Academic literature on the topic 'Catalytic membrane'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Catalytic membrane.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Catalytic membrane"
Psaltou, Savvina, Manassis Mitrakas, and Anastasios Zouboulis. "Catalytic Membrane Ozonation." Encyclopedia 1, no. 1 (January 21, 2021): 131–43. http://dx.doi.org/10.3390/encyclopedia1010014.
Full textChen, Ya Nan, Xiang Zheng, Di Chen, and Ye Yang. "The Evaluation of Photo Catalytic-Membrane Reactor with Nanomaterials for Removing Virus." Materials Science Forum 743-744 (January 2013): 706–12. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.706.
Full textAbdallah, Heba. "A Review on Catalytic Membranes Production and Applications." Bulletin of Chemical Reaction Engineering & Catalysis 12, no. 2 (August 1, 2017): 136. http://dx.doi.org/10.9767/bcrec.12.2.462.136-156.
Full textHughes, Ronald. "Composite palladium membranes for catalytic membrane reactors." Membrane Technology 2001, no. 131 (March 2001): 9–13. http://dx.doi.org/10.1016/s0958-2118(01)80152-x.
Full textGaliano, Francesco, Roberto Castro-Muñoz, Raffaella Mancuso, Bartolo Gabriele, and Alberto Figoli. "Membrane Technology in Catalytic Carbonylation Reactions." Catalysts 9, no. 7 (July 19, 2019): 614. http://dx.doi.org/10.3390/catal9070614.
Full textAlgieri, Catia, Gerardo Coppola, Debolina Mukherjee, Mahaad Issa Shammas, Vincenza Calabro, Stefano Curcio, and Sudip Chakraborty. "Catalytic Membrane Reactors: The Industrial Applications Perspective." Catalysts 11, no. 6 (May 29, 2021): 691. http://dx.doi.org/10.3390/catal11060691.
Full textANDERSON, M. A., F. TISCARENO-LECHUGA, Q. XU, and C. G. JUN HILL. "ChemInform Abstract: Catalytic Ceramic Membranes and Membrane Reactors." ChemInform 22, no. 17 (August 23, 2010): no. http://dx.doi.org/10.1002/chin.199117325.
Full textJialin, Li, Wang Yazhen, Yang Changying, Long Guangdou, and Shen Hong. "Membrane catalytic deprotonation effects." Journal of Membrane Science 147, no. 2 (September 1998): 247–56. http://dx.doi.org/10.1016/s0376-7388(98)00126-4.
Full textTellez-Cruz, Miriam M., Jorge Escorihuela, Omar Solorza-Feria, and Vicente Compañ. "Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges." Polymers 13, no. 18 (September 10, 2021): 3064. http://dx.doi.org/10.3390/polym13183064.
Full textDing, Wenjuan, Sitong Xiang, Fei Ye, Tian Gui, Yuqin Li, Fei Zhang, Na Hu, Meihua Zhu, and Xiangshu Chen. "Effects of Seed Crystals on the Growth and Catalytic Performance of TS-1 Zeolite Membranes." Membranes 10, no. 3 (March 13, 2020): 41. http://dx.doi.org/10.3390/membranes10030041.
Full textDissertations / Theses on the topic "Catalytic membrane"
Augustine, Alexander Sullivan. "Supported Pd and Pd/Alloy Membranes for Water-Gas Shift Catalytic Membrane Reactors." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-dissertations/99.
Full textEscorihuela, Roca Sara. "Novel gas-separation membranes for intensified catalytic reactors." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/121139.
Full text[CAT] La present tesi doctoral es centra en el desenvolupament de noves membranes de separació de gasos, així com el seu ús in-situ en reactors catalítics de membrana per a la intensificació de processos. Per a aquest propòsit, s'han sintetitzat diversos materials, com a polímers per a la fabricació de membranes, catalitzadors tant per a la metanació del CO2 com per a la reacció de síntesi de Fischer-Tropsch, i diverses partícules inorgàniques nanomètriques per al seu ús en membranes de matriu mixta. Referent a la fabricació de les membranes, la tesi aborda principalment dos tipus: orgàniques i inorgàniques. Respecte a les membranes orgàniques, diferents materials polimèrics s'ha considerat com a candidats prometedors, tant per a la capa selectiva de la membrana, així com com a suport d'aquesta. S'ha treballat amb poliimides, ja que són materials amb temperatures de transició vítria molt alta, per al seu posterior ús en reaccions industrials que tenen lloc entre 250-300 °C. Per a aconseguir membranes molt permeables, mantenint una bona selectivitat, és necessari obtindre capes selectives de menys d'una micra. Emprant com a material de suport altre tipus de polímer, no és necessari estudiar la compatibilitat entre ells, sent menys complexa l'obtenció de capes fines. En canvi, si el suport és de tipus inorgànic, un exhaustiu estudi de la relació entre la concentració i la viscositat de la solució polimèrica és altament necessari. Diverses partícules inorgàniques nanomètriques es van estudiar per a afavorir la permeació d'aigua a través dels materials polimèrics. En segon lloc, quant a membranes inorgàniques, es va realitzar la funcionalització d'una membrana de pal¿ladi per a afavorir la permeació d'hidrogen i evitar la contaminació per monòxid de carboni. El motiu pel qual es va dopar amb un altre metall la capa selectiva de la membrana metàl¿lica va ser per a poder emprar-la en un reactor de Fischer-Tropsch. En relació amb el disseny i fabricació dels reactors, durant aquesta tesi, es va desenvolupar el prototip d'un microreactor per a la metanació de CO2, on una membrana polimèrica de capa fina selectiva a l'aigua es va integrar per a així evitar la desactivació del catalitzador i al seu torn desplaçar l'equilibri i augmentar la conversió de CO2. D'altra banda, un reactor de Fischer-Tropsch va ser redissenyat per a poder introduir una membrana metàl¿lica selectiva a l'hidrogen i poder injectar-lo de manera controlada. D'aquesta manera, i seguint estudis previs, el objectiu va ser millorar la selectivitat als productes desitjats mitjançant el hidrocraqueix i la hidroisomerització d'olefines i parafines amb l'ajuda de l'alta pressió parcial d'hidrogen.
[EN] The present thesis is focused on the development of new gas-separation membranes, as well as their in-situ integration on catalytic membrane reactors for process intensification. For this purpose, several materials have been synthesized such as polymers for membrane manufacture, catalysts for CO2 methanation and Fischer-Tropsch synthesis reaction, and inorganic materials in form of nanometer-sized particles for their use in mixed matrix membranes. Regarding membranes manufacture, this thesis deals mainly with two types: organic and inorganic. With regards to the organic membranes, different polymeric materials have been considered as promising candidates, both for the selective layer of the membrane, as well as a support thereof. Polyimides have been selected since they are materials with very high glass transition temperatures, in order to be used in industrial reactions which take place at temperatures around 250-300 ºC. To obtain highly permeable membranes, while maintaining a good selectivity, it is necessary to develop selective layers of less than one micron. Using another type of polymer as support material, it is not necessary to study the compatibility between membrane and support. On the other hand, if the support is inorganic, an exhaustive study of the relation between the concentration and the viscosity of the polymer solution is highly necessary. In addition, various inorganic particles were studied to favor the permeation of water through polymeric materials. Secondly, as regards to inorganic membranes, the functionalization of a palladium membrane to favor the permeation of hydrogen and avoid carbon monoxide contamination was carried out. The membrane selective layer was doped with another metal in order to be used in a Fischer-Tropsch reactor. Regarding the design and manufacture of the reactors used during this thesis, a prototype of a microreactor for CO2 methanation was carried out, where a thin-film polymer membrane selective to water was integrated to avoid the deactivation of the catalyst and to displace the equilibrium and increase the CO2 conversion. On the other hand, a Fischer-Tropsch reactor was redesigned to introduce a hydrogen-selective metal membrane and to be able to inject it in a controlled manner. In this way, and following previous studies, the aim is to enhance the selectivity to the target products by hydrocracking and hydroisomerization the olefins and paraffins assisted by the presence of an elevated partial pressure of hydrogen.
I would like to acknowledge the Spanish Government, for funding my research with the Severo Ochoa scholarship.
Escorihuela Roca, S. (2019). Novel gas-separation membranes for intensified catalytic reactors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/121139
TESIS
Wales, Michael Dean. "Membrane contact reactors for three-phase catalytic reactions." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20589.
Full textChemical Engineering
Mary E. Rezac
Membrane contact reactors (MCRs) have been evaluated for the selective hydro-treating of model reactions; the partial hydrogenation of soybean oil (PHSO), and the conversion of lactic acid into commodity chemicals. Membranes were rendered catalytically active by depositing metal catalyst onto the polymer "skin" of an asymmetric membrane. Hydrogen was supplied to the support side of the membrane and permeated from the support side to the skin side, where it adsorbed directly onto the metal surface. Liquid reactant was circulated over the membrane, allowing the liquid to come into direct contact with the metal coated surface of the membrane, where the reaction occurred. Our membrane contact reactor approach replaces traditional three-phase batch slurry reactors. These traditional reactors possess inherent mass transfer limitations due to low hydrogen solubility in liquid and slow diffusion to the catalyst surface. This causes hydrogen starvation at the catalyst surface, resulting in undesirable side reactions and/or extreme operating pressures of 100 atmospheres or more. By using membrane reactors, we were able to rapidly supply hydrogen to the catalyst surface. When the PHSO is performed in a traditional slurry reactor, the aforementioned hydrogen starvation leads to a high amounts of trans-fats. Using a MCR, we were able to reduce trans-fats by over 50% for equal levels of hydrogenation. It was further demonstrated that an increase in temperature had minimal effects on trans-fat formation, while significantly increasing hydrogenation rates; allowing the system to capture higher reaction rates without adversely affecting product quality. Additionally, high temperatures favors the hydrogenation of polyenes over monoenes, leading to low amounts of saturated fats. MCRs were shown to operator at high temperatures and: (1) capture high reaction rates, (2) minimize saturated fats, and (3) minimize trans-fats. We also demonstrated lactic acid conversion into commodity chemicals using MCRs. Our results show that all MCR experiments had faster reaction rate than all of our controls, indicating that MCRs have high levels of hydrogen coverage at the catalyst. It was also demonstrated that changing reaction conditions (pressure and temperature) changed the product selectivities; giving the potential for MCRs to manipulate product selectivity.
Gouveia, Gil Ana Maria. "Catalytic hollow fibre membrane reactors for H2 production." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/39795.
Full textPrabhu, Anil K. "Catalytic Transformation of Greenhouse Gases in a Membrane Reactor." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/26430.
Full textPh. D.
Umoh, Reuben Mfon. "Direct synthesis gas conversion to alcohols and hydrocarbons using a catalytic membrane reactor." Thesis, Robert Gordon University, 2009. http://hdl.handle.net/10059/2117.
Full textKeuler, Johan Nico. "Optimising catalyst and membrane performance and performing a fundamental analysis on the dehydrogenation of ethanol and 2-butanol in a catalytic membrane reactor." Thesis, Link to the online version, 2000. http://hdl.handle.net/10019.1/1277.
Full textRahman, Mukhlis Bin A. "Catalytic hollow fibre membrane micro-reactors for energy applications." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/7097.
Full textKingsbury, Benjamin F. K. "A morphological study of ceramic hollow fibre membranes : a perspective on multifunctional catalytic membrane reactors." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6089.
Full textGrigoropoulou, Georgia. "Phase transfer catalysed reactions under membrane conditions." Thesis, University of York, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369329.
Full textBooks on the topic "Catalytic membrane"
Thomas, Tsotsis Theodore, ed. Catalytic membranes and membrane reactors. Weinheim: Wiley-VCH, 2002.
Find full textRickey, Welch G., ed. Organized multienzyme systems: Catalytic properties. Orlando: Academic Press, 1985.
Find full textHigh temperature catalytic membrane reactors: Topical report. U. S. Dept. of Energy., 1990.
Find full textCollins, John Patrick. Catalytic decomposition of ammonia in a membrane reactor. 1993.
Find full textSimulation of ethylbenzene dehydrogenation in microporous catalytic membrane reactors. U. S. Dept. of Energy., 1989.
Find full textEiichi, Torikai, and United States. National Aeronautics and Space Administration., eds. Production of an ion-exchange membrane-catalytic electrode bonded material for electrolytic cells. Washington, D.C: National Aeronautics and Space Administration, 1986.
Find full textCurrent Trends and Future Developments on Membranes: Photocatalytic Membranes and Photocatalytic Membrane Reactors. Elsevier, 2018.
Find full textBasile, Angelo, and Teko W. Napporn. Current Trends and Future Developments on Membranes: Membrane Systems for Hydrogen Production. Elsevier, 2020.
Find full textBasile, Angelo, and Giuseppe Spazzafumo. Current Trends and Future Developments on Membranes: Cogeneration Systems and Membrane Technology. Elsevier, 2020.
Find full textBasile, Angelo, and Giuseppe Spazzafumo. Current Trends and Future Developments on Membranes: Co-Generation Systems and Membrane Technology. Elsevier, 2020.
Find full textBook chapters on the topic "Catalytic membrane"
Bredesen, Rune. "Inorganic Catalytic Membrane." In Encyclopedia of Membranes, 1041–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_314.
Full textBredesen, Rune. "Inorganic Catalytic Membrane." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_314-2.
Full textPitzalis, Emanuela, Claudio Evangelisti, Nicoletta Panziera, Angelo Basile, Gustavo Capannelli, and Giovanni Vitulli. "Solvated Metal Atoms in the Preparation of Catalytic Membranes." In Membranes for Membrane Reactors, 371–80. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470977569.ch14.
Full textAnderson, M. A., F. Tiscareño-Lechuga, Q. Xu, and C. G. Hill. "Catalytic Ceramic Membranes and Membrane Reactors." In Novel Materials in Heterogeneous Catalysis, 198–215. Washington, DC: American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0437.ch019.
Full textVolkov, V. V., I. V. Petrova, V. I. Lebedeva, V. I. Roldughin, and G. F. Tereshchenko. "Palladium-Loaded Polymeric Membranes for Hydrogenation in Catalytic Membrane Reactors." In Membranes for Membrane Reactors, 531–48. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470977569.ch24.
Full textFontananova, Enrica. "Decatungstate, Catalytic Membrane Containing." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_858-1.
Full textFontananova, Enrica. "Decatungstate, Catalytic Membrane Containing." In Encyclopedia of Membranes, 512–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_858.
Full textCerneaux, Sophie. "Polymeric-Ceramic Catalytic Membrane." In Encyclopedia of Membranes, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_492-1.
Full textKurungot, Sreekumar, and Takeo Yamaguchi. "Compact Catalytic Membrane Reactors for Reforming Applications Based on an Integrated Sandwiched Catalyst Layer." In Membranes for Membrane Reactors, 227–42. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470977569.ch7.
Full textAlhazov, Artiom, Rudolf Freund, and Sergey Verlan. "Promoters and Inhibitors in Purely Catalytic P Systems." In Membrane Computing, 126–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14370-5_8.
Full textConference papers on the topic "Catalytic membrane"
Schmidt, Jurgen, and K. Georgieva-Angelova. "SIMULATION OF MASS TRANSFER IN A CATALYTIC MEMBRANE REACTOR." In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p10.30.
Full textPines, David, and Phillip Birbara. "An Ultrapure Water Processing System Utilizing Membrane Pervaporation and Catalytic Oxidation Technologies." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/911600.
Full textLiu, Min, Zhi-Ping Zhao, and Jian-Hui Li. "Ceramic Membrane Immobilized Salen Catalysts and Their Use in Asymmetric Catalytic Reactions." In International Conference on Chemical,Material and Food Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cmfe-15.2015.9.
Full textPark, Hyung Gyu, Jaewon Chung, Costas P. Grigoropoulos, Ralph Greif, Mark Havstad, and Jefffey D. Morse. "Transport in a Microfluidic Catalytic Reactor." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47216.
Full textShi, Jinjun, Jiusheng Guo, and Bor Jang. "A New Type of High Temperature Membrane for Proton Exchange Membrane Fuel Cells." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97043.
Full textNagy, Endre. "Mass Transport Through Biocatalytic Membrane Reactors." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59403.
Full textGuo, Jifeng, and Yanjun Lu. "Study on the Dyeing Wastewater by the Photo Catalytic Oxidation Membrane Bioreactor (pMBR)." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5517610.
Full textXu, Lei, Tie Li, Xiuli Gao, Yuelin Wang, Rui Zheng, Lei Xie, and Lichung Lee. "A low power catalytic combustion gas sensor based on a suspended membrane microhotplate." In 2011 IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2011. http://dx.doi.org/10.1109/nems.2011.6017303.
Full textYazid, Hanani, Nurul Atikah Abdul Rahman, and Abdul Mutalib Md Jani. "Catalytic reduction of p-nitrophenol on Au/TiO2 powder and Au/TiO2 membrane." In 4TH INTERNATIONAL SCIENCES, TECHNOLOGY AND ENGINEERING CONFERENCE (ISTEC) 2020: Exploring Materials for the Future. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0043554.
Full textZeng, Pingying, Kang Wang, Ryan Falkenstein-Smith, and Jeongmin Ahn. "A Ceramic-Membrane-Based Methane Combustion Reactor With Tailored Function of Simultaneous Separation of Carbon Dioxide From Nitrogen." In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6510.
Full textReports on the topic "Catalytic membrane"
Liu, Paul K. T. Catalytic Membrane Program. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/764722.
Full textBoyle, T. J., C. J. Brinker, T. J. Gardner, R. C. Hughes, and A. G. Sault. Catalytic Membrane Sensors. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/2882.
Full textKleiner, R. N. Catalytic membrane program novation: High temperature catalytic membrane reactors. Final report. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/303973.
Full textStuart Nemser, PhD. Novel Catalytic Membrane Reactors. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1063626.
Full textGallaher, G., T. Gerdes, and R. Gregg. Development of high temperature catalytic membrane reactors. Final report. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/503459.
Full textMa, Y. H., W. R. Moser, S. Pien, and A. B. Shelekhin. Development of hollow fiber catalytic membrane reactors for high temperature gas cleanup. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10185653.
Full textLiu, Paul K. T. Catalytic membrane program. Quarterly report for the period August 1999--October 1999. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/761032.
Full textMa, Yi H., M. R. Moser, and S. M. Pien. Development of hollow-fiber catalytic-membrane reactors for high-temperature gas cleanup. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10110112.
Full textBoespflug, E. P., C. J. Brinker, J. P. Collins, T. J. Gardner, A. G. Sault, and A. C. Y. Tsai. Hydrogen Production for Fuel Cells by Selective Dehydrogenation of Alkanes in Catalytic Membrane Reactors. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/5655.
Full textGeorge W. Huber, Aniruddha A. Upadhye, David M. Ford, Surita R. Bhatia, and Phillip C. Badger. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1053421.
Full text