To see the other types of publications on this topic, follow the link: Catalytic Csp3−H activation.

Journal articles on the topic 'Catalytic Csp3−H activation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Catalytic Csp3−H activation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Muñoz-Molina, José María, Tomás R. Belderrain, and Pedro J. Pérez. "Recent Advances in Copper-Catalyzed Radical C–H Bond Activation Using N–F Reagents." Synthesis 53, no. 01 (2020): 51–64. http://dx.doi.org/10.1055/s-0040-1707234.

Full text
Abstract:
This Short Review is aimed at giving an update in the area of copper-catalyzed C–H functionalization involving nitrogen-centered radicals generated from substrates containing N–F bonds. These processes include intermolecular Csp3–H bond functionalization, remote Csp3–H bond functionalization via intramolecular hydrogen atom transfer (HAT), and Csp2–H bond functionalization, which might be of potential use in industrial applications in the future.1 Introduction2 Intermolecular Csp3–H Functionalization3 Remote Csp3–H Functionalization4 Csp2–H Functionalization5 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
2

Nahide, Pradip D., J. Oscar C. Jiménez-Halla, Katarzyna Wrobel, César R. Solorio-Alvarado, Rafael Ortiz Alvarado, and Berenice Yahuaca-Juárez. "Gold(i)-catalysed high-yielding synthesis of indenes by direct Csp3–H bond activation." Organic & Biomolecular Chemistry 16, no. 40 (2018): 7330–35. http://dx.doi.org/10.1039/c8ob02056f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Lingling, Hong Yi, Jue Wang, and Aiwen Lei. "Visible-light induced oxidative Csp3–H activation of methyl aromatics to methyl esters." Green Chemistry 18, no. 19 (2016): 5122–26. http://dx.doi.org/10.1039/c6gc01880g.

Full text
Abstract:
A mild and catalytic oxidative Csp<sup>3</sup>–H activation of methyl aromatics using O<sub>2</sub>via photocatalysis has been achieved. A lot of methyl aromatics can be tolerated, providing a route for aromatic methyl carboxylates. In addition, this protocol can be performed on a gram scale.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Hua, Hongjian Sun, and Xiaoyan Li. "Synthesis and Catalytic Property of Iron Pincer Complexes Generated by Csp3–H Activation." Organometallics 33, no. 13 (2014): 3535–39. http://dx.doi.org/10.1021/om500429r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Shaofeng, Hua Zhao, Xiaoyan Li, Lin Wang, and Hongjian Sun. "Synthesis of [POCOP]-pincer iron and cobalt complexes via Csp3–H activation and catalytic application of iron hydride in hydrosilylation reactions." RSC Advances 5, no. 20 (2015): 15660–67. http://dx.doi.org/10.1039/c5ra00072f.

Full text
Abstract:
C<sub>sp3</sub>–H bond activation in pincer ligand (Ph<sub>2</sub>PO(o-C<sub>6</sub>H<sub>2</sub>-(4,6-<sup>t</sup>Bu<sub>2</sub>)))<sub>2</sub>CH<sub>2</sub> (1) (POCH<sub>2</sub>OP) was achieved by Fe(PMe<sub>3</sub>)<sub>4</sub> and CoMe(PMe<sub>3</sub>)<sub>4</sub> to afford (POCHOP)Fe(H) (PMe<sub>3</sub>)<sub>2</sub> (2) and (POCHOP)Co(PMe<sub>3</sub>)<sub>2</sub> (4).
APA, Harvard, Vancouver, ISO, and other styles
6

Greßies, Steffen, Felix J. R. Klauck, Ju Hyun Kim, Constantin G. Daniliuc, and Frank Glorius. "Ligand-Enabled Enantioselective Csp3 -H Activation of Tetrahydroquinolines and Saturated Aza-Heterocycles by RhI." Angewandte Chemie International Edition 57, no. 31 (2018): 9950–54. http://dx.doi.org/10.1002/anie.201805680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Artault, M., N. Mokhtari, T. Cantin, A. Martin-Mingot, and S. Thibaudeau. "Superelectrophilic Csp3–H bond fluorination of aliphatic amines in superacid: the striking role of ammonium–carbenium dications." Chemical Communications 56, no. 44 (2020): 5905–8. http://dx.doi.org/10.1039/d0cc02081h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pacheco-Benichou, Alexandra, Eugénie Ivendengani, Ioannis K. Kostakis, Thierry Besson, and Corinne Fruit. "Copper-Catalyzed C–H Arylation of Fused-Pyrimidinone Derivatives Using Diaryliodonium Salts." Catalysts 11, no. 1 (2020): 28. http://dx.doi.org/10.3390/catal11010028.

Full text
Abstract:
Copper-catalyzed Csp2–Csp2 bond forming reactions through C–H activation are still one of the most useful strategies for the diversification of heterocyclic moieties using various coupling partners. A catalytic protocol for the C–H (hetero)arylation of thiazolo[5,4-f]quinazolin-9(8H)-ones and more generally fused-pyrimidinones using catalyst loading of CuI with diaryliodonium triflates as aryl source under microwave irradiation has been disclosed. The selectivity of the transfer of the aryl group was also disclosed in the case of unsymmetrical diaryliodonium salts. Specific phenylation of valu
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Yong, Xiaming Zhao, Dazhi Zhang та Shun-Ichi Murahashi. "Iridium-Catalyzed Reactions of Trifluoromethylated Compounds with Alkenes: A Csp3H Bond Activation α to the Trifluoromethyl Group". Angewandte Chemie International Edition 48, № 11 (2009): 2047–49. http://dx.doi.org/10.1002/anie.200805852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Yong, Xiaming Zhao, Dazhi Zhang та Shun-Ichi Murahashi. "Iridium-Catalyzed Reactions of Trifluoromethylated Compounds with Alkenes: A Csp3H Bond Activation α to the Trifluoromethyl Group". Angewandte Chemie International Edition 48, № 25 (2009): 4467. http://dx.doi.org/10.1002/anie.200990130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Acharyya, Shankha S., Shilpi Ghosh, Shubhadeep Adak, Deependra Tripathi, and Rajaram Bal. "Fabrication of CuCr2O4 spinel nanoparticles: A potential catalyst for the selective oxidation of cycloalkanes via activation of Csp3–H bond." Catalysis Communications 59 (January 2015): 145–50. http://dx.doi.org/10.1016/j.catcom.2014.10.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

An, Doo Ri, and Se Won Suh. "Crystal structure of the Csd3 protein from Helicobacter pylori." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1630. http://dx.doi.org/10.1107/s2053273314083697.

Full text
Abstract:
The helical cell shape of Helicobacter pylori facilitates the penetration of thick gastric mucus and promotes virulence. The peptidoglycan plays a structural role in the bacterial cell wall and its controlled modification is essential for determining the helical shape. Several H. pylori genes were identified to contribute to its helical cell shape through alterations in peptidoglycan crosslinking and trimming of the peptide (Sycuro et al., 2010; Sycuro et al., 2012). One of them is the hp0506 gene that encodes a putative periplasmic peptidase belonging to the M23-family of zinc-metallopeptidas
APA, Harvard, Vancouver, ISO, and other styles
13

Acharyya, Shankha Shubhra, Shilpi Ghosh, Rubina Khatun, and Rajaram Bal. "Unravelling the role of Ag Cr interfacial synergistic effect in Ag/Cr2O3 nanostructured catalyst for the ammoxidation of toluene via low temperature activation of Csp3-H bond." Catalysis Communications 152 (April 2021): 106290. http://dx.doi.org/10.1016/j.catcom.2021.106290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mukai, Chisato, Yuu Ohta, Yuki Oura, Yasuaki Kawaguchi, and Fuyuhiko Inagaki. "Csp3–Csp3 and Csp3–H Bond Activation of 1,1-Disubstituted Cyclopentane." Journal of the American Chemical Society 134, no. 48 (2012): 19580–83. http://dx.doi.org/10.1021/ja309830p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rochette, Étienne, Marc-André Courtemanche, and Frédéric-Georges Fontaine. "Frustrated Lewis Pair Mediated Csp3−H Activation." Chemistry - A European Journal 23, no. 15 (2017): 3567–71. http://dx.doi.org/10.1002/chem.201700390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pérez-Gómez, Marta, Hamid Azizollahi, Ivan Franzoni, Egor M. Larin, Mark Lautens, and José-Antonio García-López. "Tandem Remote Csp3–H Activation/Csp3–Csp3 Cleavage in Unstrained Aliphatic Chains Assisted by Palladium(II)." Organometallics 38, no. 4 (2019): 973–80. http://dx.doi.org/10.1021/acs.organomet.8b00920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fantasia, Serena, Alessandro Pasini, and Steven P. Nolan. "Platinum(II) mediated Csp3-H activation of tetramethylthiourea." Dalton Transactions, no. 38 (2009): 8107. http://dx.doi.org/10.1039/b911164f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pearn, Matthew L., Yue Hu, Ingrid R. Niesman, et al. "Propofol Neurotoxicity Is Mediated by p75 Neurotrophin Receptor Activation." Anesthesiology 116, no. 2 (2012): 352–61. http://dx.doi.org/10.1097/aln.0b013e318242a48c.

Full text
Abstract:
Background Propofol exposure to neurons during synaptogenesis results in apoptosis, leading to cognitive dysfunction in adulthood. Previous work from our laboratory showed that isoflurane neurotoxicity occurs through p75 neurotrophin receptor (p75(NTR)) and subsequent cytoskeleton depolymerization. Given that isoflurane and propofol both suppress neuronal activity, we hypothesized that propofol also induces apoptosis in developing neurons through p75(NTR). Methods Days in vitro 5-7 neurons were exposed to propofol (3 μM) for 6 h and apoptosis was assessed by cleaved caspase-3 (Cl-Csp3) immunob
APA, Harvard, Vancouver, ISO, and other styles
19

Inoa, Joan, Mansi Patel, Grecia Dominici, et al. "Benzylic Hydroperoxidation via Visible-Light-Induced Csp3–H Activation." Journal of Organic Chemistry 85, no. 9 (2020): 6181–87. http://dx.doi.org/10.1021/acs.joc.0c00385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Efremenko, Irena. "Electron Density and Molecular Orbital Analyses of the Nature of Bonding in the η3-CCH Agostic Rhodium Complexes Preceding the C–C and C–H Bond Cleavages". Molecules 29, № 20 (2024): 4788. http://dx.doi.org/10.3390/molecules29204788.

Full text
Abstract:
In our recent work, we revisited C–H and C–C bond activation in rhodium (I) complexes of pincer ligands PCP, PCN, PCO, POCOP, and SCS. Our findings indicated that an η3-Csp2Csp3H agostic intermediate acts as a common precursor to both C–C and C–H bond activation in these systems. We explore the electronic structure and bonding nature of these precleavage complexes using electron density and molecular orbital analyses. Using NBO, IBO, and ESI-3D methods, the bonding in the η3-CCH agostic moiety is depicted by two three-center agostic bonds: Rh–Csp2–Csp3 and Rh–Csp3–H, with all three atoms dativ
APA, Harvard, Vancouver, ISO, and other styles
21

Hu, Xinwei, Xun Chen, Yong Zhu, et al. "Rh(III)-Catalyzed Carboamination of Propargyl Cycloalkanols with Arylamines via Csp2–H/Csp3–Csp3 Activation." Organic Letters 19, no. 13 (2017): 3474–77. http://dx.doi.org/10.1021/acs.orglett.7b01372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Keyes, Lauren, Tongen Wang, Brian O. Patrick, and Jennifer A. Love. "Pt mediated C–H activation: Formation of a six membered platinacycle via Csp3-H activation." Inorganica Chimica Acta 380 (January 2012): 284–90. http://dx.doi.org/10.1016/j.ica.2011.09.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pei, Pengkun, Fan Zhang, Hong Yi, and Aiwen Lei. "Visible Light Promoted Benzylic Csp3-H Bond Activation and Functionalization." Acta Chimica Sinica 75, no. 1 (2017): 15. http://dx.doi.org/10.6023/a16080417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jafarpour, Farnaz, Nafiseh Jalalimanesh, Mahdieh Teimouri, and Mitra Shamsianpour. "Palladium/norbornene chemistry: an unexpected route to methanocarbazole derivatives via three Csp3–Csp2/Csp3–N/Csp2–N bond formations in a single synthetic sequence." Chemical Communications 51, no. 1 (2015): 225–28. http://dx.doi.org/10.1039/c4cc06789d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cambeiro, Fermin, Susana Lopez, Jesus A. Varela, and Carlos Saa. "ChemInform Abstract: Cyclization by Catalytic Ruthenium Carbene Insertion into Csp3-H Bonds." ChemInform 43, no. 23 (2012): no. http://dx.doi.org/10.1002/chin.201223058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Crespo, Margarita, Craig M. Anderson, Nicole Kfoury, Mercè Font-Bardia, and Teresa Calvet. "Reductive Elimination from Cyclometalated Platinum(IV) Complexes To Form Csp2–Csp3 Bonds and Subsequent Competition between Csp2–H and Csp3–H Bond Activation." Organometallics 31, no. 12 (2012): 4401–4. http://dx.doi.org/10.1021/om300303a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Xing, Junyang, Hongjian Sun, Benjing Xue, Xiaoyan Li, Olaf Fuhr, and Dieter Fenske. "Formation of 2-Azaallyl Cobalt(I) Complexes by Csp3–H Bond Activation." Organometallics 36, no. 5 (2017): 975–80. http://dx.doi.org/10.1021/acs.organomet.6b00884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kerr, William J., Richard J. Mudd, Marc Reid, Jens Atzrodt, and Volker Derdau. "Iridium-Catalyzed Csp3–H Activation for Mild and Selective Hydrogen Isotope Exchange." ACS Catalysis 8, no. 11 (2018): 10895–900. http://dx.doi.org/10.1021/acscatal.8b03565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Thacker, Nathan C., Pengfei Ji, Zekai Lin, Ania Urban, and Wenbin Lin. "Phenanthroline-based metal–organic frameworks for Fe-catalyzed Csp3–H amination." Faraday Discussions 201 (2017): 303–15. http://dx.doi.org/10.1039/c7fd00030h.

Full text
Abstract:
We report here the synthesis of a robust and highly porous Fe-phenanthroline-based metal–organic framework (MOF) and its application in catalyzing challenging inter- and intramolecular C–H amination reactions. For the intermolecular amination reactions, a FeBr<sub>2</sub>-metalated MOF selectively functionalized secondary benzylic and allylic C–H bonds. The intramolecular amination reactions utilizing organic azides as the nitrene source required the reduction of the FeBr<sub>2</sub>-metalated MOF with NaBHEt<sub>3</sub> to generate the active catalyst. For both reactions, Fe or Zr leaching wa
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Xiaolei, Rui Wu, Wanyi Liu, et al. "Copper-catalyzed intermolecular amidation of 8-methylquinolines with N-fluoroarylsulfonimides via Csp3–H activation." Organic & Biomolecular Chemistry 14, no. 21 (2016): 4789–93. http://dx.doi.org/10.1039/c6ob00553e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Santra, Sourav Kumar, Arghya Banerjee, Suresh Rajamanickam, Nilufa Khatun та Bhisma K. Patel. "PdII/CuBr2 catalysed keto α-Csp3–H benzoxylation of N,N-dialkylamides directed by o-hydroxy groups". Chemical Communications 52, № 24 (2016): 4501–4. http://dx.doi.org/10.1039/c6cc00971a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Denicourt-Nowicki, Rauchdi, Ali, and Roucoux. "Catalytic Oxidation Processes for the Upgrading of Terpenes: State-of-the-Art and Future Trends." Catalysts 9, no. 11 (2019): 893. http://dx.doi.org/10.3390/catal9110893.

Full text
Abstract:
Terpenic olefins constitute a relevant platform of renewable molecules, which could be used as key intermediates for the perfumery, flavoring, and pharmaceutical industries. The upgrading of these cheap and available agro-resources through catalytic oxidation processes remains of great interest, leading to the formation of either epoxides via the oxidation of the olefinic bond or α,β-unsaturated ketones by the Csp3-H functionalization at the α-position of the double bond. This critical review summarizes some of the most relevant homogeneous or heterogeneous catalysts designed for the oxidation
APA, Harvard, Vancouver, ISO, and other styles
33

Jafarpour, Farnaz, and Masoumeh Darvishmolla. "Peroxy mediated Csp2–Csp3 dehydrogenative coupling: regioselective functionalization of coumarins and coumarin-3-carboxylic acids." Organic & Biomolecular Chemistry 16, no. 18 (2018): 3396–401. http://dx.doi.org/10.1039/c7ob02771k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ahlstrand, David A., Alexey V. Polukeev, Rocío Marcos, Mårten S. G. Ahlquist, and Ola F. Wendt. "Csp3−H Activation without Chelation Assistance in an Iridium Pincer Complex Forming Cyclometallated Products." Chemistry - A European Journal 23, no. 8 (2017): 1748–51. http://dx.doi.org/10.1002/chem.201604469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jia, Xiaodong, Fangfang Peng, Chang Qing, Congde Huo, and Xicun Wang. "Catalytic Radical Cation Salt Induced Csp3–H Functionalization of Glycine Derivatives: Synthesis of Substituted Quinolines." Organic Letters 14, no. 15 (2012): 4030–33. http://dx.doi.org/10.1021/ol301909g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Chuanyong, Klaus Harms, and Eric Meggers. "Catalytic Asymmetric Csp3 −H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition." Angewandte Chemie International Edition 55, no. 43 (2016): 13495–98. http://dx.doi.org/10.1002/anie.201607305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Chuanyong, Klaus Harms, and Eric Meggers. "Catalytic Asymmetric Csp3 −H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition." Angewandte Chemie 128, no. 43 (2016): 13693–96. http://dx.doi.org/10.1002/ange.201607305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lei, Meng, Yanjun Li, Shi Cao, Xinyi Hou та Lei Gong. "Alkylation–peroxidation of α-carbonyl imines or ketones catalyzed by a copper salt via radical-mediated Csp3–H functionalization". Organic Chemistry Frontiers 5, № 21 (2018): 3083–87. http://dx.doi.org/10.1039/c8qo00797g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Geng, Cuihuan, Sujuan Zhang, Chonggang Duan, Tongxiang Lu, Rongxiu Zhu, and Chengbu Liu. "Theoretical investigation of gold-catalyzed oxidative Csp3–Csp2 bond formation via aromatic C–H activation." RSC Advances 5, no. 97 (2015): 80048–56. http://dx.doi.org/10.1039/c5ra16359e.

Full text
Abstract:
The mechanisms of Selectfluor-mediated homogeneous Au-catalyzed intramolecular C<sub>sp3</sub>–C<sub>sp2</sub> cross-coupling reaction involving direct aryl C<sub>sp2</sub>–H functionalization has been investigated theoretically.
APA, Harvard, Vancouver, ISO, and other styles
40

Nebra, Noel, Jérôme Lisena, Nathalie Saffon, Laurent Maron, Blanca Martin-Vaca, and Didier Bourissou. "Original palladium pincer complexes deriving from 1,3-bis(thiophosphinoyl)indene proligands: Csp3–H versus Csp2–H bond activation." Dalton Transactions 40, no. 35 (2011): 8912. http://dx.doi.org/10.1039/c1dt10118h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhu, Gengyu, Lin Wang, Hongjian Sun, and Xiaoyan Li. "Formation of PCP pincer cobalt complexes with cobaltacyclopropane moieties via double Csp3–H bond activation." RSC Advances 5, no. 25 (2015): 19402–8. http://dx.doi.org/10.1039/c5ra01230a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Anderson, Craig M., Margarita Crespo, Nicole Kfoury, Michael A. Weinstein, and Joseph M. Tanski. "Regioselective C–H Activation Preceded by Csp2–Csp3 Reductive Elimination from Cyclometalated Platinum(IV) Complexes." Organometallics 32, no. 15 (2013): 4199–207. http://dx.doi.org/10.1021/om400398g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhao, Yaping, Lu Sun, Tieqiang Zeng, Jiayi Wang, Yanqing Peng, and Gonghua Song. "Direct olefination of benzaldehydes into 1,3-diarylpropenes via a copper-catalyzed heterodomino Knoevenagel-decarboxylation-Csp3-H activation sequence." Org. Biomol. Chem. 12, no. 21 (2014): 3493–98. http://dx.doi.org/10.1039/c4ob00155a.

Full text
Abstract:
Copper-catalyzed direct olefination of benzaldehydes into unsymmetrical 1,3-diarylpropenes by a novel domino Knoevenagel-decarboxylation-Csp<sup>3</sup>-H activation sequence using simpler substrates like benzaldehydes.
APA, Harvard, Vancouver, ISO, and other styles
44

Jia, Xiaodong, Fangfang Peng, Chang Qing, Congde Huo, and Xicun Wang. "ChemInform Abstract: Catalytic Radical Cation Salt Induced Csp3-H Functionalization of Glycine Derivatives: Synthesis of Substituted Quinolines." ChemInform 43, no. 49 (2012): no. http://dx.doi.org/10.1002/chin.201249157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Santoro, Stefano, Sergei I. Kozhushkov, Lutz Ackermann, and Luigi Vaccaro. "Heterogeneous catalytic approaches in C–H activation reactions." Green Chemistry 18, no. 12 (2016): 3471–93. http://dx.doi.org/10.1039/c6gc00385k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tomin, Anna, Seema Bag, and Bela Torok. "ChemInform Abstract: Catalytic C-H Bond Activation Reactions." ChemInform 44, no. 18 (2013): no. http://dx.doi.org/10.1002/chin.201318231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Holmsen, Marte Sofie Martinsen, Ainara Nova, Knut Hylland, et al. "Synthesis of a (N,C,C) Au(iii) pincer complex via Csp3–H bond activation: increasing catalyst robustness by rational catalyst design." Chemical Communications 54, no. 79 (2018): 11104–7. http://dx.doi.org/10.1039/c8cc05489d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Katso, R. M., R. B. Russell, and T. S. Ganesan. "Functional Analysis of H-Ryk, an Atypical Member of the Receptor Tyrosine Kinase Family." Molecular and Cellular Biology 19, no. 9 (1999): 6427–40. http://dx.doi.org/10.1128/mcb.19.9.6427.

Full text
Abstract:
ABSTRACT H-Ryk is an atypical receptor tyrosine kinase which differs from other members of this family at a number of conserved residues in the activation and nucleotide binding domains. Using a chimeric receptor approach, we demonstrate that H-Ryk has impaired catalytic activity. Despite the receptor’s inability to undergo autophosphorylation or phosphorylate substrates, we demonstrate that ligand stimulation of the chimeric receptor results in activation of the mitogen-activated protein kinase pathway. The ability to transduce signals is abolished by mutation of the invariant lysine (K334A)
APA, Harvard, Vancouver, ISO, and other styles
49

Kroll, Alexander, Henning Steinert, Mike Jörges, Tim Steinke, Bert Mallick, and Viktoria H. Gessner. "Cationic Phosphorus Compounds Based on a Bis(1-piperidinyl)-Substituted Carbodiphosphorane: Syntheses, Structures, and Csp3–H Activation." Organometallics 39, no. 23 (2020): 4312–19. http://dx.doi.org/10.1021/acs.organomet.0c00412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Guo, Yongjie, Xueqi Lian, Hao Zhang, et al. "Systematic Assessment of the Catalytic Reactivity of Frustrated Lewis Pairs in C-H Bond Activation." Molecules 29, no. 1 (2023): 24. http://dx.doi.org/10.3390/molecules29010024.

Full text
Abstract:
Unreactive C-H bond activation is a new horizon for frustrated Lewis pair (FLP) chemistry. This study provides a systematic assessment of the catalytic reactivity of recently reported intra-molecular FLPs on the activation of typical inert C-H bonds, including 1-methylpyrrole, methane, benzyl, propylene, and benzene, in terms of density functional theory (DFT) calculations. The reactivity of FLPs is evaluated according to the calculated reaction thermodynamic and energy barriers of C-H bond activation processes in the framework of concerted C-H activation mechanisms. As for 1-methylpyrrole, 14
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!