To see the other types of publications on this topic, follow the link: Catastrophic phase inversion.

Journal articles on the topic 'Catastrophic phase inversion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 39 journal articles for your research on the topic 'Catastrophic phase inversion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Campbell, Scott B., Todd Larson, Niels M. B. Smeets, Ula El-Jaby, and Timothy F. L. McKenna. "Miniemulsification by catastrophic phase inversion." Chemical Engineering Journal 183 (February 2012): 534–41. http://dx.doi.org/10.1016/j.cej.2011.12.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dunstan, Timothy S., Paul D. I. Fletcher, and Saeed Mashinchi. "High Internal Phase Emulsions: Catastrophic Phase Inversion, Stability, and Triggered Destabilization." Langmuir 28, no. 1 (December 19, 2011): 339–49. http://dx.doi.org/10.1021/la204104m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Malhotra, Varun, Rajinder Pal, and Saeed Alhassan. "Catastrophic Phase Inversion of Emulsions Stabilized by Amphiphilic Nanoparticles." Journal of Nanofluids 7, no. 1 (February 1, 2018): 30–36. http://dx.doi.org/10.1166/jon.2018.1440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lv, Guojun, Fumin Wang, Wangfeng Cai, and Xubin Zhang. "Characterization of the emulsions formed by catastrophic phase inversion." Colloids and Surfaces A: Physicochemical and Engineering Aspects 450 (May 2014): 141–47. http://dx.doi.org/10.1016/j.colsurfa.2014.03.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bouchama, F., G. A. van Aken, A. J. E. Autin, and G. J. M. Koper. "On the mechanism of catastrophic phase inversion in emulsions." Colloids and Surfaces A: Physicochemical and Engineering Aspects 231, no. 1-3 (December 2003): 11–17. http://dx.doi.org/10.1016/j.colsurfa.2003.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bains, Upinder, and Rajinder Pal. "Rheology and Catastrophic Phase Inversion of Emulsions in the Presence of Starch Nanoparticles." ChemEngineering 4, no. 4 (October 19, 2020): 57. http://dx.doi.org/10.3390/chemengineering4040057.

Full text
Abstract:
Emulsions stabilized by solid nanoparticles, referred to as Pickering emulsions, are becoming increasingly important in applications as they are free of surfactants. However, the bulk properties and stability of Pickering emulsions are far from being well understood. In this work, the rheological behavior and catastrophic phase inversion of emulsions in the presence of starch nanoparticles were studied using in-situ measurements of viscosity and electrical conductivity. The aqueous phase consisting of starch nanoparticles was added sequentially in increments of 5% vol. to the oil phase under agitation condition to prepare the emulsions. The emulsions were water-in-oil (W/O) type at low to moderate concentrations of aqueous phase. At a certain critical volume fraction of aqueous phase, catastrophic phase inversion of W/O emulsion to oil-in-water (O/W) emulsion took place accompanied a sharp jump in the electrical conductivity and a sharp drop in the emulsion viscosity. The W/O emulsions were nearly Newtonian at low concentrations of aqueous phase. At high concentrations of aqueous phase, prior to phase inversion, the W/O emulsions exhibited a shear-thickening behavior. The O/W emulsions produced after phase inversion were shear-thinning in nature. The comparison of the experimental viscosity data with the predictions of emulsion viscosity model revealed only partial coverage of droplet surfaces with nanoparticles. With the increase in the concentration of starch nanoparticles (SNPs) in the aqueous phase of the emulsions, the phase inversion of W/O emulsion to O/W emulsion was delayed to higher volume fraction of aqueous phase. Thus SNPs imparted some stability to W/O emulsions against coalescence and phase inversion.
APA, Harvard, Vancouver, ISO, and other styles
7

Zang, Duyang, and Paul S. Clegg. "Relationship between high internal-phase Pickering emulsions and catastrophic inversion." Soft Matter 9, no. 29 (2013): 7042. http://dx.doi.org/10.1039/c3sm00133d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nienow, A. W. "Break-up, coalescence and catastrophic phase inversion in turbulent contactors." Advances in Colloid and Interface Science 108-109 (May 2004): 95–103. http://dx.doi.org/10.1016/j.cis.2003.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thakur, Rajeev K., C. Villette, J. M. Aubry, and G. Delaplace. "Dynamic emulsification and catastrophic phase inversion of lecithin-based emulsions." Colloids and Surfaces A: Physicochemical and Engineering Aspects 315, no. 1-3 (February 2008): 285–93. http://dx.doi.org/10.1016/j.colsurfa.2007.08.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sajjadi, Shahriar, Fatemeh Jahanzad, and Michael Yianneskis. "Catastrophic phase inversion of abnormal emulsions in the vicinity of the locus of transitional inversion." Colloids and Surfaces A: Physicochemical and Engineering Aspects 240, no. 1-3 (June 2004): 149–55. http://dx.doi.org/10.1016/j.colsurfa.2004.03.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vaessen, G. E. J., M. Visschers, and H. N. Stein. "Predicting Catastrophic Phase Inversion on the Basis of Droplet Coalescence Kinetics." Langmuir 12, no. 4 (January 1996): 875–82. http://dx.doi.org/10.1021/la950379g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ogunlaja, Sileola B., and Rajinder Pal. "Effects of Bentonite Nanoclay and Cetyltrimethyl Ammonium Bromide Modified Bentonite Nanoclay on Phase Inversion of Water-in-Oil Emulsions." Colloids and Interfaces 4, no. 1 (January 3, 2020): 2. http://dx.doi.org/10.3390/colloids4010002.

Full text
Abstract:
The effects of unmodified and modified bentonite nanoclays (with various degrees of surfactant modification) on the catastrophic phase inversion from water-in-oil (W/O) emulsion to oil-in-water (O/W) emulsion were determined experimentally. The bentonite nanoclay (NC-Bt) was suspended in the aqueous phase, and the critical volume fraction of water where phase inversion from W/O to O/W emulsion took place was determined through conductivity measurements. Cetyltrimethyl ammonium bromide (CTAB) was used as a surfactant to modify the nanoclay. The adsorption of CTAB onto nanoclay had a strong influence on the contact angle and the critical volume fraction of water where phase inversion took place. The modification of the nanoclay brought about by the adsorption of CTAB increased the three-phase contact angle (measured through the aqueous phase), thereby making it more hydrophobic, and prolonged the phase inversion point. CTAB alone and CTAB-modified nanoclay delayed the phase inversion process in a similar manner, showing a strong dependence on the CTAB concentration.
APA, Harvard, Vancouver, ISO, and other styles
13

Binks, B. P., and S. O. Lumsdon. "Catastrophic Phase Inversion of Water-in-Oil Emulsions Stabilized by Hydrophobic Silica." Langmuir 16, no. 6 (March 2000): 2539–47. http://dx.doi.org/10.1021/la991081j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pal, Rajinder, and Varun Malhotra. "Influence of Hybrid Nanoparticle-Surfactant Stabilizers on Catastrophic Phase Inversion of Emulsions." Journal of Nanofluids 7, no. 2 (April 1, 2018): 300–308. http://dx.doi.org/10.1166/jon.2018.1446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pierlot, Christel, Jesus F. Ontiveros, Maxime Royer, Marianne Catté, and Jean-Louis Salager. "Emulsification of viscous alkyd resin by catastrophic phase inversion with nonionic surfactant." Colloids and Surfaces A: Physicochemical and Engineering Aspects 536 (January 2018): 113–24. http://dx.doi.org/10.1016/j.colsurfa.2017.07.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Yihan, Erika L. Carter, Glenn V. Gordon, Qian J. Feng, and Stig E. Friberg. "An investigation into the relationship between catastrophic inversion and emulsion phase behaviors." Colloids and Surfaces A: Physicochemical and Engineering Aspects 399 (April 2012): 25–34. http://dx.doi.org/10.1016/j.colsurfa.2012.02.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Saw, L. K., B. W. Brooks, K. J. Carpenter, and D. V. Keight. "Catastrophic phase inversion in region II of an ionomeric polymer–water system." Journal of Colloid and Interface Science 279, no. 1 (November 2004): 235–43. http://dx.doi.org/10.1016/j.jcis.2004.06.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Brooks, B. W., and H. N. Richmond. "Phase inversion in non-ionic surfactant—oil—water systems—III. The effect of the oil-phase viscosity on catastrophic inversion and the relationship between the drop sizes present before and after catastrophic inversion." Chemical Engineering Science 49, no. 11 (June 1994): 1843–53. http://dx.doi.org/10.1016/0009-2509(94)80069-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Brandenbusch, C., L. Vahle, S. Glonke, and G. Sadowski. "Applied Catastrophic Phase Inversion (ACPI) - A Continuous Noncentrifugal Phase Separation in Biphasic Whole-Cell Biocatalysis." Chemie Ingenieur Technik 88, no. 9 (August 29, 2016): 1331–32. http://dx.doi.org/10.1002/cite.201650496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kralchevsky, P. A., I. B. Ivanov, K. P. Ananthapadmanabhan, and A. Lips. "On the Thermodynamics of Particle-Stabilized Emulsions: Curvature Effects and Catastrophic Phase Inversion." Langmuir 21, no. 1 (January 2005): 50–63. http://dx.doi.org/10.1021/la047793d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Glonke, Sebastian, Gabriele Sadowski, and Christoph Brandenbusch. "Applied catastrophic phase inversion: a continuous non-centrifugal phase separation step in biphasic whole-cell biocatalysis." Journal of Industrial Microbiology & Biotechnology 43, no. 11 (September 20, 2016): 1527–35. http://dx.doi.org/10.1007/s10295-016-1837-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Binks, Bernard P., and Andrew T. Tyowua. "Oil-in-oil emulsions stabilised solely by solid particles." Soft Matter 12, no. 3 (2016): 876–87. http://dx.doi.org/10.1039/c5sm02438b.

Full text
Abstract:
Relatively hydrophobic particles of different type, size and shape are shown to be effective stabilisers of emulsions containing immiscible oils of low dielectric constant. Transitional and catastrophic phase inversion can be effected and both simple and multiple emulsions are stable for a long period of time.
APA, Harvard, Vancouver, ISO, and other styles
23

Brooks, B. W., and H. N. Richmond. "Phase inversion in non-ionic surfactant—oil—water systems—II. Drop size studies in catastrophic inversion with turbulent mixing." Chemical Engineering Science 49, no. 7 (April 1994): 1065–75. http://dx.doi.org/10.1016/0009-2509(94)80012-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Galindo-Alvarez, Johanna, Véronique Sadtler, Lionel Choplin, and Jean-Louis Salager. "Viscous Oil Emulsification by Catastrophic Phase Inversion: Influence of Oil Viscosity and Process Conditions." Industrial & Engineering Chemistry Research 50, no. 9 (May 4, 2011): 5575–83. http://dx.doi.org/10.1021/ie102224k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Li, Yanan, Zijie Zhang, Qipeng Yuan, Hao Liang, and Frank Vriesekoop. "Process optimization and stability of d-limonene nanoemulsions prepared by catastrophic phase inversion method." Journal of Food Engineering 119, no. 3 (December 2013): 419–24. http://dx.doi.org/10.1016/j.jfoodeng.2013.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Panagopoulou, Elli, Erminda Tsouko, Nikolaos Kopsahelis, Apostolis Koutinas, Ioanna Mandala, and Vasiliki Evageliou. "Olive oil emulsions formed by catastrophic phase inversion using bacterial cellulose and whey protein isolate." Colloids and Surfaces A: Physicochemical and Engineering Aspects 486 (December 2015): 203–10. http://dx.doi.org/10.1016/j.colsurfa.2015.09.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jahanzad, F., Gordon Crombie, Robert Innes, and Shahriar Sajjadi. "Catastrophic phase inversion via formation of multiple emulsions: A prerequisite for formation of fine emulsions." Chemical Engineering Research and Design 87, no. 4 (April 2009): 492–98. http://dx.doi.org/10.1016/j.cherd.2008.11.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fernandes Barros, Frederico Macedo, Christophe Chassenieux, Marli Miriam de Souza Lima, and Lazhar Benyahia. "Structure and rheology during catastrophic phase inversion of Pickering emulsions stabilized with fumed silica particles." Colloids and Surfaces A: Physicochemical and Engineering Aspects 593 (May 2020): 124630. http://dx.doi.org/10.1016/j.colsurfa.2020.124630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rondón-González, Marianna, Luis F. Madariaga, Véronique Sadtler, Lionel Choplin, Laura Márquez, and Jean-Louis Salager. "Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 6. Effect of the Phase Viscosity on the Inversion Produced by Continuous Stirring." Industrial & Engineering Chemistry Research 46, no. 11 (May 2007): 3595–601. http://dx.doi.org/10.1021/ie070145f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Anisa, A. N. Ilia, Abdurahman H. Nour, and Azhary H. Nour. "Catastrophic and Transitional Phase Inversion of Water-in-Oil Emulsion for Heavy and Light Crude Oil." Journal of Applied Sciences 10, no. 23 (November 15, 2010): 3076–83. http://dx.doi.org/10.3923/jas.2010.3076.3083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Arenas-Calderon, Edward, Véronique Sadtler, Philippe Marchal, Lionel Choplin, Frédéric Delfosse, and Michel Maze. "Preparation of highly concentrated bitumen emulsions by catastrophic phase inversion: Follow-up of the emulsification process." Colloids and Surfaces A: Physicochemical and Engineering Aspects 458 (September 2014): 25–31. http://dx.doi.org/10.1016/j.colsurfa.2014.02.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Roberts, L. A., F. Xie, and B. W. Brooks. "The production of small monomer drops in liquid–liquid dispersions by approaching a catastrophic phase inversion." Colloids and Surfaces A: Physicochemical and Engineering Aspects 274, no. 1-3 (February 2006): 179–84. http://dx.doi.org/10.1016/j.colsurfa.2005.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tyrode, Eric, Joachim Allouche, Lionel Choplin, and Jean-Louis Salager. "Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 4. Following the Emulsion Viscosity during Three Inversion Protocols and Extending the Critical Dispersed-Phase Concept." Industrial & Engineering Chemistry Research 44, no. 1 (January 2005): 67–74. http://dx.doi.org/10.1021/ie049216q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Adena, Sandeep Kumar Reddy, Michele Herneisey, Eric Pierce, Paul R. Hartmeier, Suneera Adlakha, Marco A. I. Hosfeld, James K. Drennen, and Jelena M. Janjic. "Quality by Design Methodology Applied to Process Optimization and Scale up of Curcumin Nanoemulsions Produced by Catastrophic Phase Inversion." Pharmaceutics 13, no. 6 (June 15, 2021): 880. http://dx.doi.org/10.3390/pharmaceutics13060880.

Full text
Abstract:
In the presented study, we report development of a stable, scalable, and high-quality curcumin-loaded oil/water (o/w) nanoemulsion manufactured by concentration-mediated catastrophic phase inversion as a low energy nanoemulsification strategy. A design of experiments (DoE) was constructed to determine the effects of process parameters on the mechanical input required to facilitate the transition from the gel phase to the final o/w nanoemulsion and the long-term effects of the process parameters on product quality. A multiple linear regression (MLR) model was constructed to predict nanoemulsion diameter as a function of nanoemulsion processing parameters. The DoE and subsequent MLR model results showed that the manufacturing process with the lowest temperature (25 °C), highest titration rate (9 g/minute), and lowest stir rate (100 rpm) produced the highest quality nanoemulsion. Both scales of CUR-loaded nanoemulsions (100 g and 500 g) were comparable to the drug-free optimal formulation with 148.7 nm and 155.1 nm diameter, 0.22 and 0.25 PDI, and 96.29 ± 0.76% and 95.60 ± 0.88% drug loading for the 100 g and 500 g scales, respectively. Photostability assessments indicated modest loss of drug (<10%) upon UV exposure of 24 h, which is appropriate for intended transdermal applications, with expected reapplication of every 6–8 h.
APA, Harvard, Vancouver, ISO, and other styles
35

Rondón-González, Marianna, Véronique Sadtler, Philippe Marchal, Lionel Choplin, and Jean-Louis Salager. "Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 7. Emulsion Evolution Produced by Continuous Stirring To Generate a Very High Internal Phase Ratio Emulsion." Industrial & Engineering Chemistry Research 47, no. 7 (April 2008): 2314–19. http://dx.doi.org/10.1021/ie071482r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Vaessen, G. E. J., and H. N. Stein. "The Applicability of Catastrophe Theory to Emulsion Phase Inversion." Journal of Colloid and Interface Science 176, no. 2 (December 1995): 378–87. http://dx.doi.org/10.1006/jcis.1995.9954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Clowes, Ron M. "Logan Medallist 5. Geophysics and Geology: An Essential Combination Illustrated by LITHOPROBE Interpretations–Part 2, Exploration Examples." Geoscience Canada 44, no. 4 (December 19, 2017): 135–80. http://dx.doi.org/10.12789/geocanj.2017.44.125.

Full text
Abstract:
Lithoprobe (1984–2005), Canada’s national, collaborative, multidisciplinary, Earth Science research project, investigated the structure and evolution of the Canadian landmass and its margins. It was a highly successful project that redefined the nature of Earth science research in Canada. One of many contributions deriving from the project was the demonstration by example that Earth scientists from geophysics and geology, including all applicable sub-disciplines within these general study areas, must work together to achieve thorough and comprehensive interpretations of all available data sets. In Part 1, this statement was exemplified through studies involving lithospheric structures. In Part 2, it is exemplified by summarizing interpretations from six exploration-related studies derived from journal publications. In the first example, subsurface structures associated with the Guichon Creek batholith in south-central British Columbia, which hosts porphyry copper and molybdenum deposits, are better defined and related to different geological phases of the batholith. Reprocessed seismic reflection data and 2.5-D and 3-D inversions of magnetic and gravity data are combined with detailed geological mapping and drillhole information to generate the revised and improved subsurface interpretation. Research around the Bell Allard volcanogenic massive sulphide deposit in the Matagami region of northern Quebec provides the second example. A seismic reflection line over the deposit shortly after it was discovered by drilling, aided by core and geophysical logs, was acquired to test whether the deposit could be imaged. Direct detection of the ore body from the seismic section would be difficult if its location were not already known; however, structural characteristics that can be tied to lithologies from boreholes and logs were well identified. Nickel deposits and associated structures in the Thompson belt at the western limit of the Superior Province in northern Manitoba were the focus of seismic and electromagnetic (EM) studies combined with geology and physical property measurements. The combined seismic/EM image indicates that the rocks of the prospective Ospwagan Group, which have low resistivity, extend southeastward beneath the Archean gneiss and that structural culminations control the subsurface geometry of the Ospwagan Group. The Sudbury structure in Ontario is famous for its nickel deposits, the largest in the world, which formed as the result of a catastrophic meteorite impact. To help reconcile some of the enigmas and apparent contradictions surrounding studies of the structure and to develop more effective geophysical techniques to locate new deposits, Lithoprobe partnered with industry to carry out geophysical surveys combined with the extensive geological information available. A revised structural model for the Sudbury structure was generated and a 3-D seismic reflection survey identified a nickel deposit, known from drilling results, prior to any mine development. The Athabasca Basin of northwestern Saskatchewan and northeastern Alberta is one of the world’s most prolific producers of uranium from its characteristically high-grade unconformity-type deposits and is the only current uranium producer in Canada. An extensive database of geology, drillhole data and physical properties exists. Working with industry collaborators, Lithoprobe demonstrated the value of high-resolution seismic for imaging the unconformity and faults associated with the deposits. The final example involves a unique seismic reflection experiment to image the diamondiferous Snap Lake kimberlite dyke in the Slave Province of the Northwest Territories. The opportunity to study geological samples of the kimberlite dyke and surrounding rocks and to ground-truth the seismic results with drillhole data made available by the two industry collaborators enabled a case history study that was highly successful.RÉSUMÉLithoprobe (1984-2005), ce projet de recherche pancanadien, multidisciplinaire et concerté en sciences de la Terre, a étudié la structure et l'évolution de la croûte continentale canadienne et de ses marges. Ça a été un projet très réussi et qui a redéfini la nature de la recherche en sciences de la Terre au Canada. L'une des nombreuses retombées de ce projet a démontré par l'exemple que les spécialistes des sciences de la Terre en géophysique et en géologie, y compris toutes les sous-disciplines applicables dans ces domaines d'étude généraux, doivent travailler de concert afin de parvenir à une interprétation exhaustive de tous les ensembles de données disponibles. Dans la partie 1, cette approche s'est concrétisée par des études portant sur les structures lithosphériques. Dans la partie 2, elle a produit un résumé des interprétations tirées de six études liées à l'exploration à partir de publications dans des revues scientifiques. Dans le premier exemple, les structures souterraines associées au batholite du ruisseau Guichon, dans le centre-sud de la Colombie-Britannique, et qui renferme des gisements porphyriques de cuivre et de molybdène, sont maintenant mieux définies et mieux reliées aux différentes phases géologiques du batholite. Un retraitement des données de sismique réflexion, et d’inversion magnétique et gravimétrique 2,5-D et 3-D combiné à une cartographie géologique détaillée et à des données de forage ont permis une interprétation révisée et améliorée du de subsurface. La recherche autour du gisement de sulfures massifs volcanogéniques de Bell Allard de la région de Matagami, dans le nord du Québec, est un deuxième exemple. Un levé de sismique réflexion réalisé au-dessus du gisement, peu après sa découverte par forage, couplé avec des diagraphies géophysiques et de carottes, a été réalisé pour vérifier si l'ensemble pouvait donner une image du gisement. La détection directe du gisement de minerai à partir de la coupe sismique serait difficile si son emplacement n'était pas déjà connu; cependant, les caractéristiques structurales qui peuvent être liées aux lithologies déduites des forages et des diagraphies ont été bien définies. Les gisements de nickel et les structures qui y sont reliées dans la bande de Thompson, à la limite ouest de la province du Supérieur, dans le nord du Manitoba, ont fait l'objet d'études sismiques et électromagnétiques (EM), combinés à des mesures de caractéristiques géologiques et physiques. L'image sismique/EM combinée indique que les roches du groupe d’intérêt d’Ospwagan, lesquelles ont une résistivité faible, s'étendent vers le sud-est sous le gneiss archéen et, les culminations structurales contrôlent la géométrie souterraine du groupe d’Ospwagan. La structure de Sudbury, en Ontario, est réputée pour ses gisements de nickel, les plus importants au monde, lesquels se sont formés à la suite d'un impact météoritique catastrophique. Pour aider à comprendre certaines des énigmes et résoudre d’apparentes contradictions entourant les études de la structure, et pour développer des techniques géophysiques plus efficaces afin de localiser de nouveaux gisements, Lithoprobe s'est associé à l'entreprise privée pour réaliser des levés géophysiques, et les comparer aux très nombreuses informations géologiques disponibles. Une révision du modèle structural du gisement de Sudbury, ajouté à un levé sismique réflexion tridimensionnelle, ont permis de circonscrire un gisement de nickel, avant tout autre travail de développement minier. Le bassin de l'Athabasca, dans le nord-ouest de la Saskatchewan et le nord-est de l'Alberta, est l'un des producteurs d'uranium les plus prolifiques au monde provenant de gisements à haute teneur de type discordant, et est le seul producteur d'uranium au Canada. Une volumineuse base de données sur la géologie, les forages et les propriétés physiques est disponible. En collaboration avec des entreprises privées, Lithoprobe a démontré la valeur de la sismique à haute résolution pour l'imagerie de la discordance et des failles associées aux gisements. Le dernier exemple est celui d'une expérience de sismique réflexion unique visant à représenter le dyke de kimberlite diamantifère du lac Snap dans la province des Esclaves, dans les Territoires du Nord-Ouest. L'occasion d'étudier des échantillons géologiques du dyke de kimberlite, et des roches environnantes, et de valider les résultats sismiques à l'aide des données de forage mises à disposition par les deux partenaires privés, a permis une étude de cas très fructueuse.
APA, Harvard, Vancouver, ISO, and other styles
38

Bakhuis, Dennis, Rodrigo Ezeta, Pim A. Bullee, Alvaro Marin, Detlef Lohse, Chao Sun, and Sander G. Huisman. "Catastrophic Phase Inversion in High-Reynolds-Number Turbulent Taylor-Couette Flow." Physical Review Letters 126, no. 6 (February 11, 2021). http://dx.doi.org/10.1103/physrevlett.126.064501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pougatch, Konstantin, and Martha Salcudean. "Computational Investigation of Liquid Spray Dispersion Modification by Conical Nozzle Attachments." Journal of Fluids Engineering 133, no. 3 (March 1, 2011). http://dx.doi.org/10.1115/1.4003590.

Full text
Abstract:
Liquid spray characteristics such as the droplet size and dispersion angle are determined by the atomizer design and the physical properties of the liquid and surrounding gas. One of the options to change these characteristics is to attach an especially designed piece to the nozzle exit. While these attachments can have a variety of shapes, we chose a conical geometry to exploit its axial symmetry and, at the same time, obtain the results that can be generalized to other configurations. Thus, we investigate an addition of the conically shaped attachment to the premixed gas-assisted high-pressure atomizer with the previously developed numerical model. This is a two-fluid Eulerian-Eulerian model with a catastrophic phase inversion that was developed for compressible gas-liquid mixtures and can be applied to both the flow through the nozzle-atomizer and to the dispersion of the spray. The model also accounts for the break-up and coalescence effects of bubbles and droplets. Our investigation reveals that the conical nozzle attachments act as spray limiters by reducing the natural expansion angle of a spray. Also, the droplets produced by the nozzle with a conical addition tend to be larger than the ones obtained with a stand alone nozzle. The largest droplets are generated by the smallest attachment angle considered, 10 deg. With the increase of the angle, the spraying characteristics become closer to those of the stand alone nozzle. It can be concluded that the conical shape of the attachments with a relatively small angle may be used when higher jet penetration and lower dispersion are desirable. The attachments with larger angles do not offer a substantial difference from the stand alone nozzle. Another important conclusion is that the dispersion of the jet is determined by the radial momentum transferred to the liquid before or immediately after the phase inversion takes place. Thus, for improved dispersion, the area where the atomization is taking place should not be restricted.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography