To see the other types of publications on this topic, follow the link: Categorías abelianas.

Dissertations / Theses on the topic 'Categorías abelianas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Categorías abelianas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

González, Férez Juan de la Cruz. "La Categoría de Módulos Firmes." Doctoral thesis, Universidad de Murcia, 2008. http://hdl.handle.net/10803/10962.

Full text
Abstract:
Sea R un anillo asociativo no unitario. Un módulo M se dice firme si es isomorfo de forma canónica al producto tensorial sobre R de R por M. La categoría formada por los módulos firmes es una generalización natural de la categoría de módulos unitarios para anillos unitarios.Una propiedad fundamental y que permanecía como problema abierto era la abelianidad de la categoría de módulos firmes. En la memoria se prueba que en general la categoría no es abeliana, mostrando un ejemplo de anillo asociativo R y de un monomorfismo que no es núcleo de ningún otro morfismo de la categoría. Se realiza un estudio profundo de la categoría de módulos firmes y de multitud de propiedades equivalentes a la abelianidad, así como otras propiedades más débiles y que tampoco se cumplen en general.
Let R a nonunital ring. A module M is set to be firm if it is isomorphic in the canonical way to the tensor product about R of R by M. The category of firm modules generalizes the usual category of unital modules for a unital ring.It was a open problem if the category of firm modules is an abelian category. We prove that, in general, this category is not abelian, and we find a ring and a monomorphism that is not a kernel in this category. The category of firm modules has been estudied in detail. We have deeply analyzed several properties equivalent to be abelian, and some others with weaker restrictions that are not satisfied in general
APA, Harvard, Vancouver, ISO, and other styles
2

Pinto, Tobias Fernando. "Correspondência entre categoria modelo e pares de cotorsão de categorias abelianas e exatas." Universidade Federal de Viçosa, 2017. http://www.locus.ufv.br/handle/123456789/11425.

Full text
Abstract:
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2017-07-21T16:14:18Z No. of bitstreams: 1 texto completo.pdf: 815357 bytes, checksum: 2a68f912958bd6f8757752e5431c5454 (MD5)
Made available in DSpace on 2017-07-21T16:14:18Z (GMT). No. of bitstreams: 1 texto completo.pdf: 815357 bytes, checksum: 2a68f912958bd6f8757752e5431c5454 (MD5) Previous issue date: 2017-02-23
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Nesta dissertação estudamos principalmente a correspondência entre categoria modelo e pares de cotorsão em categorias abeliana e exata. A correspondência de Hovey para categoria abeliana é adaptada para categoria exata. E isto é possível quando a categoria exata é fracamente idempotente completa. Esta correspondência nos permite encontrar estruturas modelos através de pares de cotorsão. Também estudamos as categorias Grothendieck e exata do tipo Grothendieck que são categorias abeliana e exata, respectivamente, que nos fornecem alguns exemplos de pares de cotorção.
Correspondece between Model Categories and Cotorsion Pairs of Abelian and Exact Category. Adiviser: Sônia Maria Fernandes.. In this dissertation we studied mainly the correspondence between model category and cotorsion pairs in abelian and exact categories. Hovey’s correspondence to abelian category is adapted to exact category. And it is possible when an exact category is weakly idempotent complete. This correspondence allows us to find model structures through cotorsion pairs. Also we study like Grothendieck categories and exact categories of Grothendieck type, which are abelian and exact categories, respectively, which provide us with some examples of cotorsion pairs.
APA, Harvard, Vancouver, ISO, and other styles
3

Pettersson, Samuel. "Additive, abelian, and exact categories." Thesis, Uppsala universitet, Algebra och geometri, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-312384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Steine, Asgeir Bertelsen. "STABILITY STRUCTURES FOR ABELIAN AND TRIANGULATED CATEGORIES." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9603.

Full text
Abstract:

This thesis is intended to present some developments in the theory of algebraic stability. The main topics are stability for triangulated categories and the distinguished slopes of Hille and de la Pena for quiver representations.

APA, Harvard, Vancouver, ISO, and other styles
5

McBride, Aaron. "Grothendieck Group Decategorifications and Derived Abelian Categories." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33000.

Full text
Abstract:
The Grothendieck group is an interesting invariant of an exact category. It induces a decategorication from the category of essentially small exact categories (whose morphisms are exact functors) to the category of abelian groups. Similarly, the triangulated Grothendieck group induces a decategorication from the category of essentially small triangulated categories (whose morphisms are triangulated functors) to the category of abelian groups. In the case of an essentially small abelian category, its Grothendieck group and the triangulated Grothendieck group of its bounded derived category are isomorphic as groups via a natural map. Because of this, homological algebra and derived functors become useful in surprising ways. This thesis is an expository work that provides an overview of the theory of Grothendieck groups with respect to these decategorications.
APA, Harvard, Vancouver, ISO, and other styles
6

Abdulwahid, Adnan Hashim. "Cofree objects in the categories of comonoids in certain abelian monoidal categories." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2032.

Full text
Abstract:
We investigate cofree coalgebras, and limits and colimits of coalgebras in some abelian monoidal categories of interest, such as bimodules over a ring, and modules and comodules over a bialgebra or Hopf algebra. We nd concrete generators for the categories of coalgebras in these monoidal categories, and explicitly construct cofree coalgebras, products and limits of coalgebras in each case. This answers an open question in [4] on the existence of a cofree coring, and constructs the cofree (co)module coalgebra on a B-(co)module, for a bialgebra B.
APA, Harvard, Vancouver, ISO, and other styles
7

Ahlsén, Daniel. "Classifying Categories : The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories." Thesis, Uppsala universitet, Algebra och geometri, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shepherd, James A. "Coherent sheaves and deformation theory in abelian categories." Thesis, University of Bristol, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bridge, Philip Owen. "Essentially algebraic theories and localizations in toposes and abelian categories." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/essentially-algebraic-theories-and-localizations-in-toposes-and-abelian-categories(2db96543-4a42-49fe-8741-ffa1ff249b12).html.

Full text
Abstract:
The main theme of this thesis is the parallel between results in topos theory and the theory of additive functor categories. In chapter 2, we provide a general overview of the topics used in the rest of the thesis. Locally finitely presentable categories are introduced, and their expression as essentially algebraic categories is explained. The theory of localization for toposes and abelian categories is introduced, and it is shown how these localizations correspond to theories in appropriate logics. In chapter 3, we look at conditions under which the category of modules for a ring object R in a topos E is locally finitely presented, or locally coherent. We show that if E is locally finitely presented, then the category of modules is also; however we show that far stronger conditions are required for the category of modules to be locally coherent. In chapter 4, we show that the Krull-Gabriel dimension of a locally coherent abelian category C is equal to the socle length of the lattice of regular localizations of C. This is used to make an analogous definition of Krull-Gabriel dimension for regular toposes, and the value of this dimension is calculated for the classifying topos of the theory of G-sets, where G is a cyclic group admitting no elements of square order. In chapter 5, we introduce a notion of strong flatness for algebraic categories (in the sense studied by Adamek, Rosickey and Vitale). We show that for a monoid M of finite geometric type, or more generally a small category C with the corresponding condition, the category of M-acts, or more generally the category of set-valued functors on C, has strongly flat covers.
APA, Harvard, Vancouver, ISO, and other styles
10

Goedecke, Julia. "Three viewpoints on semi-abelian homology." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/224397.

Full text
Abstract:
The main theme of the thesis is to present and compare three different viewpoints on semi-abelian homology, resulting in three ways of defining and calculating homology objects. Any two of these three homology theories coincide whenever they are both defined, but having these different approaches available makes it possible to choose the most appropriate one in any given situation, and their respective strengths complement each other to give powerful homological tools. The oldest viewpoint, which is borrowed from the abelian context where it was introduced by Barr and Beck, is comonadic homology, generating projective simplicial resolutions in a functorial way. This concept only works in monadic semi-abelian categories, such as semi-abelian varieties, including the categories of groups and Lie algebras. Comonadic homology can be viewed not only as a functor in the first entry, giving homology of objects for a particular choice of coefficients, but also as a functor in the second variable, varying the coefficients themselves. As such it has certain universality properties which single it out amongst theories of a similar kind. This is well-known in the setting of abelian categories, but here we extend this result to our semi-abelian context. Fixing the choice of coefficients again, the question naturally arises of how the homology theory depends on the chosen comonad. Again it is well-known in the abelian case that the theory only depends on the projective class which the comonad generates. We extend this to the semi-abelian setting by proving a comparison theorem for simplicial resolutions. This leads to the result that any two projective simplicial resolutions, the definition of which requires slightly more care in the semi-abelian setting, give rise to the same homology. Thus again the homology theory only depends on the projective class. The second viewpoint uses Hopf formulae to define homology, and works in a non-monadic setting; it only requires a semi-abelian category with enough projectives. Even this slightly weaker setting leads to strong results such as a long exact homology sequence, the Everaert sequence, which is a generalised and extended version of the Stallings-Stammbach sequence known for groups. Hopf formulae use projective presentations of objects, and this is closer to the abelian philosophy of using any projective resolution, rather than a special functorial one generated by a comonad. To define higher Hopf formulae for the higher homology objects the use of categorical Galois theory is crucial. This theory allows a choice of Birkhoff subcategory to generate a class of central extensions, which play a big role not only in the definition via Hopf formulae but also in our third viewpoint. This final and new viewpoint we consider is homology via satellites or pointwise Kan extensions. This makes the universal properties of the homology objects apparent, giving a useful new tool in dealing with statements about homology. The driving motivation behind this point of view is the Everaert sequence mentioned above. Janelidze's theory of generalised satellites enables us to use the universal properties of the Everaert sequence to interpret homology as a pointwise Kan extension, or limit. In the first instance, this allows us to calculate homology step by step, and it removes the need for projective objects from the definition. Furthermore, we show that homology is the limit of the diagram consisting of the kernels of all central extensions of a given object, which forges a strong connection between homology and cohomology. When enough projectives are available, we can interpret homology as calculating fixed points of endomorphisms of a given projective presentation.
APA, Harvard, Vancouver, ISO, and other styles
11

Krämer, Thomas [Verfasser], and Rainer [Akademischer Betreuer] Weissauer. "Tannakian Categories of Perverse Sheaves on Abelian Varieties / Thomas Krämer ; Betreuer: Rainer Weissauer." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://d-nb.info/1177249111/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Michael, Ifeanyi Friday. "On a unified categorical setting for homological diagram lemmas." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18085.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2011.
ENGLISH ABSTRACT: Some of the diagram lemmas of Homological Algebra, classically known for abelian categories, are not characteristic of the abelian context; this naturally leads to investigations of those non-abelian categories in which these diagram lemmas may hold. In this Thesis we attempt to bring together two different directions of such investigations; in particular, we unify the five lemma from the context of homological categories due to F. Borceux and D. Bourn, and the five lemma from the context of modular semi-exact categories in the sense of M. Grandis.
AFRIKAANSE OPSOMMING: Verskeie diagram lemmata van Homologiese Algebra is aanvanklik ontwikkel in die konteks van abelse kategorieë, maar geld meer algemeen as dit behoorlik geformuleer word. Dit lei op ’n natuurlike wyse na ’n ondersoek van ander kategorieë waar hierdie lemmas ook geld. In hierdie tesis bring ons twee moontlike rigtings van ondersoek saam. Dit maak dit vir ons moontlik om die vyf-lemma in die konteks van homologiese kategoieë, deur F. Borceux en D. Bourn, en vyflemma in die konteks van semi-eksakte kategorieë, in die sin van M. Grandis, te verenig.
APA, Harvard, Vancouver, ISO, and other styles
13

Mathieu, Philippe. "Abelian BF theory." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY066/document.

Full text
Abstract:
Cette thèse porte sur la théorie BF abélienne sur une variété fermée de dimen-sion 3. Elle est formulée en termes de classes de jauge qui sont en fait des classes de cohomologie de Deligne-Beilinson. Cette formulation offre la possibilité d’extraire les quantités mathématiquement pertinentes d’intégrales fonctionnelles formelles. La fonction de partition et les valeurs moyennes d’observables sont ainsi calculées. Ces calculs complètent ceux effectués pour la théorie de Chern-Simons abélienne et ces résultats sont liés entre eux de même qu’avec les invariants de Reshetikhin-Turaev et de Turaev-Viro abéliens. Deux extensions de ce travail sont discutées. Premièrement, une approche graphique est proposée afin de traiter l’invariant classique SU(N) de Chern-Simons. Deuxièmement, une interprétation géométrique de la procédure de fixation de jauge est présentée pour la théorie de Chern-Simons abélienne dans mathbb{R}^{4l+3}
In this study, the abelian BF theory is considered on a closed manifold of di-mension 3. It is formulated in terms of gauge classes which appear to be Deligne-Beilinson cohomology classes. Such a formulation offers the possibility to extract the quantities mathematically relevant quantities from formal functional integrals. This way, the partition function and the expectation value of observables are computed. Those computations complete the ones performed with the abelian Chern-Simons theory and the results appear to be connected together and also with abelian Reshetikhin-Turaev and Turaev-Viro topological invariants. Two extensions of this study are also discussed. Firstly, a graphical approach is proposed to deal with the SU(N) classical Chern-Simons invariant. Secondly, a geometric interpretation of the gauge fixing procedure is presented for the abelian Chern-Simons theory in mathbb{R}^{4l+3}
APA, Harvard, Vancouver, ISO, and other styles
14

Burton, Cynthia L. "Hopf algebras and Dieudonné modules /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dean, Samuel. "Dualities and finitely presented functors." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/dualities-and-finitely-presented-functors(8ff515ee-6579-410d-88c1-ea4236d704f9).html.

Full text
Abstract:
We investigate various relationships between categories of functors. The major examples are given by extending some duality to a larger structure, such as an adjunction or a recollement of abelian categories. We prove a theorem which provides a method of constructing recollements which uses 0-th derived functors. We will show that the hypotheses of this theorem are very commonly satisfied by giving many examples. In our most important example we show that the well-known Auslander-Gruson-Jensen equivalence extends to a recollement. We show that two recollements, both arising from different characterisations of purity, are strongly related to each other via a commutative diagram. This provides a structural explanation for the equivalence between two functorial characterisations of purity for modules. We show that the Auslander-Reiten formulas are a consequence of this commutative diagram. We define and characterise the contravariant functors which arise from a pp-pair. When working over an artin algebra, this provides a contravariant analogue of the well-known relationship between pp-pairs and covariant functors. We show that some of these results can be generalised to studying contravariant functors on locally finitely presented categories whose category of finitely presented objects is a dualising variety.
APA, Harvard, Vancouver, ISO, and other styles
16

Anel, Mathieu. "Champs de modules des catégories linéaires et abéliennes." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00085627.

Full text
Abstract:
Les catégories linéaires ont naturellement plusieurs notions d'identification : l'isomorphie, l'équivalence de catégories et l'équivalence de Morita. On construit les champs classifiant les catégories pour ces trois structures ($\ukcatiso$, $\ukcateq$, $\ukcatmor$) ainsi que le champ classifiant les catégories abéliennes ($\ukab$), l'originalité étant que les trois derniers champs sont des champs supérieurs.

Le résultat principal de la thèse est que, sous des conditions de finitude des objets classifiés, ces champs sont géométriques au sens de C.~Simpson. En particulier, on trouve que les complexes tangents de ces champs en une catégorie $C$, i.e. les objets classifiant les déformations au premier ordre de $C$, sont donnés par des tronqués du complexe de cohomologie de Hochschild de $C$.

En plus, il existe une suite naturelle de morphismes surjectifs de champs :
$$\ukcatiso \tto \ukcateq \tto \ukcatmor \tto \ukab$$
dont on montre que celui du milieu est étale, et celui de droite une équivalence.
APA, Harvard, Vancouver, ISO, and other styles
17

Stirling, Spencer. "Abelian Chern-Simons theory with toral gauge group, modular tensor categories, and group categories." 2008. http://hdl.handle.net/2152/17795.

Full text
Abstract:
Classical and quantum Chern-Simons with gauge group U(1)N were classified by Belov and Moore in [BM05]. They studied both ordinary topological quantum field theories as well as spin theories. On the other hand a correspondence is well known between ordinary (2 + 1)-dimensional TQFTs and modular tensor categories. We study group categories and extend them slightly to produce modular tensor categories that correspond to toral Chern-Simons. Group categories have been widely studied in other contexts in the literature [FK93],[Qui99],[JS93],[ENO05],[DGNO07]. The main result is a proof that the associated projective representation of the mapping class group is isomorphic to the one from toral Chern-Simons. We also remark on an algebraic theorem of Nikulin that is used in this paper.
text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography