Dissertations / Theses on the topic 'Category theory; homological algebra'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Category theory; homological algebra.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mirmohades, Djalal. "N-complexes and Categorification." Doctoral thesis, Uppsala universitet, Algebra och geometri, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260111.
Full textGoedecke, Julia. "Three viewpoints on semi-abelian homology." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/224397.
Full textSteinberg, David. "Homological Properties of Standard KLR Modules." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22292.
Full textVanderpool, Ruth. "Non-existence of a stable homotopy category for p-complete Abelian groups /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10244.
Full textPallekonda, Seshendra. "Bounded category of an exact category." Diss., Online access via UMI:, 2008.
Find full textJunod, Fabien. "Unstable Adams operations on ρ-local compact groups." Thesis, University of Aberdeen, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531931.
Full textFong, Brendan. "The algebra of open and interconnected systems." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:79a23c8c-81a5-4cf1-a108-29ba7dfd8850.
Full textBridge, Philip Owen. "Essentially algebraic theories and localizations in toposes and abelian categories." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/essentially-algebraic-theories-and-localizations-in-toposes-and-abelian-categories(2db96543-4a42-49fe-8741-ffa1ff249b12).html.
Full textNave, Lee Stewart. "The cohomology of finite subgroups of Morava stabilizer groups and Smith-Toda complexes /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5803.
Full textKelly, Jack. "Exact categories, Koszul duality, and derived analytic algebra." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b.
Full textChasen, Lee A. "The cohomology rings of classical Brauer tree algebras." Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/38572.
Full textNyobe, Likeng Samuel Aristide. "Heisenberg Categorification and Wreath Deligne Category." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41167.
Full textKunhardt, Walter. "On infravacua and the superselection structure of theories with massless particles." Doctoral thesis, [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962816159.
Full textJonsson, Jakob. "Simplicial complexes of graphs /." Berlin [u.a.] : Springer, 2008. http://dx.doi.org/10.1007/978-3-540-75858-7.
Full textMcDonald, Terry Lynn. "Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions." Texas A&M University, 2003. http://hdl.handle.net/1969.1/3915.
Full textMeyer, David Christopher. "Universal deformation rings and fusion." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1883.
Full textStigner, Carl. "Hopf and Frobenius algebras in conformal field theory." Doctoral thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-14456.
Full textForsberg, Love. "Semigroups, multisemigroups and representations." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-327270.
Full textde, Boer Menno. "A Proof and Formalization of the Initiality Conjecture of Dependent Type Theory." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-181640.
Full textLicentiate defense over Zoom.
Pressland, Matthew. "Frobenius categorification of cluster algebras." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678852.
Full textWeighill, Thomas. "Bifibrational duality in non-abelian algebra and the theory of databases." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96125.
Full textENGLISH ABSTRACT: In this thesis we develop a self-dual categorical approach to some topics in non-abelian algebra, which is based on replacing the framework of a category with that of a category equipped with a functor to it. We also make some first steps towards a possible link between this theory and the theory of databases in computer science. Both of these theories are based around the study of Grothendieck bifibrations and their generalisations. The main results in this thesis concern correspondences between certain structures on a category which are relevant to the study of categories of non-abelian group-like structures, and functors over that category. An investigation of these correspondences leads to a system of dual axioms on a functor, which can be considered as a solution to the proposal of Mac Lane in his 1950 paper "Duality for Groups" that a self-dual setting for formulating and proving results for groups be found. The part of the thesis concerned with the theory of databases is based on a recent approach by Johnson and Rosebrugh to views of databases and the view update problem.
AFRIKAANSE OPSOMMING: In hierdie tesis word ’n self-duale kategoriese benadering tot verskeie onderwerpe in nie-abelse algebra ontwikkel, wat gebaseer is op die vervanging van die raamwerk van ’n kategorie met dié van ’n kategorie saam met ’n funktor tot die kategorie. Ons neem ook enkele eerste stappe in die rigting van ’n skakel tussen hierdie teorie and die teorie van databasisse in rekenaarwetenskap. Beide hierdie teorieë is gebaseer op die studie van Grothendieck bifibrasies en hul veralgemenings. Die hoof resultate in hierdie tesis het betrekking tot ooreenkomste tussen sekere strukture op ’n kategorie wat relevant tot die studie van nie-abelse groep-agtige strukture is, en funktore oor daardie kategorie. ’n Verdere ondersoek van hierdie ooreemkomste lei tot ’n sisteem van duale aksiomas op ’n funktor, wat beskou kan word as ’n oplossing tot die voorstel van Mac Lane in sy 1950 artikel “Duality for Groups” dat ’n self-duale konteks gevind word waarin resultate vir groepe geformuleer en bewys kan word. Die deel van hierdie tesis wat met die teorie van databasisse te doen het is gebaseer op ’n onlangse benadering deur Johnson en Rosebrugh tot aansigte van databasisse en die opdatering van hierdie aansigte.
Pinto, Aline Gomes da Silva. "Propriedades homologicas de grupos pro-p." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306931.
Full textTese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T14:37:32Z (GMT). No. of bitstreams: 1 Pinto_AlineGomesdaSilva_D.pdf: 2789516 bytes, checksum: 20f42bafb2b08678ceb88f751e8b275e (MD5) Previous issue date: 2005
Resumo: Neste trabalho, provamos dois resultados sobre propriedades homológicas de grupos pro-p. O primeiro responde positivamente à conjectura de J. King que afirma que, se G é um grupo pro-p metabeliano finitamente gerado e m um inteiro positivo, então G mergulha como subgrupo fechado em um grupo pro-p metabeliano de tipo homológico F Pm. O segundo resultado caracteriza módulos pro-p B de tipo homológico F P m sobre [[ZpG]], onde G é um grupo pro-p metabeliano topologicamente finitamente gerado, dado pela extensão de um grupo pro-p abeliano A por um grupo pro-p abeliano Q, e B é um [[ZpQ]]-módulo pro-p finitamente gerado que é visto como um [[ZpG]]-módulo pro-p via a projeção de G -t Q. A caracterização é dada em termos do invariante para grupos pro-p metabelianos introduzido por J. King [15] e é uma generalização do caso onde B = Zp é o anel de inteiros p-ádicos considerado como G-módulo trivial, que dá a classificação dos grupos pro-p metabelianos de tipo homológico FPm, provado por D. Kochloukova [18]
Abstract: In this work, we prove two results about homological properties of metabelian pro-p groups. The first one answers positively a conjecture suggested by J. King that, if G is a finitely generated metabelian pro-p group and m a positive integer, G embeds in a metabelian pro-p group of homological type F P m. The second result caracterize the modules B of homological type F P mover [[ZpG]], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p [[ZpQ]]-module that is viewed as a pro-p [[ZpG]]-module via the projection G -f Q. The characterization is given in terms of the invariant introduced by J. King [15] and is a generalization of the case when B = Zp is considered as a trivial [[ZpG]]-module, that gives the classification of metabelian pro-p groups of type FPm, proved by D. Kochloukova [18]
Doutorado
Matematica
Doutor em Matemática
Laubacher, Jacob C. "Secondary Hochschild and Cyclic (Co)homologies." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.
Full textHoefel, Eduardo Outeiral Correa. "Espaço de configurações e OCHA." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307207.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-06T01:35:44Z (GMT). No. of bitstreams: 1 Hoefel_EduardoOuteiralCorrea_D.pdf: 1956293 bytes, checksum: 425e3f8509c6c6d5b7e71d692027dfaf (MD5) Previous issue date: 2006
Resumo: Esta tese consiste do estudo das OCHAs (Open-Closed Homotopy Algebras) sob os pontos de vista algébrico e geométrico. São demonstrados essencialmente dois resultados novos. O primeiro refere-se à definição de OCHA através de coderivações. Mais especificamente, provamos que qualquer coderivação D E Coderl (sc'Hc 0 TC'Ho) de grau 1 satisfazendo D2 = O define uma estrutura de OCHA em 'H = 'Hcffi'Ho. Onde 'Hc e 'Ho são os espaços de estados da teoria de campo de corda para cordas fechadas ("dosed strings") e cordas abertas ("open strings"), respectivamente. Até então, sabia-se que as OCHAs eram dadas por coderivações [14], mas o fato de que qualquer coderivação define uma OCHA, é novo. O segundo resultado envolve a relação entre OCHA e a versão real da compactificação de Fulton MacPherson do espaço de configurações de pontos no semi-plano superior fechado. Este resultado mostra a estreita relação entre OCHAs e a operada do "Queijo Suíço" introduzida por Voronov [41], tal relação foi de fato sugeri da na introdução de [14]. O capítulo 1 contém uma discussão sobre a definição de OCHA usando coálgebras e a conseqüente caracterização das coderivações mencionada acima. Mostramos também que a estrutura de OCHA pode ser obtida a partir de certas álgebras A(X) de forma inteiramente análoga ao modo como álgebras de Lie podem ser obtidas a partir de álgebras associativas. Em seguida, o capítulo 2 traz a abordagem das OCHAs através de operadas. O capítulo 3 traz uma discussão detalhada do espaço C(p, q) (a compactificação de Fulton;.MacPherson do espaço de configurações de p + q pontos no semi-plano superior fechado com p pontos no interior e q pontos no bordo) e no capítulo 4 mostramos que a parte essencial da operada que descreve as OCHAs aparece na primeira linha do termo E1 da seqüência espectral induzida por aquele espaço. O resultado mencionado acima significa que a estrutura algébrica das OCHAs está codificada na estratificação do bordo da variedade C(p, q), visto que esta última tem uma estrutura de variedade com córneres. No capítulo final discutimos o significado dos dois resultados obtidos procurando fazer um paralelo entre as abordagens geométrica e algébrica e mencionamos alguns problemas interessantes, como continuação deste trabalho, que podem ser considerados por estudantes interessados em Álgebras Homotópicas e temas relacionados
Abstract: This thesis consists of the study of OCHA (Open-Closed Homotopy Algebras) from both the algebraic and geometric viewpoint. It essentially contains the proof of two new results. The first one is related to the definition of OCHA through coderivations. More specifically, it is shown that any degree one coderivation D E Caderl(Sc7íc 0 TC7ío) such that D2 = O defines an OCHA structure on 7í = 7íc E9 7ío. Where 7íc and 7ío are respectively the state spaces of Closed String Field Theory and apen String Field Theory. It was cIear since its definition in 2004 that OCHAs can be defined in terms of coderivations. Nevertheless, the fact that any such coderivation is of the OCHA form is new. The second result involves the relation between OCHA and the real version of the Fulton MacPherson compactification of the configuration space of points on the cIosed upper half-plane. That result shows the cIose relation between OCHAs and the Swiss-Cheese operad introduced by Voronov [411. Such relation was in fact suggested in the introductian of [141. Chapter 1 contains a discussion about the coalgebraic definition of OCHA and the above mentioned characterization of alI coderivations. It is also shown that OCHA can be obtained from certain A8 algebras, similarly to way in which Lie algebras are obtained fro_ associative algebras. Chapter 2 then shows how to approach OCHA using aperads. The space C(p, q) (the FuIton-MacPherson compactification of the configuration space of p + q points on the upper half-plane with p interior points and q boundary points) is discussed on chapter 3 and on chapter 4 it is shown that the essential part of the operad describing OCHA appears on the first line Of the spectral sequence induced by that space. In other words, we could say that the algebraic structure of OCHA is encoded in the stratification of C(p, q), since this space has the structure of a manifold with corners. The final chapter is a discussion about the meaning of the two mais results of this thesis. After that, some problems which could be explored by the student interested on homotopy algebras and related subjects are mentioned.
Doutorado
Geometria Topologia
Doutor em Matemática
Silva, Flavia Souza Machado da. "Propriedades homologicas de mergulho de grupos discretos metabelianos." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306930.
Full textTese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-06T15:28:56Z (GMT). No. of bitstreams: 1 Silva_FlaviaSouzaMachadoda_D.pdf: 1082384 bytes, checksum: 3f3ae60f2e4ab201df78d9bb624249ef (MD5) Previous issue date: 2006
Resumo: Estudamos propriedades homológicas de mergulho de grupos metabelianos finitamente gerados e estendemos um trabalho recente [19] em que foi mostrado que para m, um número natural fixo, todo grupo G metabelianofinitamente gerado mergulha num quociente de um grupo metabeliano de tipo F.P m e ainda que G mergulha em um grupo metabeliano de tipo FP4. Mais precisamente, mostramos que para m, um número natural fixo, todo grupo metabeliano finitamente gerado mergulha num grupo metabeliano de tipo FPm. Para isto usamos idéias de álgebra comutativa, tais como o Teorema de normalização de Noether e propriedades de mergulho de módulos finitamente gerados sobre anéis comutativos através de localização. No caso de grupos metabelianos obtemos mergulhos em extensões HNN metabelianas. Um passo importante na nossa demonstração é o uso do método de Áberg para garantir que num caso muito particular a FPm-Conjectura para grupos metabelianos é verdadeira. A FPm-Conjectura para grupos metabelianos sugere quando um grupo metabeliano tem tipo FPm, mas ela ainda está em aberto. É interessante observar que o método de Áberg mistura idéias de álgebra comutativa e topologia algébrica (ação de grupo sobre um subcomplexo de um produto finito de árvores)
Abstract: We study embedding homological properties of finitely generated metabelian groups and we extend an earlier work in [19] where it was shown that for a fixed m every finitely generated metabelian group G embeds in a quotient of a metabelian group of homological type FPm and furthermore that G embeds in a metabelian group of type FP4. More precisely we show that for a fixed m every finitely generated metabelian group G embeds in a metabelian group of type FPm. This is proved using ideas of commutative algebra, such as Noether normalization theorem and properties of embedding of finitely generated modules over commutative rings via localization. In the case of metabelian groups this gives embedding into a metabelian HNN extensions. An important step in the proof is the use of the Áberg method to guarantee that the FPm-conjecture in a very particular case is true. The FPm-conjecture for metabelian groups suggests when a metabelian group has a homological type FPm, but it is still open. It is interesting to note that the Áberg method mixes ideas from commutative algebra and algebraic topology (action of group on a subcomplex af a finite product of trees)
Doutorado
Matematica
Doutor em Matemática
Griffiths, Rhiannon Cerys. "Slices of Globular Operads for Higher Categories." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1623155240596704.
Full textSteele, Hugh Paul. "Combinatorial arguments for linear logic full completeness." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/combinatorial-arguments-for-linear-logic-full-completeness(274c6b87-dc58-4dc3-86bc-8c29abc2fc34).html.
Full textOnório, Ana Cláudia Lopes 1989. "Propriedades homológicas de produtos subdiretos de grupos limites." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306923.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-24T15:38:10Z (GMT). No. of bitstreams: 1 Onorio_AnaClaudiaLopes_M.pdf: 2325797 bytes, checksum: e0938ac85576f21ee8723d0aab2b0475 (MD5) Previous issue date: 2014
Resumo: Estudamos o tipo homológico FPs de produtos subdiretos de grupos limites seguindo resultados de Bridson, Howie, Miller, Short. Desenvolvemos teoria de grupos limites usando como ferramenta homologia algébrica e teoria geométrica de grupos, em particular a teoria de Bass-Serre sobre grupos que agem sobre árvores. Palavras-chaves: teoria de Bass-Serre, álgebra homológica, grupos de tipo FPn, grupos limites, produto subdireto de grupos limites
Abstract: The homological type FPs of subdirect products of limit groups was studied according to Bridson, Howie, Miller and Short's results. The limit group theory was developed using as a tool the algebraic homology and geometric group theory and in particular Bass-Serre theory on groups acting on trees. Keywords: Bass-Serre theory, homological algebra, groups of type FPn, limit groups, subdirect product of limit groups
Mestrado
Matematica
Mestra em Matemática
Lu, Weiyun. "Topics in Many-valued and Quantum Algebraic Logic." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35173.
Full textZanasi, Fabio. "Interacting Hopf Algebras- the Theory of Linear Systems." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1020/document.
Full textWe present by generators and equations the algebraic theory IH whose free model is the category oflinear subspaces over a field k. Terms of IH are string diagrams which, for different choices of k, expressdifferent kinds of networks and graphical formalisms used by scientists in various fields, such as quantumcircuits, electrical circuits and Petri nets. The equations of IH arise by distributive laws between Hopfalgebras - from which the name interacting Hopf algebras. The characterisation in terms of subspacesallows to think of IH as a string diagrammatic syntax for linear algebra: linear maps, spaces and theirtransformations are all faithfully represented in the graphical language, resulting in an alternative, ofteninsightful perspective on the subject matter. As main application, we use IH to axiomatise a formalsemantics of signal processing circuits, for which we study full abstraction and realisability. Our analysissuggests a reflection about the role of causality in the semantics of computing devices
Martin, Maria Eugenia. "Propriedades homologicas de grupos pro-p." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306927.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T12:02:14Z (GMT). No. of bitstreams: 1 Martin_MariaEugenia_M.pdf: 974097 bytes, checksum: 862be4d1ac3b05cc1a28ba59cf6c0460 (MD5) Previous issue date: 2009
Resumo: Nesta dissertação discutimos propriedades homológicas de grupos discretos e grupos pro-p. Em particular trabalhamos com grupos abstratos de dualidade de Poincaré orientáveis de dimensão três e seu completamento pro-p. Os primeiros capítulos da dissertação incluem uma exposição sobre as propriedades homológicas básicas de grupos abstratos e grupos pro-p. Finalmente, descrevemos um resultado recente de [KZ], publicado em Transactions MAS ( 2008), que clássica quando o completamento pro-p de um grupo de dualidade de Poincaré orientável de dimensão três de um grupo pro-p de dualidade de Poincaré orientável de dimensão três
Abstract: In this dissertation we discuss homological properties of discrete groups and pro-p groups. In particular we work with groups of abstract of Poincaré duality of dimension three steerable and its pro-p completion. The first chapters of the dissertation include a presentation on the basic homological properties of abstract groups and pro-p groups. Finally, we describe a recent result of [KZ], published in Transactions AMS (2008), which ranks as the pro-p completion of a group of Poincare-steerable dual dimension of three is a group of pro-p duality of Poincare -steerable in three dimensions
Mestrado
Mestre em Matemática
Lima, Igor dos Santos 1983. "Completamentos Pro-p de grupos de dualidade de Poincaré." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306926.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T17:04:33Z (GMT). No. of bitstreams: 1 Lima_IgordosSantos_D.pdf: 1446540 bytes, checksum: 1e68bfb627d234fa97739cd2e813b4a9 (MD5) Previous issue date: 2012
Resumo: Neste trabalho, nos Teoremas Principais, damos condições suficientes para que o completamento pro-p de um grupo abstrato PDn seja virtualmente um grupo pro-p PDs para algum s ? n - 2 com n ? 4. Esse resultado é uma generalização do Teorema 3 em [K-2009]. Nossa prova é baseada em [K-2009] e nos resultados de A. A. Korenev [Ko-2004] e [Ko-2005]. Além disso, damos alguns exemplos de grupos que satisfazem as condições dos Teoremas Principais
Abstract: In this work we give in the Main Theorems suffiient conditions for that the pro- p completion of an abstract orientable PDn group to be virtually a pro-p PDs group for some s ? n - 2 with n ? 4. This result is a generalization of the Theorem 3 in [K-2009]. Our proof is based on [K-2009] and on the results of A. A. Korenev [Ko-2004] and [Ko-2005]. Furthermore we give some examples of groups that satisfy the conditions of the Main Theorems
Doutorado
Matematica
Doutor em Matemática
Bittmann, Léa. "Quantum Grothendieck rings, cluster algebras and quantum affine category O." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC024.
Full textThe aim of this thesis is to construct and study some quantum Grothendieck ring structure for the category O of representations of the Borel subalgebra Uq(^b) of a quantum affine algebra Uq(^g). First of all, we focus on the construction of asymptotical standard modules, analogs in the context of the category O of the standard modules in the category of finite-dimensional Uq(^g)-modules. A construction of these modules is given in the case where the underlying simple Lie algebra g is sl2. Next, we define a new quantum torus, which extends the quantum torus containing the quantum Grothendieck ring of the category of finite-dimensional modules. In order todo this, we use notions linked to quantum cluster algebras. In the same spirit, we build a quantum cluster algebra structure on the quantum Grothendieck ring of a monoidal subcategory CZ of the category of finite-dimensional representations. With this quantum torus, we de_ne the quantum Grothendieck ring Kt(O+Z) of a subcategory O+Z of the category O as a quantum cluster algebra. Then, we prove that this quantum Grothendieck ring contains that of the category of finite-dimensional representation. This result is first shown directly in type A, and then in all simply-laced types using the quantum cluster algebra structure of Kt(CZ). Finally, we define (q,t)-characters for some remarkable infinite-dimensional simple representations in the category O+Z. This enables us to write t-deformed analogs of important relations in the classical Grothendieck ring of the category O, which are related to the corresponding quantum integrable systems
Rabelo, Lonardo 1983. "Um grupo de Richard Thompson e seu invariante homotopico sigma." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306916.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-11T14:04:12Z (GMT). No. of bitstreams: 1 Rabelo_Lonardo_M.pdf: 1106165 bytes, checksum: 2bbac38aebd1bf1d09d9f3bc26c12171 (MD5) Previous issue date: 2008
Resumo: Neste projeto de mestrado, estudamos um dos grupos de Richard Thompson e apresentamos os cálculos de seu invariante homotópico Sigma, em qualquer dimensão m, onde m é um inteiro positivo. O grupo de Richard Thompson, denotado por F, foi por ele definido em 1965 e ficou conhecido, mais tarde, por suas propriedades homotópicas e homológicas interessantes. Por exemplo, F é tipo FP8 ([04]). Além disso, F pode ser descrito de maneiras distintas, o que o torna ainda mais interessante. A teoria de invariantes (homotópicos e homológicos) Sigma foi desenvolvida nas últimas décadas do século vinte por R. Bieri, J. Groves, R. Geoghegan, H. Meinert, R. Strebel e outros e está relacionada com propriedades FPm de grupos. O Invariante _1(F) foi obtido em [03]. Recentemente, o caso geral do invariante _m(F) e _m(F, Z) (homotópico e homológico, respectivamente), m = 2, foi descrito por R. Bieri, R. Geoghegan e D. Kochloukova. Nesta dissertação, apresentamos a versão homotópica deste resultado
Abstract: In this project we study one of the Richard Thompson's Group F e its Homotopical m-dimensional Sigma Invariant. The Richard Thompson Group F is very known by its interesting homological and homotopical properties, for example, it is of type FP8 ([04]). Also, F has the property of being defined in several distinct ways. The Sigma Invariant Theory was developed in last decades of twentieth century by R. Bieri, J. Groves, R. Geoghegan, H. Meinert, R. Strebel and others and is related to FPm properties of groups. The _1(F) was obtained in [03]. Recently the general case of _m(F) and _m(F, Z) (homotopical and homological versions, respectively), m = 2, were described by R. Bieri, R. Geoghegan and D. Kochloukova. Here, we present the homotopical version of this result
Mestrado
Algebra
Mestre em Matemática
Valence, Arnaud. "Esquisse d'une dualité géométrico-algébrique pluridisciplinaire : la dualité d'Isbell." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE3032/document.
Full textAfter exposing the importance of geometric-algebraic dualities in the history of mathematics, the thesis proposes to bring together many of them under an unified abstract approach, the Isbell duality. The Isbell duality is formally defined as an adjunction between a presheaf and a copresheaf, and allows to define a new paradigm of constructivity called P3. In mathematics, we show that this duality is present in algebraic geometry, derived algebraic geometry, algebraic topology and functional analysis. In contemporary logic, we show that Isbell duality can be made explicit in the geometry of interaction of Girard. We then show how applied sciences can make use of Isbell duality, allowing to significantly renew theories. In physical sciences, we show that it opens a perspective in quantum field theory, towards the dualization of Heisenberg and Schrödinger representations. In economic and social sciences, we show that it allows to renew the general equilibrium theory and the theory of value. In learning sciences, we show that it is possible to reconsider Dewey's theory of inquiry in terms of space-action duality, ultimately to reveal an Isbell duality. We conclude by opening a debate on the Bachelardian notion of epistemological obstacle, showing how P3 can have difficulties to establish itself as reference constructive paradigm, and by devoting some ontological developments to the Kantian and post-Hegelian nature of the thesis
Ferreira, Rodrigo Costa. "Semântica proposicional categórica." Universidade Federal da Paraíba, 2010. http://tede.biblioteca.ufpb.br:8080/handle/tede/5678.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The basic concepts of what later became called category theory were introduced in 1945 by Samuel Eilenberg and Saunders Mac Lane. In 1940s, the main applications were originally in the fields of algebraic topology and algebraic abstract. During the 1950s and 1960s, this theory became an important conceptual framework in other many areas of mathematical research, especially in algrebraic homology and algebraic geometry, as shows the works of Daniel M. Kan (1958) and Alexander Grothendieck (1957). Late, questions mathematiclogics about the category theory appears, in particularly, with the publication of the Functorial Semantics of Algebraic Theories (1963) of Francis Willian Lawvere. After, other works are done in the category logic, such as the the current Makkai (1977), Borceux (1994), Goldblatt (2006), and others. As introduction of application of the category theory in logic, this work presents a study on the logic category propositional. The first section of this work, shows to the reader the important concepts to a better understanding of subject: (a) basic components of category theory: categorical constructions, definitions, axiomatic, applications, authors, etc.; (b) certain structures of abstract algebra: monoids, groups, Boolean algebras, etc.; (c) some concepts of mathematical logic: pre-order, partial orderind, equivalence relation, Lindenbaum algebra, etc. The second section, it talk about the properties, structures and relations of category propositional logic. In that section, we interpret the logical connectives of the negation, conjunction, disjunction and implication, as well the Boolean connectives of complement, intersection and union, in the categorical language. Finally, we define a categorical boolean propositional semantics through a Boolean category algebra.
Os conceitos básicos do que mais tarde seria chamado de teoria das categorias são introduzidos no artigo General Theory of Natural Equivalences (1945) de Samuel Eilenberg e Saunders Mac Lane. Já em meados da década de 1940, esta teoria é aplicada com sucesso ao campo da topologia. Ao longo das décadas de 1950 e 1960, a teoria das categorias ostenta importantes mudanças ao enfoque tradicional de diversas áreas da matemática, entre as quais, em especial, a álgebra geométrica e a álgebra homológica, como atestam os pioneiros trabalhos de Daniel M. Kan (1958) e Alexander Grothendieck (1957). Mais tarde, questões lógico-matemáticas emergem em meio a essa teoria, em particular, com a publica ção da Functorial Semantics of Algebraic Theories (1963) de Francis Willian Lawvere. Desde então, diversos outros trabalhos vêm sendo realizados em lógica categórica, como os mais recentes Makkai (1977), Borceux (1994), Goldblatt (2006), entre outros. Como inicialização à aplicação da teoria das categorias à lógica, a presente dissertação aduz um estudo introdutório à lógica proposicional categórica. Em linhas gerais, a primeira parte deste trabalho procura familiarizar o leitor com os conceitos básicos à pesquisa do tema: (a) elementos constitutivos da teoria das categorias : axiomática, construções, aplicações, autores, etc.; (b) algumas estruturas da álgebra abstrata: monóides, grupos, álgebra de Boole, etc.; (c) determinados conceitos da lógica matemática: pré-ordem; ordem parcial; equivalência, álgebra de Lindenbaum, etc. A segunda parte, trata da aproximação da teoria das categorias à lógica proposicional, isto é, investiga as propriedades, estruturas e relações próprias à lógica proposicional categórica. Nesta passagem, há uma reinterpreta ção dos conectivos lógicos da negação, conjunção, disjunção e implicação, bem como dos conectivos booleanos de complemento, interseção e união, em termos categóricos. Na seqüência, estas novas concepções permitem enunciar uma álgebra booleana categórica, por meio da qual, ao final, é construída uma semântica proposicional booleana categórica.
Bogdanic, Dusko. "Graded blocks of group algebras." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:faeaaeab-1fe6-46a9-8cbb-f3f633131a73.
Full textMelani, Valerio. "Poisson and coisotropic structures in derived algebraic geometry." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC299/document.
Full textIn this thesis, we define and study Poisson and coisotropic structures on derived stacks in the framework of derived algebraic geometry. We consider two possible presentations of Poisson structures of different flavour: the first one is purely algebraic, while the second is more geometric. We show that the two approaches are in fact equivalent. We also introduce the notion of coisotropic structure on a morphism between derived stacks, once again presenting two equivalent definitions: one of them involves an appropriate generalization of the Swiss Cheese operad of Voronov, while the other is expressed in terms of relative polyvector fields. In particular, we show that the identity morphism carries a unique coisotropic structure; in turn, this gives rise to a non-trivial forgetful map from n-shifted Poisson structures to (n-1)-shifted Poisson structures. We also prove that the intersection of two coisotropic morphisms inside a n-shifted Poisson stack is naturally equipped with a canonical (n-1)-shifted Poisson structure. Moreover, we provide an equivalence between the space of non-degenerate coisotropic structures and the space of Lagrangian structures in derived geometry, as introduced in the work of Pantev-Toën-Vaquié-Vezzosi
Kerkhoff, Sebastian. "A General Duality Theory for Clones." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-74783.
Full textKerkhoff, Sebastian. "A General Galois Theory for Operations and Relations in Arbitrary Categories." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-73920.
Full textDancète, Dominique. "Sur la Cobar construction." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10145.
Full textNguyen, Le Chi Quyet. "Une description fonctorielle des K-théories de Morava des 2-groupes abéliens élémentaires." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0032/document.
Full textThe aim of this PhD thesis is to study, from a functorial point of view, the mod 2 Morava K-theories of elementary abelian 2-groups. Namely, we study the covariant functors $V \mapsto K(n)^*(BV^{\sharp})$ for the prime p=2 and n a positive integer.The case n=1, which follows directly from the work of Atiyah on topological K-theory, gives us a coanalytic functor which contains no non-constant polynomial sub-functor. This is very different from the case n>1, where the above-mentioned functors are analytic.The theory of Henn-Lannes-Schwartz provides a correspondence between analytic functors and unstable modules over the Steenrod algebra. We determine the unstable module corresponding to the analytic functor $V \mapsto K(2)^*(BV^{\sharp})$, by studying the relation between this functor and the Hopf ring structure of the homology of the omega-spectrum associated to the theory K(2)
Mrozinski, Colin. "Semi-anneau de fusion des groupes quantiques." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00948512.
Full textAndrade, Aline Vilela. "Teoria de Auslander-Reiten em categorias derivadas." Universidade Federal de Viçosa, 2014. http://locus.ufv.br/handle/123456789/4935.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this paper, we prove the existence of Auslander-Reiten triangles (TAR) for compact objects in triangulated categories compactly generated. The prove presented is an application of the theorem of Brown representability in derived categories for compact complex, ie, given Z be a compact and indecomposable complex, we show that there is a Auslander-Reiten triangle X->U->Y->v->Z->w->TX in K-b(^) which is equivalent to D(^), where ^ is a finite-dimensional k-algebra over an algebraically closed field. Furthermore, we have that a triangle Auslander-Reiten wihch start with the projective resolution of a indecomposable and non-injective module T-¹pM->alfa->Y->Beta->(pDM)*->y->pM induces an Auslander-Reiten sequence(SAR) 0->M->alfa¹->Cok¹ (Y)-> beta¹->Tr DM->0. How Mod(^) and D(^) are Krull-Schmidt, and classes of indecomposable objects and generators of irreducible morphisms of these categories occur in the SAR's and TAR's, respectively, these results provide us with a skillful tool to know the structures Mod(^) and D(^) of k-algebras. Moreover, we present examples using the representation theory of quivers of an algebra of paths.
Neste trabalho, apresentamos uma prova da existência de triângulos de Auslander-Reiten(TAR) para objetos compactos em categorias trianguladas compactamente geradas. A prova apresentada é uma aplicação do Teorema da Representabilidade de Brown em categorias derivadas para complexos compactos, ou seja, dado Z um complexo compacto e indecomponíveL mostramos que existe um triângulo X->U->Y->v->Z->w->TX de Auslander-Reiten em K-b(^) que é equivalente à Db(^), onde ^ é uma k-álgebra de dimensão finita sobre um corpo algébricamente fechado. Além disso, temos que um triângulo de Auslander-Reiten que começa com a resolução projetiva de um módulo indecomponível não-injetivo T-¹pM->alfa->Y->Beta->(pDM)*->y->pM induz uma sequência de Auslander-Reiten(SAR) 0->M->alfa¹->Cok¹ (Y)-> beta¹->Tr DM->0. Como MOd(^) e D(^) são Krull-Remak-Schmidt, e as classes de objetos inde- componíveis e os geradores de morfismos irredutíveis destas categorias ocorrem nas SAR's e nos TAR's, respectivamente, estes resultados nos fornecem uma hábil ferramenta para conhecer as estruturas de Mod(^) e D(^) de k-álgebras. Além disso, apresentamos exemplos utilizando a teoria de representação de quivers de uma álgebra de caminhos.
Lebed, Victoria. "Objets tressés : une étude unificatrice de structures algébriques et une catégorification des tresses virtuelles." Phd thesis, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00775857.
Full textNadareishvili, George. "A classification of localizing subcategories by relative homological algebra." Doctoral thesis, 2015. http://hdl.handle.net/11858/00-1735-0000-0028-867A-A.
Full textGartz, Kaj M. "A construction of a differential graded Lie algebra in the category of effective homological motives /." 2003. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3088737.
Full text(8740848), Virgil Chan. "An Explicit Formula for the Loday Assembly." Thesis, 2020.
Find full text(11204136), Chris Karl Neuffer. "Genera of Integer Representations and the Lyndon-Hochschild-Serre Spectral Sequence." Thesis, 2021.
Find full textCzenky, Agustina Mercedes. "Sobre las categorías modulares de dimensión impar." Bachelor's thesis, 2019. http://hdl.handle.net/11086/11747.
Full textEl objetivo de este trabajo es presentar de la manera más autocontenida posible a las categorías modulares de dimensión impar, sus propiedades e invariantes. En la primera parte se exponen las nociones de categorías tensoriales y categorías de fusión. Se presentan construcciones útiles, como la graduación y la equivariantización por grupos finitos, y clases distinguidas de categorías: punteadas, de tipo grupo, nilpotentes, solubles, entre otras. En una segunda parte se aborda el estudio de las categorías modulares y se tratan algunos de sus invariantes: S-matriz, T -matriz, Sumas de Gauss e Indicadores de Frobenius-Schur. Finalmente se discuten algunos problemas actuales y nuevas herramientas, como el Teorema de Cauchy para categorías de fusión esféricas, la clasificación de categorías modulares de dimensión impar de rango pequeño y la clasificación de categorías modulares casi libres de cuadrados de dimensión impar. Se presentan además algunos resultados propios vinculados a dichos problemas y técnicas.
The main goal of this work is to present, in the most comprehensive way we can achieve, odd dimensional modular categories, their properties and invariants. The first part sets out the notions of tensor and fusion categories. Useful constructions are included, such as grading and equivariantization by finite groups, and distinguished classes of categories are introduced: pointed, group-theoretical, nilpotent and solvable, among others. A second part approaches the study of modular categories and some of their invariants: S-matrix, T -matrix, Gauss Sums and Frobenius-Schur Indicators. Finally, some current problems and new techniques are discussed, such as the Cauchy Theorem for spherical fusion categories, the classification of odd dimensional modular categories of small rank and the classification of odd dimensional almost square-free modular categories. Some original results related to the mentioned problems and techniques are exhibited.