Academic literature on the topic 'Categorías abelianas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Categorías abelianas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Categorías abelianas"
Pop, Flaviu. "Coplexes in abelian categories." Studia Universitatis Babes-Bolyai Matematica 62, no. 1 (March 1, 2017): 3–13. http://dx.doi.org/10.24193/subbmath.2017.0001.
Full textEbrahimi, Ramin, and Alireza Nasr-Isfahani. "Representation of n-abelian categories in abelian categories." Journal of Algebra 563 (December 2020): 352–75. http://dx.doi.org/10.1016/j.jalgebra.2020.07.010.
Full textZHENG, QILIAN, and JIAQUN WEI. "QUOTIENT CATEGORIES OF n-ABELIAN CATEGORIES." Glasgow Mathematical Journal 62, no. 3 (September 30, 2019): 673–705. http://dx.doi.org/10.1017/s0017089519000417.
Full textJanelidze, George, László Márki, and Walter Tholen. "Semi-abelian categories." Journal of Pure and Applied Algebra 168, no. 2-3 (March 2002): 367–86. http://dx.doi.org/10.1016/s0022-4049(01)00103-7.
Full textLyubashenko, V. "Ribbon Abelian Categories as Modular Categories." Journal of Knot Theory and Its Ramifications 05, no. 03 (June 1996): 311–403. http://dx.doi.org/10.1142/s0218216596000229.
Full textGillespie, James. "Hereditary abelian model categories." Bulletin of the London Mathematical Society 48, no. 6 (September 13, 2016): 895–922. http://dx.doi.org/10.1112/blms/bdw051.
Full textChen, Xiao-Wu, and Henning Krause. "Expansions of abelian categories." Journal of Pure and Applied Algebra 215, no. 12 (December 2011): 2873–83. http://dx.doi.org/10.1016/j.jpaa.2011.04.008.
Full textKato, Toyonori, and Tamotsu Ikeyama. "Localization in Abelian Categories." Communications in Algebra 18, no. 8 (January 1990): 2519–40. http://dx.doi.org/10.1080/00927879008824036.
Full textRichman, Fred. "Pre-abelian Clan Categories." Rocky Mountain Journal of Mathematics 32, no. 4 (December 2002): 1605–16. http://dx.doi.org/10.1216/rmjm/1181070043.
Full textZhou, Panyue, and Bin Zhu. "n-Abelian quotient categories." Journal of Algebra 527 (June 2019): 264–79. http://dx.doi.org/10.1016/j.jalgebra.2019.03.007.
Full textDissertations / Theses on the topic "Categorías abelianas"
González, Férez Juan de la Cruz. "La Categoría de Módulos Firmes." Doctoral thesis, Universidad de Murcia, 2008. http://hdl.handle.net/10803/10962.
Full textLet R a nonunital ring. A module M is set to be firm if it is isomorphic in the canonical way to the tensor product about R of R by M. The category of firm modules generalizes the usual category of unital modules for a unital ring.It was a open problem if the category of firm modules is an abelian category. We prove that, in general, this category is not abelian, and we find a ring and a monomorphism that is not a kernel in this category. The category of firm modules has been estudied in detail. We have deeply analyzed several properties equivalent to be abelian, and some others with weaker restrictions that are not satisfied in general
Pinto, Tobias Fernando. "Correspondência entre categoria modelo e pares de cotorsão de categorias abelianas e exatas." Universidade Federal de Viçosa, 2017. http://www.locus.ufv.br/handle/123456789/11425.
Full textMade available in DSpace on 2017-07-21T16:14:18Z (GMT). No. of bitstreams: 1 texto completo.pdf: 815357 bytes, checksum: 2a68f912958bd6f8757752e5431c5454 (MD5) Previous issue date: 2017-02-23
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Nesta dissertação estudamos principalmente a correspondência entre categoria modelo e pares de cotorsão em categorias abeliana e exata. A correspondência de Hovey para categoria abeliana é adaptada para categoria exata. E isto é possível quando a categoria exata é fracamente idempotente completa. Esta correspondência nos permite encontrar estruturas modelos através de pares de cotorsão. Também estudamos as categorias Grothendieck e exata do tipo Grothendieck que são categorias abeliana e exata, respectivamente, que nos fornecem alguns exemplos de pares de cotorção.
Correspondece between Model Categories and Cotorsion Pairs of Abelian and Exact Category. Adiviser: Sônia Maria Fernandes.. In this dissertation we studied mainly the correspondence between model category and cotorsion pairs in abelian and exact categories. Hovey’s correspondence to abelian category is adapted to exact category. And it is possible when an exact category is weakly idempotent complete. This correspondence allows us to find model structures through cotorsion pairs. Also we study like Grothendieck categories and exact categories of Grothendieck type, which are abelian and exact categories, respectively, which provide us with some examples of cotorsion pairs.
Pettersson, Samuel. "Additive, abelian, and exact categories." Thesis, Uppsala universitet, Algebra och geometri, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-312384.
Full textSteine, Asgeir Bertelsen. "STABILITY STRUCTURES FOR ABELIAN AND TRIANGULATED CATEGORIES." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9603.
Full textThis thesis is intended to present some developments in the theory of algebraic stability. The main topics are stability for triangulated categories and the distinguished slopes of Hille and de la Pena for quiver representations.
McBride, Aaron. "Grothendieck Group Decategorifications and Derived Abelian Categories." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33000.
Full textAbdulwahid, Adnan Hashim. "Cofree objects in the categories of comonoids in certain abelian monoidal categories." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2032.
Full textAhlsén, Daniel. "Classifying Categories : The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories." Thesis, Uppsala universitet, Algebra och geometri, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352383.
Full textShepherd, James A. "Coherent sheaves and deformation theory in abelian categories." Thesis, University of Bristol, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412375.
Full textBridge, Philip Owen. "Essentially algebraic theories and localizations in toposes and abelian categories." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/essentially-algebraic-theories-and-localizations-in-toposes-and-abelian-categories(2db96543-4a42-49fe-8741-ffa1ff249b12).html.
Full textGoedecke, Julia. "Three viewpoints on semi-abelian homology." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/224397.
Full textBooks on the topic "Categorías abelianas"
Borceux, Francis. Mal'cev, protomodular, homological and semi-abelian categories. Dordrecht: Kluwer Academic, 2004.
Find full text1942-, Reiten Idun, and Smalø Sverre O, eds. Tilting in Abelian categories and quasitilted algebras. Providence, R.I: American Mathematical Society, 1996.
Find full textBorceux, Francis, and Dominique Bourn. Mal’cev, Protomodular, Homological and Semi-Abelian Categories. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-1962-3.
Full textDefinable additive categories: Purity and model theory. Providence, R.I: American Mathematical Society, 2011.
Find full textBorceux, Francis. Handbook of categorical algebra 2: Categories and structures. Cambridge [England]: Cambridge University Press, 1994.
Find full textBernstein, Joseph. Equivariant sheaves and functors. Berlin: Springer-Verlag, 1994.
Find full textVerdier, Jean Louis. Des catégories dérivées des catégories abéliennes. Paris: Société mathématique de France, 1996.
Find full text1943-, Schapira Pierre, ed. Ind-sheaves. Paris: Société mathématique de France, 2001.
Find full textA non-Hausdorff completion: The Abelian category of C-complete left modules over a topological ring. New Jersey: World Scientific, 2015.
Find full textPantev, Tony. Stacks and catetories in geometry, topology, and algebra: CATS4 Conference Higher Categorical Structures and Their Interactions with Algebraic Geometry, Algebraic Topology and Algebra, July 2-7, 2012, CIRM, Luminy, France. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBook chapters on the topic "Categorías abelianas"
Holme, Audun. "Abelian Categories." In A Royal Road to Algebraic Geometry, 165–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-19225-8_8.
Full textBorceux, Francis, and Dominique Bourn. "Semi-abelian categories." In Mal’cev, Protomodular, Homological and Semi-Abelian Categories, 319–43. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-1962-3_6.
Full textPenner, Robert. "Abelian and Additive Categories." In Lecture Notes in Mathematics, 51–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43996-5_10.
Full textHanratty, Chantelle. "Abelian and Triangulated Categories." In Springer Proceedings in Mathematics & Statistics, 3–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91626-2_1.
Full textZimmermann, Alexander. "Abelian and Triangulated Categories." In Algebra and Applications, 259–385. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07968-4_3.
Full textBorceux, Francis, and Dominique Bourn. "Mal’cev categories." In Mal’cev, Protomodular, Homological and Semi-Abelian Categories, 125–228. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-1962-3_3.
Full textBorceux, Francis, and Dominique Bourn. "Protomodular categories." In Mal’cev, Protomodular, Homological and Semi-Abelian Categories, 229–71. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-1962-3_4.
Full textBorceux, Francis, and Dominique Bourn. "Homological categories." In Mal’cev, Protomodular, Homological and Semi-Abelian Categories, 273–317. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-1962-3_5.
Full textBorceux, Francis, and Dominique Bourn. "Strongly protomodular categories." In Mal’cev, Protomodular, Homological and Semi-Abelian Categories, 345–70. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-1962-3_7.
Full textBorceux, Francis, and Dominique Bourn. "Essentially affine categories." In Mal’cev, Protomodular, Homological and Semi-Abelian Categories, 371–98. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-1962-3_8.
Full textConference papers on the topic "Categorías abelianas"
Mucuk, Osman, and Serap Demir. "Internal categories in the category of semi abelian algebras." In FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042238.
Full text