Dissertations / Theses on the topic 'Categorías abelianas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Categorías abelianas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
González, Férez Juan de la Cruz. "La Categoría de Módulos Firmes." Doctoral thesis, Universidad de Murcia, 2008. http://hdl.handle.net/10803/10962.
Full textLet R a nonunital ring. A module M is set to be firm if it is isomorphic in the canonical way to the tensor product about R of R by M. The category of firm modules generalizes the usual category of unital modules for a unital ring.It was a open problem if the category of firm modules is an abelian category. We prove that, in general, this category is not abelian, and we find a ring and a monomorphism that is not a kernel in this category. The category of firm modules has been estudied in detail. We have deeply analyzed several properties equivalent to be abelian, and some others with weaker restrictions that are not satisfied in general
Pinto, Tobias Fernando. "Correspondência entre categoria modelo e pares de cotorsão de categorias abelianas e exatas." Universidade Federal de Viçosa, 2017. http://www.locus.ufv.br/handle/123456789/11425.
Full textMade available in DSpace on 2017-07-21T16:14:18Z (GMT). No. of bitstreams: 1 texto completo.pdf: 815357 bytes, checksum: 2a68f912958bd6f8757752e5431c5454 (MD5) Previous issue date: 2017-02-23
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Nesta dissertação estudamos principalmente a correspondência entre categoria modelo e pares de cotorsão em categorias abeliana e exata. A correspondência de Hovey para categoria abeliana é adaptada para categoria exata. E isto é possível quando a categoria exata é fracamente idempotente completa. Esta correspondência nos permite encontrar estruturas modelos através de pares de cotorsão. Também estudamos as categorias Grothendieck e exata do tipo Grothendieck que são categorias abeliana e exata, respectivamente, que nos fornecem alguns exemplos de pares de cotorção.
Correspondece between Model Categories and Cotorsion Pairs of Abelian and Exact Category. Adiviser: Sônia Maria Fernandes.. In this dissertation we studied mainly the correspondence between model category and cotorsion pairs in abelian and exact categories. Hovey’s correspondence to abelian category is adapted to exact category. And it is possible when an exact category is weakly idempotent complete. This correspondence allows us to find model structures through cotorsion pairs. Also we study like Grothendieck categories and exact categories of Grothendieck type, which are abelian and exact categories, respectively, which provide us with some examples of cotorsion pairs.
Pettersson, Samuel. "Additive, abelian, and exact categories." Thesis, Uppsala universitet, Algebra och geometri, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-312384.
Full textSteine, Asgeir Bertelsen. "STABILITY STRUCTURES FOR ABELIAN AND TRIANGULATED CATEGORIES." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9603.
Full textThis thesis is intended to present some developments in the theory of algebraic stability. The main topics are stability for triangulated categories and the distinguished slopes of Hille and de la Pena for quiver representations.
McBride, Aaron. "Grothendieck Group Decategorifications and Derived Abelian Categories." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33000.
Full textAbdulwahid, Adnan Hashim. "Cofree objects in the categories of comonoids in certain abelian monoidal categories." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2032.
Full textAhlsén, Daniel. "Classifying Categories : The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories." Thesis, Uppsala universitet, Algebra och geometri, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352383.
Full textShepherd, James A. "Coherent sheaves and deformation theory in abelian categories." Thesis, University of Bristol, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412375.
Full textBridge, Philip Owen. "Essentially algebraic theories and localizations in toposes and abelian categories." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/essentially-algebraic-theories-and-localizations-in-toposes-and-abelian-categories(2db96543-4a42-49fe-8741-ffa1ff249b12).html.
Full textGoedecke, Julia. "Three viewpoints on semi-abelian homology." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/224397.
Full textKrämer, Thomas [Verfasser], and Rainer [Akademischer Betreuer] Weissauer. "Tannakian Categories of Perverse Sheaves on Abelian Varieties / Thomas Krämer ; Betreuer: Rainer Weissauer." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://d-nb.info/1177249111/34.
Full textMichael, Ifeanyi Friday. "On a unified categorical setting for homological diagram lemmas." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18085.
Full textENGLISH ABSTRACT: Some of the diagram lemmas of Homological Algebra, classically known for abelian categories, are not characteristic of the abelian context; this naturally leads to investigations of those non-abelian categories in which these diagram lemmas may hold. In this Thesis we attempt to bring together two different directions of such investigations; in particular, we unify the five lemma from the context of homological categories due to F. Borceux and D. Bourn, and the five lemma from the context of modular semi-exact categories in the sense of M. Grandis.
AFRIKAANSE OPSOMMING: Verskeie diagram lemmata van Homologiese Algebra is aanvanklik ontwikkel in die konteks van abelse kategorieë, maar geld meer algemeen as dit behoorlik geformuleer word. Dit lei op ’n natuurlike wyse na ’n ondersoek van ander kategorieë waar hierdie lemmas ook geld. In hierdie tesis bring ons twee moontlike rigtings van ondersoek saam. Dit maak dit vir ons moontlik om die vyf-lemma in die konteks van homologiese kategoieë, deur F. Borceux en D. Bourn, en vyflemma in die konteks van semi-eksakte kategorieë, in die sin van M. Grandis, te verenig.
Mathieu, Philippe. "Abelian BF theory." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY066/document.
Full textIn this study, the abelian BF theory is considered on a closed manifold of di-mension 3. It is formulated in terms of gauge classes which appear to be Deligne-Beilinson cohomology classes. Such a formulation offers the possibility to extract the quantities mathematically relevant quantities from formal functional integrals. This way, the partition function and the expectation value of observables are computed. Those computations complete the ones performed with the abelian Chern-Simons theory and the results appear to be connected together and also with abelian Reshetikhin-Turaev and Turaev-Viro topological invariants. Two extensions of this study are also discussed. Firstly, a graphical approach is proposed to deal with the SU(N) classical Chern-Simons invariant. Secondly, a geometric interpretation of the gauge fixing procedure is presented for the abelian Chern-Simons theory in mathbb{R}^{4l+3}
Burton, Cynthia L. "Hopf algebras and Dieudonné modules /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5808.
Full textDean, Samuel. "Dualities and finitely presented functors." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/dualities-and-finitely-presented-functors(8ff515ee-6579-410d-88c1-ea4236d704f9).html.
Full textAnel, Mathieu. "Champs de modules des catégories linéaires et abéliennes." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00085627.
Full textLe résultat principal de la thèse est que, sous des conditions de finitude des objets classifiés, ces champs sont géométriques au sens de C.~Simpson. En particulier, on trouve que les complexes tangents de ces champs en une catégorie $C$, i.e. les objets classifiant les déformations au premier ordre de $C$, sont donnés par des tronqués du complexe de cohomologie de Hochschild de $C$.
En plus, il existe une suite naturelle de morphismes surjectifs de champs :
$$\ukcatiso \tto \ukcateq \tto \ukcatmor \tto \ukab$$
dont on montre que celui du milieu est étale, et celui de droite une équivalence.
Stirling, Spencer. "Abelian Chern-Simons theory with toral gauge group, modular tensor categories, and group categories." 2008. http://hdl.handle.net/2152/17795.
Full texttext