Journal articles on the topic 'Catalytic hydrogenation of CO2̲'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Catalytic hydrogenation of CO2̲.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Spadaro, Lorenzo, Alessandra Palella, and Francesco Arena. "Totally-green Fuels via CO2 Hydrogenation." Bulletin of Chemical Reaction Engineering & Catalysis 15, no. 2 (April 23, 2020): 390–404. http://dx.doi.org/10.9767/bcrec.15.2.7168.390-404.
Full textTagiyeva, Sh F., and E. H. Ismailov. "HETEROGENEOUS CATALYTIC HYDROGENATION OF CARBON DIOXIDE INTO HYDROCARBONS: ACHIEVEMENTS AND PROSPECTS." Chemical Problems 18, no. 4 (2020): 485–500. http://dx.doi.org/10.32737/2221-8688-2020-4-485-500.
Full textQaderi, Jawed. "A brief review on the reaction mechanisms of CO2 hydrogenation into methanol." International Journal of Innovative Research and Scientific Studies 3, no. 2 (May 11, 2020): 33–40. http://dx.doi.org/10.53894/ijirss.v3i2.31.
Full textSrivastava, Vivek. "Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction." Letters in Organic Chemistry 16, no. 5 (April 1, 2019): 396–408. http://dx.doi.org/10.2174/1570178615666180816120058.
Full textJia, Miao Yao, Wen Gui Gao, Hua Wang, and Yu Hao Wang. "Effect of Silica Promoter on Performance of CuO-ZnO-ZrO2 Catalyst for Methanol Synthesis from CO2 Hydrogenation." Applied Mechanics and Materials 556-562 (May 2014): 117–22. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.117.
Full textChoi, Jonghoon, and Yunho Lee. "Catalytic hydrogenation of CO2 at a structurally rigidified cobalt center." Inorganic Chemistry Frontiers 7, no. 9 (2020): 1845–50. http://dx.doi.org/10.1039/c9qi01431d.
Full textLi, Yong, Zheng Wang, and Qingbin Liu. "Progress in Homogeneous Catalytic Hydrogenation of CO2." Chinese Journal of Organic Chemistry 37, no. 8 (2017): 1978. http://dx.doi.org/10.6023/cjoc201702038.
Full textStephenson, Phil, Peter Licence, Stephen K. Ross, and Martyn Poliakoff. "Continuous catalytic asymmetric hydrogenation in supercritical CO2." Green Chemistry 6, no. 10 (2004): 521. http://dx.doi.org/10.1039/b411955j.
Full textERDOHELYI, A. "Catalytic hydrogenation of CO2 over supported palladium." Journal of Catalysis 98, no. 1 (March 1986): 166–77. http://dx.doi.org/10.1016/0021-9517(86)90306-4.
Full textKovaleva, Anastasiya. "Selectivity regulation of perovskite-based iron-manganese catalysts for the synthesis of light olefins from CO, CO2 and H2." Farmacevticheskoe delo i tehnologija lekarstv (Pharmacy and Pharmaceutical Technology), no. 2 (April 1, 2020): 8–23. http://dx.doi.org/10.33920/med-13-2002-01.
Full textBordet, Alexis, Sami El Sayed, Matthew Sanger, Kyle J. Boniface, Deepti Kalsi, Kylie L. Luska, Philip G. Jessop, and Walter Leitner. "Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support." Nature Chemistry 13, no. 9 (July 5, 2021): 916–22. http://dx.doi.org/10.1038/s41557-021-00735-w.
Full textGao, Hui, Limin Chen, Jinzhu Chen, Yuanyuan Guo, and Daiqi Ye. "A computational study on the hydrogenation of CO2 catalyzed by a tetraphos-ligated cobalt complex: monohydride vs. dihydride." Catalysis Science & Technology 5, no. 2 (2015): 1006–13. http://dx.doi.org/10.1039/c4cy01031k.
Full textCui, Yuanyuan, Xi Chen, and Wei-Lin Dai. "Continuous heterogeneous hydrogenation of CO2-derived dimethyl carbonate to methanol over a Cu-based catalyst." RSC Advances 6, no. 73 (2016): 69530–39. http://dx.doi.org/10.1039/c6ra14447k.
Full textZhao, Zhengyang, Pei Yu, Bhuvana K. Shanbhag, Phillip Holt, Yu Lin Zhong, and Lizhong He. "Sustainable Recycling of Formic Acid by Bio-Catalytic CO2 Capture and Re-Hydrogenation." C 5, no. 2 (May 1, 2019): 22. http://dx.doi.org/10.3390/c5020022.
Full textLi, Lin, Chen Zhang, Xinqing Chen, Peng Gao, Jian Sun, Hui Wang, and Yuhan Sun. "Preparation of Highly Dispersion CuO/MCM-41 Catalysts for CO2 Hydrogenation." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3218–22. http://dx.doi.org/10.1166/jnn.2019.16587.
Full textLiu, Xiaoyun, Bing Qiu, and Xinzheng Yang. "Bioinspired Design and Computational Prediction of SCS Nickel Pincer Complexes for Hydrogenation of Carbon Dioxide." Catalysts 10, no. 3 (March 11, 2020): 319. http://dx.doi.org/10.3390/catal10030319.
Full textWang, Chunling, Siyuan Fang, Songhai Xie, Ying Zheng, and Yun Hang Hu. "Thermo-photo catalytic CO2 hydrogenation over Ru/TiO2." Journal of Materials Chemistry A 8, no. 15 (2020): 7390–94. http://dx.doi.org/10.1039/c9ta13275a.
Full textLiu, Na, Jie Lei, Meng Yao Li, and Peng Wang. "The Influence of Preparation Procedures on Hydrogenation CO2 to Formic Acid over Supported Ru Catalysts." Advanced Materials Research 881-883 (January 2014): 283–86. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.283.
Full textHan, Zhen Xing, Si Xi Guo, Kai Ming Li, Bing Yao, Ming Song, Jing Li, Wen You Zhu, Jie Zhu, Yan Xu, and Xi Hua Du. "Preparation of Ni/ZrO2/SiO2 Catalyst and its Application in Hydrogenation of CO2 to Methane." Materials Science Forum 1001 (July 2020): 79–83. http://dx.doi.org/10.4028/www.scientific.net/msf.1001.79.
Full textTasfy, Sara Faiz Hanna, Noor Asmawati Mohd Zabidi, Maizatul S. Shaharun, and Duvvuri Subbarao. "The Influence of Mn, Zr and Pb Promoters on the Performance of Cu/ZnO/SBA-15 Catalyst for Hydrogenation of CO2 to Methanol." Defect and Diffusion Forum 365 (July 2015): 178–82. http://dx.doi.org/10.4028/www.scientific.net/ddf.365.178.
Full textQu, Ya Kun, Xiao Guang Zhao, Li Xin Wang, and Yu Wu. "Na2O Promotion on CO2 Hydrogenation on the χ-Fe5C2(2 0 0) Surface." Key Engineering Materials 872 (January 2021): 85–89. http://dx.doi.org/10.4028/www.scientific.net/kem.872.85.
Full textQu, Ya Kun, Xiao Guang Zhao, Li Xin Wang, and Yu Wu. "Na2O Promotion on CO2 Hydrogenation on the χ-Fe5C2(2 0 0) Surface." Key Engineering Materials 872 (January 2021): 85–89. http://dx.doi.org/10.4028/www.scientific.net/kem.872.85.
Full textEvdokimenko, Nikolay D., Alexander L. Kustov, Konstantin O. Kim, Igor V. Mishin, Vera D. Nissenbaum, Genadiy I. Kapustin, Timur R. Aymaletdinov, and Leonid M. Kustov. "Ce–Zr materials with a high surface area as catalyst supports for hydrogenation of CO2." Functional Materials Letters 13, no. 04 (April 14, 2020): 2040004. http://dx.doi.org/10.1142/s1793604720400044.
Full textLuo, Laitao, Li Songjun, and Yu Zhu. "The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst." Journal of the Serbian Chemical Society 70, no. 12 (2005): 1419–25. http://dx.doi.org/10.2298/jsc0512419l.
Full textTasfy, Sara Faiz Hanna, Noor Asmawati Mohd Zabidi, Maizatul Shima Shaharun, Duvvria Subbarao, and Ahmed Elbagir. "Carbon Dioxide Hydrogenation to Methanol over Cu/ZnO-SBA-15 Catalyst: Effect of Metal Loading." Defect and Diffusion Forum 380 (November 2017): 151–60. http://dx.doi.org/10.4028/www.scientific.net/ddf.380.151.
Full textLi, Shang Gui, Hai Jun Guo, Hai Rong Zhang, Jun Luo, Lian Xiong, Cai Rong Luo, and Xin De Chen. "The Reverse Water-Gas Shift Reaction and the Synthesis of Mixed Alcohols over K/Cu-Zn Catalyst from CO2 Hydrogenation." Advanced Materials Research 772 (September 2013): 275–80. http://dx.doi.org/10.4028/www.scientific.net/amr.772.275.
Full textGong, Li, Jie-Jie Chen, and Yang Mu. "Catalytic CO2 reduction to valuable chemicals using NiFe-based nanoclusters: a first-principles theoretical evaluation." Phys. Chem. Chem. Phys. 19, no. 41 (2017): 28344–53. http://dx.doi.org/10.1039/c7cp06155b.
Full textWen, Jinjun, Chunlei Huang, Yuhai Sun, Long Liang, Yudong Zhang, Yujun Zhang, Mingli Fu, Junliang Wu, Limin Chen, and Daiqi Ye. "The Study of Reverse Water Gas Shift Reaction Activity over Different Interfaces: The Design of Cu-Plate ZnO Model Catalysts." Catalysts 10, no. 5 (May 12, 2020): 533. http://dx.doi.org/10.3390/catal10050533.
Full textOldenhof, S., J. I. van der Vlugt, and J. N. H. Reek. "Hydrogenation of CO2 to formic acid with iridiumIII(bisMETAMORPhos)(hydride): the role of a dormant fac-IrIII(trihydride) and an active trans-IrIII(dihydride) species." Catalysis Science & Technology 6, no. 2 (2016): 404–8. http://dx.doi.org/10.1039/c5cy01476j.
Full textGao, Wen Liang, and Fang Li. "Catalytic Hydrogenation of Nitrate Ions over Pd-Cu/ZSM-5 Catalyst." Advanced Materials Research 197-198 (February 2011): 967–71. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.967.
Full textSrivastava, Vivek. "Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction." Open Chemistry 16, no. 1 (October 22, 2018): 853–63. http://dx.doi.org/10.1515/chem-2018-0094.
Full textDas, Shubhajit, and Swapan K. Pati. "Mechanistic insights into catalytic CO2 hydrogenation using Mn(i)-complexes with pendant oxygen ligands." Catalysis Science & Technology 8, no. 12 (2018): 3034–43. http://dx.doi.org/10.1039/c8cy00183a.
Full textTasfy, Sara Faiz Hanna, Noor Asmawati Mohd Zabidi, Maizatul Shima Shaharun, and Duvvuri Subbarao. "Effect of Mn and Pb Promoters on the Performance of Cu/ZnO-Catalyst in CO2 Hydrogenation to Methanol." Applied Mechanics and Materials 625 (September 2014): 289–92. http://dx.doi.org/10.4028/www.scientific.net/amm.625.289.
Full textMa, Li Ping, and Wen Juan Xu. "Continuous Catalytic Hydrogenation of Carbon Dioxides on Immobilized Ru Functionalistic Catalysts." Advanced Materials Research 781-784 (September 2013): 227–34. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.227.
Full textXue, Zhimin, Weihong Chang, Yan Cheng, Jing Liu, Jian Li, Wancheng Zhao, and Tiancheng Mu. "CO2-in-PEG emulsion-templating synthesis of poly(acrylamide) with controllable porosity and their use as efficient catalyst supports." RSC Advances 6, no. 63 (2016): 58182–87. http://dx.doi.org/10.1039/c6ra04897h.
Full textBibi, Mehnaz, Rasheed Ullah, Muhammad Sadiq, Saima Sadiq, Idrees Khan, Khalid Saeed, Muhammad Zia, et al. "Catalytic Hydrogenation of Carbon Dioxide over Magnetic Nanoparticles: Modification in Fixed-Bed Reactor." Catalysts 11, no. 5 (May 3, 2021): 592. http://dx.doi.org/10.3390/catal11050592.
Full textSung, Molly M. H., Demyan E. Prokopchuk, and Robert H. Morris. "Phosphine-free ruthenium NCN-ligand complexes and their use in catalytic CO2 hydrogenation." Dalton Transactions 48, no. 44 (2019): 16569–77. http://dx.doi.org/10.1039/c9dt03143j.
Full textScott, Martin, Christian G. Westhues, Teresa Kaiser, Janine C. Baums, Andreas Jupke, Giancarlo Franciò, and Walter Leitner. "Methylformate from CO2: an integrated process combining catalytic hydrogenation and reactive distillation." Green Chemistry 21, no. 23 (2019): 6307–17. http://dx.doi.org/10.1039/c9gc03006a.
Full textLiu, Ming-Han, Hsi-An Chen, Ching-Shiun Chen, Jia-Huang Wu, Hung-Chi Wu, and Chia-Min Yang. "Tiny Ni particles dispersed in platelet SBA-15 materials induce high efficiency for CO2 methanation." Nanoscale 11, no. 43 (2019): 20741–53. http://dx.doi.org/10.1039/c9nr06135e.
Full textRonchin, Lucio, Claudio Tortato, Alessio Pavanetto, Mattia Miolo, Evgeny Demenev, and Andrea Vavasori. "Formates for green catalytic reductions via CO2 hydrogenation, mediated by magnetically recoverable catalysts." Pure and Applied Chemistry 90, no. 2 (February 23, 2018): 337–51. http://dx.doi.org/10.1515/pac-2017-0704.
Full textHe, Zhenhong, Meng Cui, Qingli Qian, Jingjing Zhang, Huizhen Liu, and Buxing Han. "Synthesis of liquid fuel via direct hydrogenation of CO2." Proceedings of the National Academy of Sciences 116, no. 26 (June 10, 2019): 12654–59. http://dx.doi.org/10.1073/pnas.1821231116.
Full textGe, Hao, Yasutaka Kuwahara, Kazuki Kusu, and Hiromi Yamashita. "Plasmon-induced catalytic CO2 hydrogenation by a nano-sheet Pt/HxMoO3−y hybrid with abundant surface oxygen vacancies." Journal of Materials Chemistry A 9, no. 24 (2021): 13898–907. http://dx.doi.org/10.1039/d1ta02277f.
Full textCheong, Yeon-Joo, Kihyuk Sung, Jin-A. Kim, Yu Kwon Kim, Woojin Yoon, Hoseop Yun, and Hye-Young Jang. "Iridium(NHC)-Catalyzed Sustainable Transfer Hydrogenation of CO2 and Inorganic Carbonates." Catalysts 11, no. 6 (May 31, 2021): 695. http://dx.doi.org/10.3390/catal11060695.
Full textKumar, N., D. M. Camaioni, M. Dupuis, S. Raugei, and A. M. Appel. "Mechanistic insights into hydride transfer for catalytic hydrogenation of CO2 with cobalt complexes." Dalton Trans. 43, no. 31 (2014): 11803–6. http://dx.doi.org/10.1039/c4dt01551g.
Full textLiu, Na, Rong Jun Du, and Wei Li. "Hydrogenation CO2 to Formic Acid over Ru Supported on γ-Al2O3 Nanorods." Advanced Materials Research 821-822 (September 2013): 1330–35. http://dx.doi.org/10.4028/www.scientific.net/amr.821-822.1330.
Full textDu, Jie, Yajing Zhang, Kangjun Wang, Fu Ding, Songyan Jia, Guoguo Liu, and Limei Tan. "Investigation on the promotional role of Ga2O3 on the CuO–ZnO/HZSM-5 catalyst for CO2 hydrogenation." RSC Advances 11, no. 24 (2021): 14426–33. http://dx.doi.org/10.1039/d0ra10849a.
Full textYing, Juntao, Xueqing Han, Lei Ma, Chunshan Lu, Feng Feng, Qunfeng Zhang, and Xiaonian Li. "Effects of Basic Promoters on the Catalytic Performance of Cu/SiO2 in the Hydrogenation of Dimethyl Maleate." Catalysts 9, no. 9 (August 22, 2019): 704. http://dx.doi.org/10.3390/catal9090704.
Full textFong, Henry, and Jonas C. Peters. "Hydricity of an Fe–H Species and Catalytic CO2 Hydrogenation." Inorganic Chemistry 54, no. 11 (December 31, 2014): 5124–35. http://dx.doi.org/10.1021/ic502508p.
Full textHuff, Chelsea A., and Melanie S. Sanford. "Catalytic CO2 Hydrogenation to Formate by a Ruthenium Pincer Complex." ACS Catalysis 3, no. 10 (September 25, 2013): 2412–16. http://dx.doi.org/10.1021/cs400609u.
Full textBahmanpour, Ali M., Matteo Signorile, and Oliver Kröcher. "Recent progress in syngas production via catalytic CO2 hydrogenation reaction." Applied Catalysis B: Environmental 295 (October 2021): 120319. http://dx.doi.org/10.1016/j.apcatb.2021.120319.
Full text