The electronic, mechanical, and optical properties of the tube depend on how the graphene sheet is rolled up. More than one graphene sheet can be rolled up forming concentric nanotubes which are called multiple walled carbon nanotubes (MWCNT). The knowledge and parameterization of synthesis methods are of extremely importance for the development of carbon nanotubes science. This work had as objective the installation of a system for CNT production, using chemical catalytic vapor deposition (CCVD), and the evaluation of the effects of synthesis parameters in formation of carbon nanotubes. In this work, parameters such as temperature and time of synthesis using three kinds of catalysts (Fe/MgO, Fe/Al2O3 e Co/Al2O3) were investigated keeping the catalyst mass fixed in 100 mg. The temperatures varied from 750 to 850 °C and synthesis time from 10 to 15 minutes. During the process, an argon flow of 1,0 L/min was used to maintain an inert atmosphere in the tube furnace. When the programmed temperature was reached, a flow of ethylene gas (0,1 L/min-1) was inserted in the reactor. When finishing the synthesis time, gases flux were interrupted. The samples were characterized by Raman spectroscopy. The best synthesis temperature was 800°C for catalysts Fe/MgO and Fe/Al2O3, using 750 °C and Co/Al2O3 catalysts during 15 minutes. The mass medium gain of CNT produced, without purification, was of 112%. The proposed system presented satisfactory results in relation to NTC production in laboratorial scale and the choose of synthesis parameters lead to the synthesis of different CNTs.
Os nanotubos de carbono (NTC) são pequenos cilindros com diâmetro da ordem de nanômetros (10-9 m) e, de alguns micrômetros (10-6 m) de comprimento. Conceitualmente, um nanotubo é construído através do enrolamento de um pedaço de uma folha de grafeno. As propriedades eletrônicas, mecânicas, ópticas do tubo dependem de como grafeno é enrolado. Além disso, pode-se enrolar mais de uma folha de grafeno, formando assim, nanotubos concêntricos (Nanotubos de carbono de paredes múltiplas, NTCPM). Com tantas formas de síntese desses nanomateriais, o conhecimento e parametrização dos métodos de síntese são de extrema importância para o desenvolvimento da área. Com esse intuito, este trabalho teve como objetivo a instalação de um sistema para a produção de NTC, utilizando a técnica de deposição catalítica química em fase vapor (DCQFV), e avaliar os efeitos dos parâmetros de síntese na formação dos nanotubos de carbono. Neste trabalho parâmetros como temperatura e tempo de síntese usando 3 tipos de catalisadores: Fe/MgO, Fe/Al2O3 e Co/Al2O3 foram investigados, com massa de catalisador fixada em 100 mg. As temperaturas variaram de 750 a 850 °C e os tempos de síntese de 10 a 15 minutos. Durante o processo um fluxo de argônio de 1,0 L/min-1 foi utilizado para manter uma atmosfera inerte no interior do forno. Ao atingir a temperatura programada, um fluxo de gás etileno foi inserido, numa taxa de 0,1 L/min-1. Ao finalizar o tempo de síntese, os fluxos dos gases foram interrompidos. As amostras sintetizadas foram caracterizadas por espectroscopia Raman. A melhor temperatura de síntese foi de 800 °C para os catalisadores Fe/MgO e Fe/Al2O3, e de 750 °C com o catalisador Co/Al2O3, em um tempo de 15 minutos. O ganho médio de massa dos NTC produzidos, sem purificação, foi de 112%. O sistema proposto apresentou resultados satisfatórios em relação à produção de NTC em escala laboratorial e os parâmetros de síntese dependem do tipo de NTC que se quer sintetizar.
Fischer, Marcel Vinicius Theisen. "SÍNTESE DE NANOTUBOS DE CARBONO PELA TÉCNICA DE DEPOSIÇÃO CATALÍTICA QUÍMICA EM FASE VAPOR." Centro Universitário Franciscano, 2010. http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/483.
Full textMade available in DSpace on 2018-08-15T13:32:16Z (GMT). No. of bitstreams: 2 Dissertacao_MarcelViniciusTheisenFischer.pdf: 2481648 bytes, checksum: edf65a27a59189563b5a3ba08b8c0773 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2010-06-30
The carbon nanotubes (CNT) are small cylinders with diameters in order of nanometers (10-9 m) and, of some micrometers (10-6 m) of length. Carbon nanotubes are conceptually built considering the rolling up of a strip of graphene sheet. The electronic, mechanical, and optical properties of the tube depend on how the graphene sheet is rolled up. More than one graphene sheet can be rolled up forming concentric nanotubes which are called multiple walled carbon nanotubes (MWCNT). The knowledge and parameterization of synthesis methods are of extremely importance for the development of carbon nanotubes science. This work had as objective the installation of a system for CNT production, using chemical catalytic vapor deposition (CCVD), and the evaluation of the effects of synthesis parameters in formation of carbon nanotubes. In this work, parameters such as temperature and time of synthesis using three kinds of catalysts (Fe/MgO, Fe/Al2O3 e Co/Al2O3) were investigated keeping the catalyst mass fixed in 100 mg. The temperatures varied from 750 to 850 °C and synthesis time from 10 to 15 minutes. During the process, an argon flow of 1,0 L/min was used to maintain an inert atmosphere in the tube furnace. When the programmed temperature was reached, a flow of ethylene gas (0,1 L/min-1) was inserted in the reactor. When finishing the synthesis time, gases flux were interrupted. The samples were characterized by Raman spectroscopy. The best synthesis temperature was 800°C for catalysts Fe/MgO and Fe/Al2O3, using 750 °C and Co/Al2O3 catalysts during 15 minutes. The mass medium gain of CNT produced, without purification, was of 112%. The proposed system presented satisfactory results in relation to NTC production in laboratorial scale and the choose of synthesis parameters lead to the synthesis of different CNTs.
Os nanotubos de carbono (NTC) são pequenos cilindros com diâmetro da ordem de nanômetros (10-9 m) e, de alguns micrômetros (10-6 m) de comprimento. Conceitualmente, um nanotubo é construído através do enrolamento de um pedaço de uma folha de grafeno. As propriedades eletrônicas, mecânicas, ópticas do tubo dependem de como grafeno é enrolado. Além disso, pode-se enrolar mais de uma folha de grafeno, formando assim, nanotubos concêntricos (Nanotubos de carbono de paredes múltiplas, NTCPM). Com tantas formas de síntese desses nanomateriais, o conhecimento e parametrização dos métodos de síntese são de extrema importância para o desenvolvimento da área. Com esse intuito, este trabalho teve como objetivo a instalação de um sistema para a produção de NTC, utilizando a técnica de deposição catalítica química em fase vapor (DCQFV), e avaliar os efeitos dos parâmetros de síntese na formação dos nanotubos de carbono. Neste trabalho parâmetros como temperatura e tempo de síntese usando 3 tipos de catalisadores: Fe/MgO, Fe/Al2O3 e Co/Al2O3 foram investigados, com massa de catalisador fixada em 100 mg. As temperaturas variaram de 750 a 850 °C e os tempos de síntese de 10 a 15 minutos. Durante o processo um fluxo de argônio de 1,0 L/min-1 foi utilizado para manter uma atmosfera inerte no interior do forno. Ao atingir a temperatura programada, um fluxo de gás etileno foi inserido, numa taxa de 0,1 L/min-1. Ao finalizar o tempo de síntese, os fluxos dos gases foram interrompidos. As amostras sintetizadas foram caracterizadas por espectroscopia Raman. A melhor temperatura de síntese foi de 800 °C para os catalisadores Fe/MgO e Fe/Al2O3, e de 750 °C com o catalisador Co/Al2O3, em um tempo de 15 minutos. O ganho médio de massa dos NTC produzidos, sem purificação, foi de 112%. O sistema proposto apresentou resultados satisfatórios em relação à produção de NTC em escala laboratorial e os parâmetros de síntese dependem do tipo de NTC que se quer sintetizar.
Gulas, Michal. "Growth of carbon nanotubes by plasma enhanced hot filament catalytic chemical vapour deposition : Correlation between gas phase and substrate surface." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. http://www.theses.fr/2008STR13144.
Full textTian, Fang. "Studies of LPCVD and anodised TiOâ†2 thin films and their photoelectrocatalytic photochemical properties for destruction of organic effluents." Thesis, University of Strathclyde, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366874.
Full textSchäffel, Franziska. "Synthesis, characterization and modification of carbon nanomaterials." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-25944.
Full textBooks on the topic "Catalytic chemical vapor deposition"
Sivaram, Srinivasan. Chemical Vapor Deposition. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-4751-5.
Full textFortin, Jeffrey B., and Toh-Ming Lu. Chemical Vapor Deposition Polymerization. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-3901-5.
Full textO, Pierson Hugh, ed. Handbook of chemical vapor deposition. 2nd ed. Norwich, NY: Noyes Publications, 1999.
Find full textDobkin, Daniel M. Principles of Chemical Vapor Deposition. Dordrecht: Springer Netherlands, 2003.
Find full textDobkin, Daniel M., and Michael K. Zuraw. Principles of Chemical Vapor Deposition. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0369-7.
Full textGesheva, K. A. Chemical vapor deposition (CVD) technology. Hauppauge, N.Y: Nova Science Publishers, 2008.
Find full textMagneto luminous chemical vapor deposition. Boca Raton, FL: Taylor & Francis, 2011.
Find full textK, Zuraw Michael, ed. Principles of chemical vapor deposition. Dordrecht: Kluwer Academic Publishers, 2003.
Find full textLuminous chemical vapor deposition and interface engineering. New York: Marcel Dekker, 2005.
Find full textMiyoshi, Kazuhisa. Chemical-vapor-deposited diamond film. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.
Find full textBook chapters on the topic "Catalytic chemical vapor deposition"
Peroulis, Dimitrios, Prashant R. Waghmare, Sushanta K. Mitra, Supone Manakasettharn, J. Ashley Taylor, Tom N. Krupenkin, Wenguang Zhu, et al. "Catalytic Chemical Vapor Deposition (CCVD)." In Encyclopedia of Nanotechnology, 403. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100111.
Full textMatsumura, Hideki, Akira Izumi, and Atsushi Masuda. "Catalytic Chemical Vapor Deposition of a-Si:H TFT." In Thin Film Transistors, 377–94. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4615-0397-2_9.
Full textMishra, Shivangi, Prateek Khare, and Shiv Singh. "Catalytic Chemical Vapor Deposition Grown Carbon Nanofiber for Bio-electro-chemical and Energy Applications." In Energy, Environment, and Sustainability, 497–526. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0536-2_21.
Full textBoyd, David C., Richard T. Haasch, Kwok-Lun Ho, Jen-Wei Hwang, Roland K. Schulze, John F. Evans, Wayne L. Gladfelter, and Klavs F. Jensen. "Organometallic Chemical Vapor Deposition of Aluminum Nitride and Aluminum Metal." In Metal-Metal Bonds and Clusters in Chemistry and Catalysis, 215–30. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2492-6_16.
Full textCowley, Alan H. "Organometallic Chemical Vapor Deposition of GaAs and Related Semiconductors Using Novel Organometallic Precursors." In Metal-Metal Bonds and Clusters in Chemistry and Catalysis, 195–204. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2492-6_14.
Full textLau, Kenneth K. S. "Chemical Vapor Deposition." In Medical Coatings and Deposition Technologies, 403–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119308713.ch11.
Full textJensen, Klavs F. "Chemical Vapor Deposition." In Advances in Chemistry, 199–263. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/ba-1989-0221.ch005.
Full textAardahl, C. L., and J. W. Rogers. "Chemical Vapor Deposition." In Inorganic Reactions and Methods, 83–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch46.
Full textNagasawa, Hiroki, and Toshinori Tsuru. "Chemical Vapor Deposition." In Encyclopedia of Membranes, 395–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1425.
Full textNagasawa, Hiroki, and Toshinori Tsuru. "Chemical Vapor Deposition." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_1425-1.
Full textConference papers on the topic "Catalytic chemical vapor deposition"
Ohara, Kenji, Yoichiro Neo, Hidenori Mimura, Yoku Inoue, and Akihiro Ishida. "The control of carbon nanotubes density by gas-phase catalytic chemical vapor deposition." In 2009 22nd International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2009. http://dx.doi.org/10.1109/ivnc.2009.5271644.
Full textYamamoto, Soma, Keita Tani, Yasumori Onaka, Yasuyuki Takata, Shinzo Suzuki, Yasushi Shibuta, Shigeo Maruyama, and Masamichi Kohno. "Synthesis of Single Walled Carbon Nanotubes by Laser Vaporized Catalytic Chemical Vapor Deposition Technique." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32776.
Full textMATSUMURA, Hideki. "Low Temperature Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method." In 1991 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1991. http://dx.doi.org/10.7567/ssdm.1991.pc5-4.
Full textOkamoto, A. "Diameter Control of Single-Wall Carbon Nanotubes by the Catalytic Chemical Vapor Deposition Method." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514104.
Full textLysaght, Andrew C., and Wilson K. S. Chiu. "Impact of Thermophoresis on Carbon Nanotube Growth by Chemical Vapor Deposition." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56242.
Full textEndo, Morinobu. "Large-scale Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition Method and Their Applications." In ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES: XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2005. http://dx.doi.org/10.1063/1.2103826.
Full textKwok, Kinghong, and Wilson K. S. Chiu. "Synthesis of Carbon Nanotubes on a Moving Substrate by Laser-Induced Chemical Vapor Deposition." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80222.
Full textSahdan, M. Z., M. H. Mamat, S. Amizam, H. A. Rafaie, Z. Khusaimi, U. M. Noor, M. Rusop, Mohamad Rusop, and Tetsuo Soga. "New Approach of ZnO Nanowires Grown on ZnO Microball using Gas Blocker in Catalytic Thermal Chemical Vapor Deposition." In NANOSCIENCE AND NANOTECHNOLOGY: International Conference on Nanoscience and Nanotechnology—2008. AIP, 2009. http://dx.doi.org/10.1063/1.3160153.
Full textMcCulloch, D. G., R. Glaisher, P. J. Pigram, E. Yeo, A. N. Rider, N. Brack, and B. W. Halstead. "Scaled-up production of multi-walled carbon nanotubes using catalytic chemical vapour deposition." In 2006 International Conference on Nanoscience and Nanotechnology. IEEE, 2006. http://dx.doi.org/10.1109/iconn.2006.340572.
Full textLee, Jaegeun, Moataz Abdulhafez, and Mostafa Bedewy. "Multizone Rapid Thermal Processing to Overcome Challenges in Carbon Nanotube Manufacturing by Chemical Vapor Deposition." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2847.
Full textReports on the topic "Catalytic chemical vapor deposition"
Baron, B. N., R. E. Rocheleau, and S. S. Hegedus. Chemical vapor deposition and photochemical vapor deposition of amorphous silicon photovoltaic devices. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5042415.
Full textMayer, T. M., D. P. Adams, B. S. Swartzentruber, and E. Chason. Dynamics of nucleation in chemical vapor deposition. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/170570.
Full textHO, PAULINE. Chemical reactions in TEOS/ozone chemical vapor deposition[TetraEthylOrtho Silicate]. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/751369.
Full textKaplan, Daniel, Kendall Mills, and Venkataraman Swaminathan. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2). Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada613852.
Full textStevenson, D. A. Fundamental studies of the chemical vapor deposition of diamond. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5639356.
Full textBanks, H. T. Modeling Validation and Control of Advanced Chemical Vapor Deposition Processes. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada384359.
Full textLampert, Lester. High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.3308.
Full textMuenchausen, R. Chemical-vapor deposition of complex oxides: materials and process development. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/405750.
Full textKagan, Harris, Richard Kass, and K. K. Gan. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1115741.
Full textEkerdt, John G. Silicon and Germanium Thin Film Chemical Vapor Deposition, Modeling and Control. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada417307.
Full text