To see the other types of publications on this topic, follow the link: Category theory; homological algebra.

Dissertations / Theses on the topic 'Category theory; homological algebra'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Category theory; homological algebra.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mirmohades, Djalal. "N-complexes and Categorification." Doctoral thesis, Uppsala universitet, Algebra och geometri, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260111.

Full text
Abstract:
This thesis consists of three papers about N-complexes and their uses in categorification. N-complexes are generalizations of chain complexes having a differential d satisfying dN = 0 rather than d2 = 0. Categorification is the process of finding a higher category analog of a given mathematical structure. Paper I: We study a set of homology functors indexed by positive integers a and b and their corresponding derived categories. We show that there is an optimal subcategory in the domain of every functor given by N-complexes with N = a + b. Paper II: In this paper we show that the lax nerve of the category of chain complexes is pointwise adjoint equivalent to the décalage of the simplicial category of N-complexes. This reveals additional simplicial structure on the lax nerve of the category of chain complexes which provides a categorfication of the triangulated homotopy category of chain complexes. We study this in general and present evidence that the axioms of triangulated categories have a simplicial origin. Paper III: Let n be a product of two distinct prime numbers. We construct a triangulated monoidal category having a Grothendieck ring isomorphic to the ring of n:th cyclotomic integers.
APA, Harvard, Vancouver, ISO, and other styles
2

Goedecke, Julia. "Three viewpoints on semi-abelian homology." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/224397.

Full text
Abstract:
The main theme of the thesis is to present and compare three different viewpoints on semi-abelian homology, resulting in three ways of defining and calculating homology objects. Any two of these three homology theories coincide whenever they are both defined, but having these different approaches available makes it possible to choose the most appropriate one in any given situation, and their respective strengths complement each other to give powerful homological tools. The oldest viewpoint, which is borrowed from the abelian context where it was introduced by Barr and Beck, is comonadic homology, generating projective simplicial resolutions in a functorial way. This concept only works in monadic semi-abelian categories, such as semi-abelian varieties, including the categories of groups and Lie algebras. Comonadic homology can be viewed not only as a functor in the first entry, giving homology of objects for a particular choice of coefficients, but also as a functor in the second variable, varying the coefficients themselves. As such it has certain universality properties which single it out amongst theories of a similar kind. This is well-known in the setting of abelian categories, but here we extend this result to our semi-abelian context. Fixing the choice of coefficients again, the question naturally arises of how the homology theory depends on the chosen comonad. Again it is well-known in the abelian case that the theory only depends on the projective class which the comonad generates. We extend this to the semi-abelian setting by proving a comparison theorem for simplicial resolutions. This leads to the result that any two projective simplicial resolutions, the definition of which requires slightly more care in the semi-abelian setting, give rise to the same homology. Thus again the homology theory only depends on the projective class. The second viewpoint uses Hopf formulae to define homology, and works in a non-monadic setting; it only requires a semi-abelian category with enough projectives. Even this slightly weaker setting leads to strong results such as a long exact homology sequence, the Everaert sequence, which is a generalised and extended version of the Stallings-Stammbach sequence known for groups. Hopf formulae use projective presentations of objects, and this is closer to the abelian philosophy of using any projective resolution, rather than a special functorial one generated by a comonad. To define higher Hopf formulae for the higher homology objects the use of categorical Galois theory is crucial. This theory allows a choice of Birkhoff subcategory to generate a class of central extensions, which play a big role not only in the definition via Hopf formulae but also in our third viewpoint. This final and new viewpoint we consider is homology via satellites or pointwise Kan extensions. This makes the universal properties of the homology objects apparent, giving a useful new tool in dealing with statements about homology. The driving motivation behind this point of view is the Everaert sequence mentioned above. Janelidze's theory of generalised satellites enables us to use the universal properties of the Everaert sequence to interpret homology as a pointwise Kan extension, or limit. In the first instance, this allows us to calculate homology step by step, and it removes the need for projective objects from the definition. Furthermore, we show that homology is the limit of the diagram consisting of the kernels of all central extensions of a given object, which forges a strong connection between homology and cohomology. When enough projectives are available, we can interpret homology as calculating fixed points of endomorphisms of a given projective presentation.
APA, Harvard, Vancouver, ISO, and other styles
3

Steinberg, David. "Homological Properties of Standard KLR Modules." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22292.

Full text
Abstract:
Khovanov-Lauda-Rouquier algebras, or KLR algebras, are a family of algebras known to categorify the upper half of the quantized enveloping algebra of a given Lie algebra. In finite type, these algebras come with a family of standard modules, which correspond to PBW bases under this categorification. In this thesis, we show that there are no non-zero homomorphisms between distinct standard modules and that all non-zero endomorphisms of standard modules are injective. We then apply this result to obtain applications to the modular representation theory of KLR algebras. Restricting our attention to finite type A, we are then able to compute explicit projective resolutions of all standard modules. Finally, in finite type A when alpha is a positive root, we let D be the direct sum of all distinct standard modules and compute the algebra structure on Ext(D, D). This dissertation includes unpublished co-authored material.
APA, Harvard, Vancouver, ISO, and other styles
4

Vanderpool, Ruth. "Non-existence of a stable homotopy category for p-complete Abelian groups /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pallekonda, Seshendra. "Bounded category of an exact category." Diss., Online access via UMI:, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Junod, Fabien. "Unstable Adams operations on ρ-local compact groups." Thesis, University of Aberdeen, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531931.

Full text
Abstract:
Let G be any compact connected Lie group and let TG be a maximal torus.  Then for any unstable Adams operation f of degree k, the following diagram commutes up to homotopy «!» And conversely, any map f that makes the above diagram commute must be an unstable Adams operation. Using this characterization, we will construct a self-map of a p-local compact group (S,F,L) in order to define unstable Adams operations on a more general setting. THEOREM.  For any p-local compact group (S,F,L) there is a self-equivalence such that the map on the objects when restricted to the identity component of S is a qm-th power map.
APA, Harvard, Vancouver, ISO, and other styles
7

Fong, Brendan. "The algebra of open and interconnected systems." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:79a23c8c-81a5-4cf1-a108-29ba7dfd8850.

Full text
Abstract:
Herein we develop category-theoretic tools for understanding network-style diagrammatic languages. The archetypal network-style diagrammatic language is that of electric circuits; other examples include signal flow graphs, Markov processes, automata, Petri nets, chemical reaction networks, and so on. The key feature is that the language is comprised of a number of components with multiple (input/output) terminals, each possibly labelled with some type, that may then be connected together along these terminals to form a larger network. The components form hyperedges between labelled vertices, and so a diagram in this language forms a hypergraph. We formalise the compositional structure by introducing the notion of a hypergraph category. Network-style diagrammatic languages and their semantics thus form hypergraph categories, and semantic interpretation gives a hypergraph functor. The first part of this thesis develops the theory of hypergraph categories. In particular, we introduce the tools of decorated cospans and corelations. Decorated cospans allow straightforward construction of hypergraph categories from diagrammatic languages: the inputs, outputs, and their composition are modelled by the cospans, while the 'decorations' specify the components themselves. Not all hypergraph categories can be constructed, however, through decorated cospans. Decorated corelations are a more powerful version that permits construction of all hypergraph categories and hypergraph functors. These are often useful for constructing the semantic categories of diagrammatic languages and functors from diagrams to the semantics. To illustrate these principles, the second part of this thesis details applications to linear time-invariant dynamical systems and passive linear networks.
APA, Harvard, Vancouver, ISO, and other styles
8

Bridge, Philip Owen. "Essentially algebraic theories and localizations in toposes and abelian categories." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/essentially-algebraic-theories-and-localizations-in-toposes-and-abelian-categories(2db96543-4a42-49fe-8741-ffa1ff249b12).html.

Full text
Abstract:
The main theme of this thesis is the parallel between results in topos theory and the theory of additive functor categories. In chapter 2, we provide a general overview of the topics used in the rest of the thesis. Locally finitely presentable categories are introduced, and their expression as essentially algebraic categories is explained. The theory of localization for toposes and abelian categories is introduced, and it is shown how these localizations correspond to theories in appropriate logics. In chapter 3, we look at conditions under which the category of modules for a ring object R in a topos E is locally finitely presented, or locally coherent. We show that if E is locally finitely presented, then the category of modules is also; however we show that far stronger conditions are required for the category of modules to be locally coherent. In chapter 4, we show that the Krull-Gabriel dimension of a locally coherent abelian category C is equal to the socle length of the lattice of regular localizations of C. This is used to make an analogous definition of Krull-Gabriel dimension for regular toposes, and the value of this dimension is calculated for the classifying topos of the theory of G-sets, where G is a cyclic group admitting no elements of square order. In chapter 5, we introduce a notion of strong flatness for algebraic categories (in the sense studied by Adamek, Rosickey and Vitale). We show that for a monoid M of finite geometric type, or more generally a small category C with the corresponding condition, the category of M-acts, or more generally the category of set-valued functors on C, has strongly flat covers.
APA, Harvard, Vancouver, ISO, and other styles
9

Nave, Lee Stewart. "The cohomology of finite subgroups of Morava stabilizer groups and Smith-Toda complexes /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kelly, Jack. "Exact categories, Koszul duality, and derived analytic algebra." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b.

Full text
Abstract:
Recent work of Bambozzi, Ben-Bassat, and Kremnitzer suggests that derived analytic geometry over a valued field k can be modelled as geometry relative to the quasi-abelian category of Banach spaces, or rather its completion Ind(Bank). In this thesis we develop a robust theory of homotopical algebra in Ch(E) for E any sufficiently 'nice' quasi-abelian, or even exact, category. Firstly we provide sufficient conditions on weakly idempotent complete exact categories E such that various categories of chain complexes in E are equipped with projective model structures. In particular we show that as soon as E has enough projectives, the category Ch+(E) of bounded below complexes is equipped with a projective model structure. In the case that E also admits all kernels we show that it is also true of Ch≥0(E), and that a generalisation of the Dold-Kan correspondence holds. Supplementing the existence of kernels with a condition on the existence and exactness of certain direct limit functors guarantees that the category of unbounded chain complexes Ch(E) also admits a projective model structure. When E is monoidal we also examine when these model structures are monoidal. We then develop the homotopy theory of algebras in Ch(E). In particular we show, under very general conditions, that categories of operadic algebras in Ch(E) can be equipped with transferred model structures. Specialising to quasi-abelian categories we prove our main theorem, which is a vast generalisation of Koszul duality. We conclude by defining analytic extensions of the Koszul dual of a Lie algebra in Ind(Bank).
APA, Harvard, Vancouver, ISO, and other styles
11

Chasen, Lee A. "The cohomology rings of classical Brauer tree algebras." Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/38572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nyobe, Likeng Samuel Aristide. "Heisenberg Categorification and Wreath Deligne Category." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41167.

Full text
Abstract:
We define a faithful linear monoidal functor from the partition category, and hence from Deligne's category Rep(S_t), to the additive Karoubi envelope of the Heisenberg category. We show that the induced map on Grothendieck rings is injective and corresponds to the Kronecker coproduct on symmetric functions. We then generalize the above results to any group G, the case where G is the trivial group corresponding to the case mentioned above. Thus, to every group G we associate a linear monoidal category Par(G) that we call a group partition category. We give explicit bases for the morphism spaces and also an efficient presentation of the category in terms of generators and relations. We then define an embedding of Par(G) into the group Heisenberg category associated to G. This embedding intertwines the natural actions of both categories on modules for wreath products of G. Finally, we prove that the additive Karoubi envelope of Par(G) is equivalent to a wreath product interpolating category introduced by Knop, thereby giving a simple concrete description of that category.
APA, Harvard, Vancouver, ISO, and other styles
13

Kunhardt, Walter. "On infravacua and the superselection structure of theories with massless particles." Doctoral thesis, [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962816159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jonsson, Jakob. "Simplicial complexes of graphs /." Berlin [u.a.] : Springer, 2008. http://dx.doi.org/10.1007/978-3-540-75858-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

McDonald, Terry Lynn. "Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions." Texas A&M University, 2003. http://hdl.handle.net/1969.1/3915.

Full text
Abstract:
Splines are piecewise polynomial functions of a given order of smoothness r on a triangulated region (or polyhedrally subdivided region) of Rd. The set of splines of degree at most k forms a vector space Crk() Moreover, a nice way to study Cr k()is to embed n Rd+1, and form the cone b of with the origin. It turns out that the set of splines on b is a graded module Cr b() over the polynomial ring R[x1; : : : ; xd+1], and the dimension of Cr k() is the dimension o This dissertation follows the works of Billera and Rose, as well as Schenck and Stillman, who each approached the study of splines from the viewpoint of homological and commutative algebra. They both defined chain complexes of modules such that Cr(b) appeared as the top homology module. First, we analyze the effects of gluing planar simplicial complexes. Suppose 1, 2, and = 1 [ 2 are all planar simplicial complexes which triangulate pseudomanifolds. When 1 \ 2 is also a planar simplicial complex, we use the Mayer-Vietoris sequence to obtain a natural relationship between the spline modules Cr(b), Cr (c1), Cr(c2), and Cr( \ 1 \ 2). Next, given a simplicial complex , we study splines which also vanish on the boundary of. The set of all such splines is denoted by Cr(b). In this case, we will discover a formula relating the Hilbert polynomials of Cr(cb) and Cr (b). Finally, we consider splines which are defined on a polygonally subdivided region of the plane. By adding only edges to to form a simplicial subdivision , we will be able to find bounds for the dimensions of the vector spaces Cr k() for k 0. In particular, these bounds will be given in terms of the dimensions of the vector spaces Cr k() and geometrical data of both and . This dissertation concludes with some thoughts on future research questions and an appendix describing the Macaulay2 package SplineCode, which allows the study of the Hilbert polynomials of the spline modules.
APA, Harvard, Vancouver, ISO, and other styles
16

Meyer, David Christopher. "Universal deformation rings and fusion." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1883.

Full text
Abstract:
This thesis is on the representation theory of finite groups. Specifically, it is about finding connections between fusion and universal deformation rings. Two elements of a subgroup N of a finite group Γ are said to be fused if they are conjugate in Γ, but not in N. The study of fusion arises in trying to relate the local structure of Γ (for example, its subgroups and their embeddings) to the global structure of Γ (for example, its normal subgroups, quotient groups, conjugacy classes). Fusion is also important to understand the representation theory of Γ (for example, through the formula for the induction of a character from N to Γ). Universal deformation rings of irreducible mod p representations of Γcan be viewed as providing a universal generalization of the Brauer character theory of these mod p representations of Γ. It is the aim of this thesis to connect fusion to this universal generalization by considering the case when Γ is an extension of a finite group G of order prime to p by an elementary abelian p-group N of rank 2. We obtain a complete answer in the case when G is a dihedral group, and we also consider the case when G is abelian. On the way, we compute for many absolutely irreducible FpΓ-modules V, the cohomology groups H2(Γ,HomFp(V,V) for i = 1, 2, and also the universal deformation rings R(Γ,V).
APA, Harvard, Vancouver, ISO, and other styles
17

Stigner, Carl. "Hopf and Frobenius algebras in conformal field theory." Doctoral thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-14456.

Full text
Abstract:
There are several reasons to be interested in conformal field theories in two dimensions. Apart from arising in various physical applications, ranging from statistical mechanics to string theory, conformal field theory is a class of quantum field theories that is interesting on its own. First of all there is a large amount of symmetries. In addition, many of the interesting theories satisfy a finiteness condition, that together with the symmetries allows for a fully non-perturbative treatment, and even for a complete solution in a mathematically rigorous manner. One of the crucial tools which make such a treatment possible is provided by category theory. This thesis contains results relevant for two different classes of conformal field theory. We partly treat rational conformal field theory, but also derive results that aim at a better understanding of logarithmic conformal field theory. For rational conformal field theory, we generalize the proof that the construction of correlators, via three-dimensional topological field theory, satisfies the consistency conditions to oriented world sheets with defect lines. We also derive a classifying algebra for defects. This is a semisimple commutative associative algebra over the complex numbers whose one-dimensional representations are in bijection with the topological defect lines of the theory. Then we relax the semisimplicity condition of rational conformal field theory and consider a larger class of categories, containing non-semisimple ones, that is relevant for logarithmic conformal field theory. We obtain, for any finite-dimensional factorizable ribbon Hopf algebra H, a family of symmetric commutative Frobenius algebras in the category of bimodules over H. For any such Frobenius algebra, which can be constructed as a coend, we associate to any Riemann surface a morphism in the bimodule category. We prove that this morphism is invariant under a projective action of the mapping class group ofthe Riemann surface. This suggests to regard these morphisms as candidates for correlators of bulk fields of a full conformal field theories whose chiral data are described by the category of left-modules over H.
APA, Harvard, Vancouver, ISO, and other styles
18

Forsberg, Love. "Semigroups, multisemigroups and representations." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-327270.

Full text
Abstract:
This thesis consists of four papers about the intersection between semigroup theory, category theory and representation theory. We say that a representation of a semigroup by a matrix semigroup is effective if it is injective and define the effective dimension of a semigroup S as the minimal n such that S has an effective representation by square matrices of size n. A multisemigroup is a generalization of a semigroup where the multiplication is set-valued, but still associative. A 2-category consists of objects, 1-morphisms and 2-morphisms. A finitary 2-category has finite dimensional vector spaces as objects and linear maps as morphisms. This setting permits the notion of indecomposable 1-morphisms, which turn out to form a multisemigroup. Paper I computes the effective dimension Hecke-Kiselman monoids of type A. Hecke-Kiselman monoids are defined by generators and relations, where the generators are vertices and the relations depend on arrows in a given quiver. Paper II computes the effective dimension of path semigroups and truncated path semigroups. A path semigroup is defined as the set of all paths in a quiver, with concatenation as multiplication. It is said to be truncated if we introduce the relation that all paths of length N are zero. Paper III defines the notion of a multisemigroup with multiplicities and discusses how it better captures the structure of a 2-category, compared to a multisemigroup (without multiplicities). Paper IV gives an example of a family of 2-categories in which the multisemigroup with multiplicities is not a semigroup, but where the multiplicities are either 0 or 1. We describe these multisemigroups combinatorially.
APA, Harvard, Vancouver, ISO, and other styles
19

de, Boer Menno. "A Proof and Formalization of the Initiality Conjecture of Dependent Type Theory." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-181640.

Full text
Abstract:
In this licentiate thesis we present a proof of the initiality conjecture for Martin-Löf’s type theory with 0, 1, N, A+B, ∏AB, ∑AB, IdA(u,v), countable hierarchy of universes (Ui)iєN closed under these type constructors and with type of elements (ELi(a))iєN. We employ the categorical semantics of contextual categories. The proof is based on a formalization in the proof assistant Agda done by Guillaume Brunerie and the author. This work was part of a joint project with Peter LeFanu Lumsdaine and Anders Mörtberg, who are developing a separate formalization of this conjecture with respect to categories with attributes and using the proof assistant Coq over the UniMath library instead. Results from this project are planned to be published in the future. We start by carefully setting up the syntax and rules for the dependent type theory in question followed by an introduction to contextual categories. We then define the partial interpretation of raw syntax into a contextual category and we prove that this interpretation is total on well-formed input. By doing so, we define a functor from the term model, which is built out of the syntax, into any contextual category and we show that any two such functors are equal. This establishes that the term model is initial among contextual categories. At the end we discuss details of the formalization and future directions for research. In particular, we discuss a memory issue that arose in type checking the formalization and how it was resolved.

Licentiate defense over Zoom.

APA, Harvard, Vancouver, ISO, and other styles
20

Pressland, Matthew. "Frobenius categorification of cluster algebras." Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678852.

Full text
Abstract:
Cluster categories, introduced by Buan–Marsh–Reineke–Reiten–Todorov and later generalised by Amiot, are certain 2-Calabi–Yau triangulated categories that model the combinatorics of cluster algebras without frozen variables. When frozen variables do occur, it is natural to try to model the cluster combinatorics via a Frobenius category, with the indecomposable projective-injective objects corresponding to these special variables. Amiot–Iyama–Reiten show how Frobenius categories admitting (d-1)-cluster-tilting objects arise naturally from the data of a Noetherian bimodule d-Calabi–Yau algebra A and an idempotent e of A such that A/< e > is finite dimensional. In this work, we observe that this phenomenon still occurs under the weaker assumption that A and A^op are internally d-Calabi–Yau with respect to e; this new definition allows the d-Calabi–Yau property to fail in a way controlled by e. Under either set of assumptions, the algebra B=eAe is Iwanaga–Gorenstein, and eA is a cluster-tilting object in the Frobenius category GP(B) of Gorenstein projective B-modules. Geiß–Leclerc–Schröer define a class of cluster algebras that are, by construction, modelled by certain Frobenius subcategories Sub(Q_J) of module categories over preprojective algebras. Buan–Iyama–Reiten–Smith prove that the endomorphism algebra of a cluster-tilting object in one of these categories is a frozen Jacobian algebra. Following Keller–Reiten, we observe that such algebras are internally 3-Calabi–Yau with respect to the idempotent corresponding to the frozen vertices, thus obtaining a large class of examples of such algebras. Geiß–Leclerc–Schröer also attach, via an algebraic homogenization procedure, a second cluster algebra to each category Sub(Q_J), by adding more frozen variables. We describe how to compute the quiver of a seed in this cluster algebra via approximation theory in the category Sub(Q_J); our alternative construction has the advantage that arrows between the frozen vertices appear naturally. We write down a potential on this enlarged quiver, and conjecture that the resulting frozen Jacobian algebra A and its opposite are internally 3-Calabi–Yau. If true, the algebra may be realised as the endomorphism algebra of a cluster-tilting object in a Frobenius category GP(B) as above. We further conjecture that GP(B) is stably 2-Calabi–Yau, in which case it would provide a categorification of this second cluster algebra.
APA, Harvard, Vancouver, ISO, and other styles
21

Weighill, Thomas. "Bifibrational duality in non-abelian algebra and the theory of databases." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96125.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: In this thesis we develop a self-dual categorical approach to some topics in non-abelian algebra, which is based on replacing the framework of a category with that of a category equipped with a functor to it. We also make some first steps towards a possible link between this theory and the theory of databases in computer science. Both of these theories are based around the study of Grothendieck bifibrations and their generalisations. The main results in this thesis concern correspondences between certain structures on a category which are relevant to the study of categories of non-abelian group-like structures, and functors over that category. An investigation of these correspondences leads to a system of dual axioms on a functor, which can be considered as a solution to the proposal of Mac Lane in his 1950 paper "Duality for Groups" that a self-dual setting for formulating and proving results for groups be found. The part of the thesis concerned with the theory of databases is based on a recent approach by Johnson and Rosebrugh to views of databases and the view update problem.
AFRIKAANSE OPSOMMING: In hierdie tesis word ’n self-duale kategoriese benadering tot verskeie onderwerpe in nie-abelse algebra ontwikkel, wat gebaseer is op die vervanging van die raamwerk van ’n kategorie met dié van ’n kategorie saam met ’n funktor tot die kategorie. Ons neem ook enkele eerste stappe in die rigting van ’n skakel tussen hierdie teorie and die teorie van databasisse in rekenaarwetenskap. Beide hierdie teorieë is gebaseer op die studie van Grothendieck bifibrasies en hul veralgemenings. Die hoof resultate in hierdie tesis het betrekking tot ooreenkomste tussen sekere strukture op ’n kategorie wat relevant tot die studie van nie-abelse groep-agtige strukture is, en funktore oor daardie kategorie. ’n Verdere ondersoek van hierdie ooreemkomste lei tot ’n sisteem van duale aksiomas op ’n funktor, wat beskou kan word as ’n oplossing tot die voorstel van Mac Lane in sy 1950 artikel “Duality for Groups” dat ’n self-duale konteks gevind word waarin resultate vir groepe geformuleer en bewys kan word. Die deel van hierdie tesis wat met die teorie van databasisse te doen het is gebaseer op ’n onlangse benadering deur Johnson en Rosebrugh tot aansigte van databasisse en die opdatering van hierdie aansigte.
APA, Harvard, Vancouver, ISO, and other styles
22

Pinto, Aline Gomes da Silva. "Propriedades homologicas de grupos pro-p." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306931.

Full text
Abstract:
Orientador: Dessislava H. Kochloukova
Tese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T14:37:32Z (GMT). No. of bitstreams: 1 Pinto_AlineGomesdaSilva_D.pdf: 2789516 bytes, checksum: 20f42bafb2b08678ceb88f751e8b275e (MD5) Previous issue date: 2005
Resumo: Neste trabalho, provamos dois resultados sobre propriedades homológicas de grupos pro-p. O primeiro responde positivamente à conjectura de J. King que afirma que, se G é um grupo pro-p metabeliano finitamente gerado e m um inteiro positivo, então G mergulha como subgrupo fechado em um grupo pro-p metabeliano de tipo homológico F Pm. O segundo resultado caracteriza módulos pro-p B de tipo homológico F P m sobre [[ZpG]], onde G é um grupo pro-p metabeliano topologicamente finitamente gerado, dado pela extensão de um grupo pro-p abeliano A por um grupo pro-p abeliano Q, e B é um [[ZpQ]]-módulo pro-p finitamente gerado que é visto como um [[ZpG]]-módulo pro-p via a projeção de G -t Q. A caracterização é dada em termos do invariante para grupos pro-p metabelianos introduzido por J. King [15] e é uma generalização do caso onde B = Zp é o anel de inteiros p-ádicos considerado como G-módulo trivial, que dá a classificação dos grupos pro-p metabelianos de tipo homológico FPm, provado por D. Kochloukova [18]
Abstract: In this work, we prove two results about homological properties of metabelian pro-p groups. The first one answers positively a conjecture suggested by J. King that, if G is a finitely generated metabelian pro-p group and m a positive integer, G embeds in a metabelian pro-p group of homological type F P m. The second result caracterize the modules B of homological type F P mover [[ZpG]], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p [[ZpQ]]-module that is viewed as a pro-p [[ZpG]]-module via the projection G -f Q. The characterization is given in terms of the invariant introduced by J. King [15] and is a generalization of the case when B = Zp is considered as a trivial [[ZpG]]-module, that gives the classification of metabelian pro-p groups of type FPm, proved by D. Kochloukova [18]
Doutorado
Matematica
Doutor em Matemática
APA, Harvard, Vancouver, ISO, and other styles
23

Laubacher, Jacob C. "Secondary Hochschild and Cyclic (Co)homologies." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hoefel, Eduardo Outeiral Correa. "Espaço de configurações e OCHA." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307207.

Full text
Abstract:
Orientador: Alcibiades Rigas, Tomas Edson Barros
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-06T01:35:44Z (GMT). No. of bitstreams: 1 Hoefel_EduardoOuteiralCorrea_D.pdf: 1956293 bytes, checksum: 425e3f8509c6c6d5b7e71d692027dfaf (MD5) Previous issue date: 2006
Resumo: Esta tese consiste do estudo das OCHAs (Open-Closed Homotopy Algebras) sob os pontos de vista algébrico e geométrico. São demonstrados essencialmente dois resultados novos. O primeiro refere-se à definição de OCHA através de coderivações. Mais especificamente, provamos que qualquer coderivação D E Coderl (sc'Hc 0 TC'Ho) de grau 1 satisfazendo D2 = O define uma estrutura de OCHA em 'H = 'Hcffi'Ho. Onde 'Hc e 'Ho são os espaços de estados da teoria de campo de corda para cordas fechadas ("dosed strings") e cordas abertas ("open strings"), respectivamente. Até então, sabia-se que as OCHAs eram dadas por coderivações [14], mas o fato de que qualquer coderivação define uma OCHA, é novo. O segundo resultado envolve a relação entre OCHA e a versão real da compactificação de Fulton MacPherson do espaço de configurações de pontos no semi-plano superior fechado. Este resultado mostra a estreita relação entre OCHAs e a operada do "Queijo Suíço" introduzida por Voronov [41], tal relação foi de fato sugeri da na introdução de [14]. O capítulo 1 contém uma discussão sobre a definição de OCHA usando coálgebras e a conseqüente caracterização das coderivações mencionada acima. Mostramos também que a estrutura de OCHA pode ser obtida a partir de certas álgebras A(X) de forma inteiramente análoga ao modo como álgebras de Lie podem ser obtidas a partir de álgebras associativas. Em seguida, o capítulo 2 traz a abordagem das OCHAs através de operadas. O capítulo 3 traz uma discussão detalhada do espaço C(p, q) (a compactificação de Fulton;.MacPherson do espaço de configurações de p + q pontos no semi-plano superior fechado com p pontos no interior e q pontos no bordo) e no capítulo 4 mostramos que a parte essencial da operada que descreve as OCHAs aparece na primeira linha do termo E1 da seqüência espectral induzida por aquele espaço. O resultado mencionado acima significa que a estrutura algébrica das OCHAs está codificada na estratificação do bordo da variedade C(p, q), visto que esta última tem uma estrutura de variedade com córneres. No capítulo final discutimos o significado dos dois resultados obtidos procurando fazer um paralelo entre as abordagens geométrica e algébrica e mencionamos alguns problemas interessantes, como continuação deste trabalho, que podem ser considerados por estudantes interessados em Álgebras Homotópicas e temas relacionados
Abstract: This thesis consists of the study of OCHA (Open-Closed Homotopy Algebras) from both the algebraic and geometric viewpoint. It essentially contains the proof of two new results. The first one is related to the definition of OCHA through coderivations. More specifically, it is shown that any degree one coderivation D E Caderl(Sc7íc 0 TC7ío) such that D2 = O defines an OCHA structure on 7í = 7íc E9 7ío. Where 7íc and 7ío are respectively the state spaces of Closed String Field Theory and apen String Field Theory. It was cIear since its definition in 2004 that OCHAs can be defined in terms of coderivations. Nevertheless, the fact that any such coderivation is of the OCHA form is new. The second result involves the relation between OCHA and the real version of the Fulton MacPherson compactification of the configuration space of points on the cIosed upper half-plane. That result shows the cIose relation between OCHAs and the Swiss-Cheese operad introduced by Voronov [411. Such relation was in fact suggested in the introductian of [141. Chapter 1 contains a discussion about the coalgebraic definition of OCHA and the above mentioned characterization of alI coderivations. It is also shown that OCHA can be obtained from certain A8 algebras, similarly to way in which Lie algebras are obtained fro_ associative algebras. Chapter 2 then shows how to approach OCHA using aperads. The space C(p, q) (the FuIton-MacPherson compactification of the configuration space of p + q points on the upper half-plane with p interior points and q boundary points) is discussed on chapter 3 and on chapter 4 it is shown that the essential part of the operad describing OCHA appears on the first line Of the spectral sequence induced by that space. In other words, we could say that the algebraic structure of OCHA is encoded in the stratification of C(p, q), since this space has the structure of a manifold with corners. The final chapter is a discussion about the meaning of the two mais results of this thesis. After that, some problems which could be explored by the student interested on homotopy algebras and related subjects are mentioned.
Doutorado
Geometria Topologia
Doutor em Matemática
APA, Harvard, Vancouver, ISO, and other styles
25

Silva, Flavia Souza Machado da. "Propriedades homologicas de mergulho de grupos discretos metabelianos." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306930.

Full text
Abstract:
Orientador: Dessislava H. Kochloukova
Tese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-06T15:28:56Z (GMT). No. of bitstreams: 1 Silva_FlaviaSouzaMachadoda_D.pdf: 1082384 bytes, checksum: 3f3ae60f2e4ab201df78d9bb624249ef (MD5) Previous issue date: 2006
Resumo: Estudamos propriedades homológicas de mergulho de grupos metabelianos finitamente gerados e estendemos um trabalho recente [19] em que foi mostrado que para m, um número natural fixo, todo grupo G metabelianofinitamente gerado mergulha num quociente de um grupo metabeliano de tipo F.P m e ainda que G mergulha em um grupo metabeliano de tipo FP4. Mais precisamente, mostramos que para m, um número natural fixo, todo grupo metabeliano finitamente gerado mergulha num grupo metabeliano de tipo FPm. Para isto usamos idéias de álgebra comutativa, tais como o Teorema de normalização de Noether e propriedades de mergulho de módulos finitamente gerados sobre anéis comutativos através de localização. No caso de grupos metabelianos obtemos mergulhos em extensões HNN metabelianas. Um passo importante na nossa demonstração é o uso do método de Áberg para garantir que num caso muito particular a FPm-Conjectura para grupos metabelianos é verdadeira. A FPm-Conjectura para grupos metabelianos sugere quando um grupo metabeliano tem tipo FPm, mas ela ainda está em aberto. É interessante observar que o método de Áberg mistura idéias de álgebra comutativa e topologia algébrica (ação de grupo sobre um subcomplexo de um produto finito de árvores)
Abstract: We study embedding homological properties of finitely generated metabelian groups and we extend an earlier work in [19] where it was shown that for a fixed m every finitely generated metabelian group G embeds in a quotient of a metabelian group of homological type FPm and furthermore that G embeds in a metabelian group of type FP4. More precisely we show that for a fixed m every finitely generated metabelian group G embeds in a metabelian group of type FPm. This is proved using ideas of commutative algebra, such as Noether normalization theorem and properties of embedding of finitely generated modules over commutative rings via localization. In the case of metabelian groups this gives embedding into a metabelian HNN extensions. An important step in the proof is the use of the Áberg method to guarantee that the FPm-conjecture in a very particular case is true. The FPm-conjecture for metabelian groups suggests when a metabelian group has a homological type FPm, but it is still open. It is interesting to note that the Áberg method mixes ideas from commutative algebra and algebraic topology (action of group on a subcomplex af a finite product of trees)
Doutorado
Matematica
Doutor em Matemática
APA, Harvard, Vancouver, ISO, and other styles
26

Griffiths, Rhiannon Cerys. "Slices of Globular Operads for Higher Categories." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1623155240596704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Steele, Hugh Paul. "Combinatorial arguments for linear logic full completeness." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/combinatorial-arguments-for-linear-logic-full-completeness(274c6b87-dc58-4dc3-86bc-8c29abc2fc34).html.

Full text
Abstract:
We investigate categorical models of the unit-free multiplicative and multiplicative-additive fragments of linear logic by representing derivations as particular structures known as dinatural transformations. Suitable categories are considered to satisfy a property known as full completeness if all such entities are the interpretation of a correct derivation. It is demonstrated that certain Hyland-Schalk double glueings [HS03] are capable of transforming large numbers of degenerate models into more accurate ones. Compact closed categories with finite biproducts possess enough structure that their morphisms can be described as forms of linear arrays. We introduce the notion of an extended tensor (or ‘extensor’) over arbitrary semirings, and show that they uniquely describe arrows between objects generated freely from the tensor unit in such categories. It is made evident that the concept may be extended yet further to provide meaningful decompositions of more general arrows. We demonstrate how the calculus of extensors makes it possible to examine the combinatorics of certain double glueing constructions. From this we show that the Hyland-Tan version [Tan97], when applied to compact closed categories satisfying a far weaker version of full completeness, produces genuine fully complete models of unit-free multiplicative linear logic. Research towards the development of a full completeness result for the multiplicative-additive fragment is detailed. The proofs work for categories of finite arrays over certain semirings under both the Hyland-Tan and Schalk [Sch04] constructions. We offer a possible route to finishing this proof. An interpretation of these results with respect to linear logic proof theory is provided, and possible further research paths and generalisations are discussed.
APA, Harvard, Vancouver, ISO, and other styles
28

Onório, Ana Cláudia Lopes 1989. "Propriedades homológicas de produtos subdiretos de grupos limites." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306923.

Full text
Abstract:
Orientador: Dessislava Hristova Kochloukova
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-24T15:38:10Z (GMT). No. of bitstreams: 1 Onorio_AnaClaudiaLopes_M.pdf: 2325797 bytes, checksum: e0938ac85576f21ee8723d0aab2b0475 (MD5) Previous issue date: 2014
Resumo: Estudamos o tipo homológico FPs de produtos subdiretos de grupos limites seguindo resultados de Bridson, Howie, Miller, Short. Desenvolvemos teoria de grupos limites usando como ferramenta homologia algébrica e teoria geométrica de grupos, em particular a teoria de Bass-Serre sobre grupos que agem sobre árvores. Palavras-chaves: teoria de Bass-Serre, álgebra homológica, grupos de tipo FPn, grupos limites, produto subdireto de grupos limites
Abstract: The homological type FPs of subdirect products of limit groups was studied according to Bridson, Howie, Miller and Short's results. The limit group theory was developed using as a tool the algebraic homology and geometric group theory and in particular Bass-Serre theory on groups acting on trees. Keywords: Bass-Serre theory, homological algebra, groups of type FPn, limit groups, subdirect product of limit groups
Mestrado
Matematica
Mestra em Matemática
APA, Harvard, Vancouver, ISO, and other styles
29

Lu, Weiyun. "Topics in Many-valued and Quantum Algebraic Logic." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35173.

Full text
Abstract:
Introduced by C.C. Chang in the 1950s, MV algebras are to many-valued (Łukasiewicz) logics what boolean algebras are to two-valued logic. More recently, effect algebras were introduced by physicists to describe quantum logic. In this thesis, we begin by investigating how these two structures, introduced decades apart for wildly different reasons, are intimately related in a mathematically precise way. We survey some connections between MV/effect algebras and more traditional algebraic structures. Then, we look at the categorical structure of effect algebras in depth, and in particular see how the partiality of their operations cause things to be vastly more complicated than their totally defined classical analogues. In the final chapter, we discuss coordinatization of MV algebras and prove some new theorems and construct some new concrete examples, connecting these structures up (requiring a detour through effect algebras!) to boolean inverse semigroups.
APA, Harvard, Vancouver, ISO, and other styles
30

Zanasi, Fabio. "Interacting Hopf Algebras- the Theory of Linear Systems." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1020/document.

Full text
Abstract:
Dans cette thèse, on présente la théorie algébrique IH par le biais de générateurs et d’équations.Le modèle libre de IH est la catégorie des sous-espaces linéaires sur un corps k. Les termes de IH sont des diagrammes de cordes, qui, selon le choix de k, peuvent exprimer différents types de réseaux et de formalismes graphiques, que l’on retrouve dans des domaines scientifiques divers, tels que les circuits quantiques, les circuits électriques et les réseaux de Petri. Les équations de IH sont obtenues via des lois distributives entre algèbres de Hopf – d’où le nom “Interacting Hopf algebras” (algèbres de Hopf interagissantes). La caractérisation via les sous-espaces permet de voir IH comme une syntaxe fondée sur les diagrammes de cordes pour l’algèbre linéaire: les applications linéaires, les espaces et leurs transformations ont chacun leur représentation fidèle dans le langage graphique. Cela aboutit à un point de vue alternatif, souvent fructueux, sur le domaine.On illustre cela en particulier en utilisant IH pour axiomatiser la sémantique formelle de circuits de calculs de signaux, pour lesquels on s’intéresse aux questions de la complète adéquation et de la réalisabilité. Notre analyse suggère un certain nombre d’enseignements au sujet du rôle de la causalité dans la sémantique des systèmes de calcul
We present by generators and equations the algebraic theory IH whose free model is the category oflinear subspaces over a field k. Terms of IH are string diagrams which, for different choices of k, expressdifferent kinds of networks and graphical formalisms used by scientists in various fields, such as quantumcircuits, electrical circuits and Petri nets. The equations of IH arise by distributive laws between Hopfalgebras - from which the name interacting Hopf algebras. The characterisation in terms of subspacesallows to think of IH as a string diagrammatic syntax for linear algebra: linear maps, spaces and theirtransformations are all faithfully represented in the graphical language, resulting in an alternative, ofteninsightful perspective on the subject matter. As main application, we use IH to axiomatise a formalsemantics of signal processing circuits, for which we study full abstraction and realisability. Our analysissuggests a reflection about the role of causality in the semantics of computing devices
APA, Harvard, Vancouver, ISO, and other styles
31

Martin, Maria Eugenia. "Propriedades homologicas de grupos pro-p." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306927.

Full text
Abstract:
Orientador: Dessislava Hristova Kochloukova
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T12:02:14Z (GMT). No. of bitstreams: 1 Martin_MariaEugenia_M.pdf: 974097 bytes, checksum: 862be4d1ac3b05cc1a28ba59cf6c0460 (MD5) Previous issue date: 2009
Resumo: Nesta dissertação discutimos propriedades homológicas de grupos discretos e grupos pro-p. Em particular trabalhamos com grupos abstratos de dualidade de Poincaré orientáveis de dimensão três e seu completamento pro-p. Os primeiros capítulos da dissertação incluem uma exposição sobre as propriedades homológicas básicas de grupos abstratos e grupos pro-p. Finalmente, descrevemos um resultado recente de [KZ], publicado em Transactions MAS ( 2008), que clássica quando o completamento pro-p de um grupo de dualidade de Poincaré orientável de dimensão três de um grupo pro-p de dualidade de Poincaré orientável de dimensão três
Abstract: In this dissertation we discuss homological properties of discrete groups and pro-p groups. In particular we work with groups of abstract of Poincaré duality of dimension three steerable and its pro-p completion. The first chapters of the dissertation include a presentation on the basic homological properties of abstract groups and pro-p groups. Finally, we describe a recent result of [KZ], published in Transactions AMS (2008), which ranks as the pro-p completion of a group of Poincare-steerable dual dimension of three is a group of pro-p duality of Poincare -steerable in three dimensions
Mestrado
Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
32

Lima, Igor dos Santos 1983. "Completamentos Pro-p de grupos de dualidade de Poincaré." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306926.

Full text
Abstract:
Orientador: Dessislava Hristova Kochloukova
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T17:04:33Z (GMT). No. of bitstreams: 1 Lima_IgordosSantos_D.pdf: 1446540 bytes, checksum: 1e68bfb627d234fa97739cd2e813b4a9 (MD5) Previous issue date: 2012
Resumo: Neste trabalho, nos Teoremas Principais, damos condições suficientes para que o completamento pro-p de um grupo abstrato PDn seja virtualmente um grupo pro-p PDs para algum s ? n - 2 com n ? 4. Esse resultado é uma generalização do Teorema 3 em [K-2009]. Nossa prova é baseada em [K-2009] e nos resultados de A. A. Korenev [Ko-2004] e [Ko-2005]. Além disso, damos alguns exemplos de grupos que satisfazem as condições dos Teoremas Principais
Abstract: In this work we give in the Main Theorems suffiient conditions for that the pro- p completion of an abstract orientable PDn group to be virtually a pro-p PDs group for some s ? n - 2 with n ? 4. This result is a generalization of the Theorem 3 in [K-2009]. Our proof is based on [K-2009] and on the results of A. A. Korenev [Ko-2004] and [Ko-2005]. Furthermore we give some examples of groups that satisfy the conditions of the Main Theorems
Doutorado
Matematica
Doutor em Matemática
APA, Harvard, Vancouver, ISO, and other styles
33

Bittmann, Léa. "Quantum Grothendieck rings, cluster algebras and quantum affine category O." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC024.

Full text
Abstract:
L'objectif de cette thèse est de construire et d'étudier une structure d'anneau de Grothendieck quantique pour une catégorie O de représentations de la sous-algèbre de Borel Uq(b) d'une algèbre affine quantique Uq(g). On s'intéresse dans un premier lieu à la construction de modules standards asymptotiques pour la catégorie O, qui sont des analogues des modules standards existant dans la catégorie des représentations de dimension finie de Uq(^g). Une construction complète de ces modules est proposée dans le cas où l'algèbre de Lie simple sous-jacente g est sl2. Ensuite, nous définissons un tore quantique qui étend le tore quantique contenant l'anneau de Grothendieck quantique de la catégorie des représentations de dimension finie.Nous utilisons pour cela des notions liées aux algèbres amassées quantiques. Dans le même esprit, nous proposons une construction d'une structure d'algèbre amassée quantique sur l'anneau de Grothendieck quantique Kt(Cz) d'une sous-catégorie monoïdale Cz de la catégorie des représentations de dimension finie. Puis, nous définissons un anneau de Grothendieck quantique Kt(O+Z) d'une sous catégorie O+Z de la catégorie O, comme une algèbre amassée quantique. Nous établissons ensuite que cet anneau de Grothendieck quantique contient celui de la catégorie des représentations de dimension finie. Ce résultat est montré directement en type A, puis en tout type simplement lacé en utilisant la structure d'algèbre amassée quantique de Kt(CZ).Enfin, nous définissons des (q,t)-caractères pour des représentations simples de dimension infinie remarquables de la catégorie O. Ceci nous permet d'écrire des versions t-déformées de relations importantes dans l'anneau de Grothendieck classique de la catégorie O+Z qui ont des liens avec les systèmes intégrables quantiques associés
The aim of this thesis is to construct and study some quantum Grothendieck ring structure for the category O of representations of the Borel subalgebra Uq(^b) of a quantum affine algebra Uq(^g). First of all, we focus on the construction of asymptotical standard modules, analogs in the context of the category O of the standard modules in the category of finite-dimensional Uq(^g)-modules. A construction of these modules is given in the case where the underlying simple Lie algebra g is sl2. Next, we define a new quantum torus, which extends the quantum torus containing the quantum Grothendieck ring of the category of finite-dimensional modules. In order todo this, we use notions linked to quantum cluster algebras. In the same spirit, we build a quantum cluster algebra structure on the quantum Grothendieck ring of a monoidal subcategory CZ of the category of finite-dimensional representations. With this quantum torus, we de_ne the quantum Grothendieck ring Kt(O+Z) of a subcategory O+Z of the category O as a quantum cluster algebra. Then, we prove that this quantum Grothendieck ring contains that of the category of finite-dimensional representation. This result is first shown directly in type A, and then in all simply-laced types using the quantum cluster algebra structure of Kt(CZ). Finally, we define (q,t)-characters for some remarkable infinite-dimensional simple representations in the category O+Z. This enables us to write t-deformed analogs of important relations in the classical Grothendieck ring of the category O, which are related to the corresponding quantum integrable systems
APA, Harvard, Vancouver, ISO, and other styles
34

Rabelo, Lonardo 1983. "Um grupo de Richard Thompson e seu invariante homotopico sigma." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306916.

Full text
Abstract:
Orientador: Dessislava H. Kochloukova
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-11T14:04:12Z (GMT). No. of bitstreams: 1 Rabelo_Lonardo_M.pdf: 1106165 bytes, checksum: 2bbac38aebd1bf1d09d9f3bc26c12171 (MD5) Previous issue date: 2008
Resumo: Neste projeto de mestrado, estudamos um dos grupos de Richard Thompson e apresentamos os cálculos de seu invariante homotópico Sigma, em qualquer dimensão m, onde m é um inteiro positivo. O grupo de Richard Thompson, denotado por F, foi por ele definido em 1965 e ficou conhecido, mais tarde, por suas propriedades homotópicas e homológicas interessantes. Por exemplo, F é tipo FP8 ([04]). Além disso, F pode ser descrito de maneiras distintas, o que o torna ainda mais interessante. A teoria de invariantes (homotópicos e homológicos) Sigma foi desenvolvida nas últimas décadas do século vinte por R. Bieri, J. Groves, R. Geoghegan, H. Meinert, R. Strebel e outros e está relacionada com propriedades FPm de grupos. O Invariante _1(F) foi obtido em [03]. Recentemente, o caso geral do invariante _m(F) e _m(F, Z) (homotópico e homológico, respectivamente), m = 2, foi descrito por R. Bieri, R. Geoghegan e D. Kochloukova. Nesta dissertação, apresentamos a versão homotópica deste resultado
Abstract: In this project we study one of the Richard Thompson's Group F e its Homotopical m-dimensional Sigma Invariant. The Richard Thompson Group F is very known by its interesting homological and homotopical properties, for example, it is of type FP8 ([04]). Also, F has the property of being defined in several distinct ways. The Sigma Invariant Theory was developed in last decades of twentieth century by R. Bieri, J. Groves, R. Geoghegan, H. Meinert, R. Strebel and others and is related to FPm properties of groups. The _1(F) was obtained in [03]. Recently the general case of _m(F) and _m(F, Z) (homotopical and homological versions, respectively), m = 2, were described by R. Bieri, R. Geoghegan and D. Kochloukova. Here, we present the homotopical version of this result
Mestrado
Algebra
Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
35

Valence, Arnaud. "Esquisse d'une dualité géométrico-algébrique pluridisciplinaire : la dualité d'Isbell." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE3032/document.

Full text
Abstract:
Après avoir exposé l'importance des dualités géométrico-algébriques dans l'histoire des mathématiques, la thèse propose de rassembler bon nombre d'entre elle sous une approche unifiée abstraite, la dualité d'Isbell. La dualité d'Isbell est formellement définie comme une adjonction entre un préfaisceau et un copréfaisceau, et permet de définir un nouveau paradigme de constructivité baptisé P3. En mathématique, nous montrons que cette dualité est présente en géométrie algébrique, en géométrie algébrique dérivée, en topologie algébrique et en analyse fonctionnelle. En logique contemporaine, nous montrons qu'elle peut être rendue explicite dans la géométrie de l'interaction de Girard. Nous montrons ensuite comment les sciences appliquées peuvent faire usage de la dualité d'Isbell, en permettant de renouveler significativement les théories. En sciences physiques, nous montrons qu'elle ouvre une perspective dans la théorie quantique des champs, vers la dualisation des représentations de Heisenberg et de Schrödinger. En sciences économiques et sociales, nous montrons qu'elle permet de renouveler la théorie de l'équilibre générale et la théorie de la valeur. En sciences de l'apprentissage, nous montrons qu'il est possible de reconsidérer la théorie de l'enquête de Dewey en termes de dualité espace-action, pour finalement dégager une dualité d'Isbell. Nous concluons en ouvrant un débat sur la notion bachelardienne d'obstacle épistémologique, pour montrer comment P3 peut avoir des difficultés à s'imposer, et en consacrant quelques développements ontologiques sur la nature kantienne et post-hégélienne de la thèse
After exposing the importance of geometric-algebraic dualities in the history of mathematics, the thesis proposes to bring together many of them under an unified abstract approach, the Isbell duality. The Isbell duality is formally defined as an adjunction between a presheaf and a copresheaf, and allows to define a new paradigm of constructivity called P3. In mathematics, we show that this duality is present in algebraic geometry, derived algebraic geometry, algebraic topology and functional analysis. In contemporary logic, we show that Isbell duality can be made explicit in the geometry of interaction of Girard. We then show how applied sciences can make use of Isbell duality, allowing to significantly renew theories. In physical sciences, we show that it opens a perspective in quantum field theory, towards the dualization of Heisenberg and Schrödinger representations. In economic and social sciences, we show that it allows to renew the general equilibrium theory and the theory of value. In learning sciences, we show that it is possible to reconsider Dewey's theory of inquiry in terms of space-action duality, ultimately to reveal an Isbell duality. We conclude by opening a debate on the Bachelardian notion of epistemological obstacle, showing how P3 can have difficulties to establish itself as reference constructive paradigm, and by devoting some ontological developments to the Kantian and post-Hegelian nature of the thesis
APA, Harvard, Vancouver, ISO, and other styles
36

Ferreira, Rodrigo Costa. "Semântica proposicional categórica." Universidade Federal da Paraí­ba, 2010. http://tede.biblioteca.ufpb.br:8080/handle/tede/5678.

Full text
Abstract:
Made available in DSpace on 2015-05-14T12:11:59Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 891353 bytes, checksum: 2d056c7f53fdfb7c20586b64874e848d (MD5) Previous issue date: 2010-12-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The basic concepts of what later became called category theory were introduced in 1945 by Samuel Eilenberg and Saunders Mac Lane. In 1940s, the main applications were originally in the fields of algebraic topology and algebraic abstract. During the 1950s and 1960s, this theory became an important conceptual framework in other many areas of mathematical research, especially in algrebraic homology and algebraic geometry, as shows the works of Daniel M. Kan (1958) and Alexander Grothendieck (1957). Late, questions mathematiclogics about the category theory appears, in particularly, with the publication of the Functorial Semantics of Algebraic Theories (1963) of Francis Willian Lawvere. After, other works are done in the category logic, such as the the current Makkai (1977), Borceux (1994), Goldblatt (2006), and others. As introduction of application of the category theory in logic, this work presents a study on the logic category propositional. The first section of this work, shows to the reader the important concepts to a better understanding of subject: (a) basic components of category theory: categorical constructions, definitions, axiomatic, applications, authors, etc.; (b) certain structures of abstract algebra: monoids, groups, Boolean algebras, etc.; (c) some concepts of mathematical logic: pre-order, partial orderind, equivalence relation, Lindenbaum algebra, etc. The second section, it talk about the properties, structures and relations of category propositional logic. In that section, we interpret the logical connectives of the negation, conjunction, disjunction and implication, as well the Boolean connectives of complement, intersection and union, in the categorical language. Finally, we define a categorical boolean propositional semantics through a Boolean category algebra.
Os conceitos básicos do que mais tarde seria chamado de teoria das categorias são introduzidos no artigo General Theory of Natural Equivalences (1945) de Samuel Eilenberg e Saunders Mac Lane. Já em meados da década de 1940, esta teoria é aplicada com sucesso ao campo da topologia. Ao longo das décadas de 1950 e 1960, a teoria das categorias ostenta importantes mudanças ao enfoque tradicional de diversas áreas da matemática, entre as quais, em especial, a álgebra geométrica e a álgebra homológica, como atestam os pioneiros trabalhos de Daniel M. Kan (1958) e Alexander Grothendieck (1957). Mais tarde, questões lógico-matemáticas emergem em meio a essa teoria, em particular, com a publica ção da Functorial Semantics of Algebraic Theories (1963) de Francis Willian Lawvere. Desde então, diversos outros trabalhos vêm sendo realizados em lógica categórica, como os mais recentes Makkai (1977), Borceux (1994), Goldblatt (2006), entre outros. Como inicialização à aplicação da teoria das categorias à lógica, a presente dissertação aduz um estudo introdutório à lógica proposicional categórica. Em linhas gerais, a primeira parte deste trabalho procura familiarizar o leitor com os conceitos básicos à pesquisa do tema: (a) elementos constitutivos da teoria das categorias : axiomática, construções, aplicações, autores, etc.; (b) algumas estruturas da álgebra abstrata: monóides, grupos, álgebra de Boole, etc.; (c) determinados conceitos da lógica matemática: pré-ordem; ordem parcial; equivalência, álgebra de Lindenbaum, etc. A segunda parte, trata da aproximação da teoria das categorias à lógica proposicional, isto é, investiga as propriedades, estruturas e relações próprias à lógica proposicional categórica. Nesta passagem, há uma reinterpreta ção dos conectivos lógicos da negação, conjunção, disjunção e implicação, bem como dos conectivos booleanos de complemento, interseção e união, em termos categóricos. Na seqüência, estas novas concepções permitem enunciar uma álgebra booleana categórica, por meio da qual, ao final, é construída uma semântica proposicional booleana categórica.
APA, Harvard, Vancouver, ISO, and other styles
37

Bogdanic, Dusko. "Graded blocks of group algebras." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:faeaaeab-1fe6-46a9-8cbb-f3f633131a73.

Full text
Abstract:
In this thesis we study gradings on blocks of group algebras. The motivation to study gradings on blocks of group algebras and their transfer via derived and stable equivalences originates from some of the most important open conjectures in representation theory, such as Broue’s abelian defect group conjecture. This conjecture predicts the existence of derived equivalences between categories of modules. Some attempts to prove Broue’s conjecture by lifting stable equivalences to derived equivalences highlight the importance of understanding the connection between transferring gradings via stable equivalences and transferring gradings via derived equivalences. The main idea that we use is the following. We start with an algebra which can be easily graded, and transfer this grading via derived or stable equivalence to another algebra which is not easily graded. We investigate the properties of the resulting grading. In the first chapter we list the background results that will be used in this thesis. In the second chapter we study gradings on Brauer tree algebras, a class of algebras that contains blocks of group algebras with cyclic defect groups. We show that there is a unique grading up to graded Morita equivalence and rescaling on an arbitrary basic Brauer tree algebra. The third chapter is devoted to the study of gradings on tame blocks of group algebras. We study extensively the class of blocks with dihedral defect groups. We investigate the existence, positivity and tightness of gradings, and we classify all gradings on these blocks up to graded Morita equivalence. The last chapter deals with the problem of transferring gradings via stable equivalences between blocks of group algebras. We demonstrate on three examples how such a transfer via stable equivalences is achieved between Brauer correspondents, where the group in question is a TI group.
APA, Harvard, Vancouver, ISO, and other styles
38

Melani, Valerio. "Poisson and coisotropic structures in derived algebraic geometry." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC299/document.

Full text
Abstract:
Dans cette thèse, on définit et on étudie les notions de structure de Poisson et coïsotrope sur un champ dérivé, dans le contexte de la géométrie algébrique dérivée. On considère deux présentations différentes de structure de Poisson : la première est purement algébrique, alors que la deuxième est plus géométrique. On montre que les deux approches sont en fait équivalentes. On introduit aussi la notion de structure coïsotrope sur un morphisme de champs dérivés, encore une fois en présentant deux définitions équivalentes : la première est basée sur une généralisation appropriée de l'opérade Swiss-Cheese de Voronov, tandis que la deuxième est formulée en termes de champs de multivecteurs rélatifs. En particulier, on montre que le morphisme identité admet une unique structure coïsotrope ; cela produit une application d'oubli des structures de Poisson n-décalées aux structures de Poisson (n-1)-décalées. On montre aussi que l'intersection de deux morphismes coïsotropes dans un champ de Poisson n-décalée est naturellement equipée d'une structure de Poisson (n-1)-décalée canonique. En outre, on fournit une équivalence entre l'espace de structures coïsotropes non-dégénérées et l'espace des structures Lagrangiennes en géométrie dérivée, introduites dans les travaux de Pantev-Toën-Vaquié-Vezzosi
In this thesis, we define and study Poisson and coisotropic structures on derived stacks in the framework of derived algebraic geometry. We consider two possible presentations of Poisson structures of different flavour: the first one is purely algebraic, while the second is more geometric. We show that the two approaches are in fact equivalent. We also introduce the notion of coisotropic structure on a morphism between derived stacks, once again presenting two equivalent definitions: one of them involves an appropriate generalization of the Swiss Cheese operad of Voronov, while the other is expressed in terms of relative polyvector fields. In particular, we show that the identity morphism carries a unique coisotropic structure; in turn, this gives rise to a non-trivial forgetful map from n-shifted Poisson structures to (n-1)-shifted Poisson structures. We also prove that the intersection of two coisotropic morphisms inside a n-shifted Poisson stack is naturally equipped with a canonical (n-1)-shifted Poisson structure. Moreover, we provide an equivalence between the space of non-degenerate coisotropic structures and the space of Lagrangian structures in derived geometry, as introduced in the work of Pantev-Toën-Vaquié-Vezzosi
APA, Harvard, Vancouver, ISO, and other styles
39

Kerkhoff, Sebastian. "A General Duality Theory for Clones." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-74783.

Full text
Abstract:
In this thesis, we generalize clones (as well as their relational counterparts and the relationship between them) to categories. Based on this framework, we introduce a general duality theory for clones and apply it to obtain new results for clones on finite sets.
APA, Harvard, Vancouver, ISO, and other styles
40

Kerkhoff, Sebastian. "A General Galois Theory for Operations and Relations in Arbitrary Categories." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-73920.

Full text
Abstract:
In this paper, we generalize the notions of polymorphisms and invariant relations to arbitrary categories. This leads us to a Galois connection that coincides with the classical case from universal algebra if the underlying category is the category of sets, but remains applicable no matter how the category is changed. In analogy to the situation in universal algebra, we characterize the Galois closed classes by local closures of clones of operations and local closures of what we will introduce as clones of (generalized) relations. Since the approach is built on purely category-theoretic properties, we will also discuss the dualization of our notions.
APA, Harvard, Vancouver, ISO, and other styles
41

Dancète, Dominique. "Sur la Cobar construction." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10145.

Full text
Abstract:
Depuis plus de quarante ans, les espaces de lacets iteres posent le redoutable probleme de l'iteration de la construction cobar. Dans ce travail, pour progresser dans ce sujet, nous apportons eclaircissements et complements sur la relation d'adams entre c#*(g(x)) et cobar (c#*(x)), x designant un ensemble simplicial 1-reduit et g le modele simplicial de kan du foncteur espace de lacets. Dans un premier temps, nous clarifions les liens entre la construction cobar et la notion de cochaine de torsion. Nous obtenons ensuite, pour toute suspension 1-reduite x, une reduction de dga-algebres naturelle, simple et explicite entre les dga-algebres c#*(g(x)) et cobar (c#*(x)). Nos resultats permettent, en particulier, de retrouver facilement les resultats de baues pour le calcul de l'homologie du deuxieme espace de lacets d'une suspension 2-reduite et font apparaitre un fait experimental surprenant : l'existence d'une differentielle exotique pouvant remplacer celle d'adams dans la construction cobar.
APA, Harvard, Vancouver, ISO, and other styles
42

Nguyen, Le Chi Quyet. "Une description fonctorielle des K-théories de Morava des 2-groupes abéliens élémentaires." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0032/document.

Full text
Abstract:
Le but de cette thèse est l'étude, d'un point de vue fonctoriel, des K-théories de Morava modulo 2 des 2-groupes abéliens élémentaires. Autrement dit, nous étudions les foncteurs covariants $V \mapsto K(n)^*(BV^{\sharp})$ pour le premier p=2 et n un entier positif.Le cas n=1, qui résulte directement du travail d'Atiyah sur la K-théorie topologique, nous donne un foncteur coanalytique qui ne possède aucun sous-foncteur polynomial non-constant. Il est très différent du cas n>1, où les foncteurs mentionnés ci-dessus s'avèrent être analytiques.La théorie de Henn-Lannes-Schwartz fournit une correspondance entre les foncteurs analytiques et les modules instables sur l'algèbre de Steenrod. Nous déterminons le module instable correspondant au foncteur analytique $V \mapsto K(2)^*(BV^{\sharp})$, en étudiant la relation entre ce foncteur et la structure d'anneau de Hopf de l'homologie de l'omega-spectre associé à la théorie K(2)
The aim of this PhD thesis is to study, from a functorial point of view, the mod 2 Morava K-theories of elementary abelian 2-groups. Namely, we study the covariant functors $V \mapsto K(n)^*(BV^{\sharp})$ for the prime p=2 and n a positive integer.The case n=1, which follows directly from the work of Atiyah on topological K-theory, gives us a coanalytic functor which contains no non-constant polynomial sub-functor. This is very different from the case n>1, where the above-mentioned functors are analytic.The theory of Henn-Lannes-Schwartz provides a correspondence between analytic functors and unstable modules over the Steenrod algebra. We determine the unstable module corresponding to the analytic functor $V \mapsto K(2)^*(BV^{\sharp})$, by studying the relation between this functor and the Hopf ring structure of the homology of the omega-spectrum associated to the theory K(2)
APA, Harvard, Vancouver, ISO, and other styles
43

Mrozinski, Colin. "Semi-anneau de fusion des groupes quantiques." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00948512.

Full text
Abstract:
Cette thèse se propose d'étudier des problèmes de classification des groupes quantiques via des invariants issus de leur théorie de représentation. Plus précisément, nous classifions les algèbres de Hopf possédant un semi-anneau de fusion isomorphe à un groupe algébrique réductif donné G. De tels groupes quantiques sont alors appelés G-déformations. Dans cette thèse, nous étudions les cas GL(2) et SO(3). Nous donnons une classification complète des GL(2)-déformations en construisant une famille d'algèbres de Hopf indexées par des matrices inversibles. Nous décrivons leurs catégories de comodules et donnons certains résultats de classification quant à leurs objets de Hopf-Galois. Ensuite, nous donnons une classification des SO(3)-déformations compactes tout en étudiant le cas non-compact. Finalement, la dernière partie de la thèse est une étude de l'algèbre sous-jacente à une certaine famille d'algèbres de Hopf, dont nous exhibons une base. Cette base nous permet de calculer le centre des ces algèbres ainsi que quelques groupes de (co)homologie.
APA, Harvard, Vancouver, ISO, and other styles
44

Andrade, Aline Vilela. "Teoria de Auslander-Reiten em categorias derivadas." Universidade Federal de Viçosa, 2014. http://locus.ufv.br/handle/123456789/4935.

Full text
Abstract:
Made available in DSpace on 2015-03-26T13:45:37Z (GMT). No. of bitstreams: 1 texto completo.pdf: 446590 bytes, checksum: 8c515244f3fa52b730a12770059cccea (MD5) Previous issue date: 2014-02-14
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this paper, we prove the existence of Auslander-Reiten triangles (TAR) for compact objects in triangulated categories compactly generated. The prove presented is an application of the theorem of Brown representability in derived categories for compact complex, ie, given Z be a compact and indecomposable complex, we show that there is a Auslander-Reiten triangle X->U->Y->v->Z->w->TX in K-b(^) which is equivalent to D(^), where ^ is a finite-dimensional k-algebra over an algebraically closed field. Furthermore, we have that a triangle Auslander-Reiten wihch start with the projective resolution of a indecomposable and non-injective module T-¹pM->alfa->Y->Beta->(pDM)*->y->pM induces an Auslander-Reiten sequence(SAR) 0->M->alfa¹->Cok¹ (Y)-> beta¹->Tr DM->0. How Mod(^) and D(^) are Krull-Schmidt, and classes of indecomposable objects and generators of irreducible morphisms of these categories occur in the SAR's and TAR's, respectively, these results provide us with a skillful tool to know the structures Mod(^) and D(^) of k-algebras. Moreover, we present examples using the representation theory of quivers of an algebra of paths.
Neste trabalho, apresentamos uma prova da existência de triângulos de Auslander-Reiten(TAR) para objetos compactos em categorias trianguladas compactamente geradas. A prova apresentada é uma aplicação do Teorema da Representabilidade de Brown em categorias derivadas para complexos compactos, ou seja, dado Z um complexo compacto e indecomponíveL mostramos que existe um triângulo X->U->Y->v->Z->w->TX de Auslander-Reiten em K-b(^) que é equivalente à Db(^), onde ^ é uma k-álgebra de dimensão finita sobre um corpo algébricamente fechado. Além disso, temos que um triângulo de Auslander-Reiten que começa com a resolução projetiva de um módulo indecomponível não-injetivo T-¹pM->alfa->Y->Beta->(pDM)*->y->pM induz uma sequência de Auslander-Reiten(SAR) 0->M->alfa¹->Cok¹ (Y)-> beta¹->Tr DM->0. Como MOd(^) e D(^) são Krull-Remak-Schmidt, e as classes de objetos inde- componíveis e os geradores de morfismos irredutíveis destas categorias ocorrem nas SAR's e nos TAR's, respectivamente, estes resultados nos fornecem uma hábil ferramenta para conhecer as estruturas de Mod(^) e D(^) de k-álgebras. Além disso, apresentamos exemplos utilizando a teoria de representação de quivers de uma álgebra de caminhos.
APA, Harvard, Vancouver, ISO, and other styles
45

Lebed, Victoria. "Objets tressés : une étude unificatrice de structures algébriques et une catégorification des tresses virtuelles." Phd thesis, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00775857.

Full text
Abstract:
Dans cette thèse on développe une théorie générale des objets tressés et on l'applique à une étude de structures algébriques et topologiques. La partie I contient une théorie homologique des espaces vectoriels tressés et modules tressés, basée sur le coproduit de battage quantique. La construction d'un tressage structurel qui caractérise diverses structures - auto-distributives (AD), associatives, de Leibniz - permet de généraliser et unifier des homologies familières. Les hyper-bords de Loday, ainsi que certaines opérations homologiques, apparaissent naturellement dans cette interprétation. On présente ensuite des concepts de système tressé et module multi-tressé. Appliquée aux bigèbres, bimodules, produits croisés et (bi)modules de Hopf et de Yetter-Drinfel'd, cette théorie donne leurs interprétations tressées, homologies et actions adjointes. La no- tion de produits tensoriels multi-tressés d'algèbres donne un cadre unificateur pour les doubles de Heisenberg et Drinfel'd, ainsi que les algèbres X de Cibils-Rosso et Y et Z de Panaite. La partie III est orientée vers la topologie. On propose une catégorification des groupes de tresses virtuelles en termes d'objets tressés dans une catégorie symétrique (CS). Cette approche de double tressage donne une source de représentations de V Bn et un traitement catégorique des racks virtuels de Manturov et de la représentation de Burau tordue. On définit ensuite des structures AD dans une CS arbitraire et on les munit d'un tressage. Les techniques tressées de la partie I amènent alors à une théorie homologique des structures AD catégoriques. Les algèbres associatives, de Leibniz et de Hopf rentrent dans ce cadre catégorique.
APA, Harvard, Vancouver, ISO, and other styles
46

Nadareishvili, George. "A classification of localizing subcategories by relative homological algebra." Doctoral thesis, 2015. http://hdl.handle.net/11858/00-1735-0000-0028-867A-A.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gartz, Kaj M. "A construction of a differential graded Lie algebra in the category of effective homological motives /." 2003. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3088737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

(8740848), Virgil Chan. "An Explicit Formula for the Loday Assembly." Thesis, 2020.

Find full text
Abstract:
We give an explicit description of the Loday assembly map on homotopy groups when restricted to a subgroup coming from the Atiyah-Hirzebruch spectral sequence. This proves and generalises a formula about the Loday assembly map on the first homotopy group that originally appeared in work of Waldhausen. Furthermore, we show that the Loday assembly map is injective on the second homotopy groups for a large class of integral group rings. Finally, we show that our methods can be used to compute the universal assembly map on homotopy.
APA, Harvard, Vancouver, ISO, and other styles
49

(11204136), Chris Karl Neuffer. "Genera of Integer Representations and the Lyndon-Hochschild-Serre Spectral Sequence." Thesis, 2021.

Find full text
Abstract:
There has been in the past ten to fifteen years a surge of activity concerning the cohomology of semi-direct product groups of the form $\mathbb{Z}^{n}\rtimes$G with G finite. A problem first stated by Adem-Ge-Pan-Petrosyan asks for suitable conditions for the Lyndon-Hochschild-Serre Spectral Sequence associated to this group extension to collapse at second page of the Lyndon-Hochschild-Serre spectral sequence. In this thesis we use facts from integer representation theory to reduce this problem to only considering representatives from each genus of representations, and establish techniques for constructing new examples in which the spectral sequence collapses.
APA, Harvard, Vancouver, ISO, and other styles
50

Czenky, Agustina Mercedes. "Sobre las categorías modulares de dimensión impar." Bachelor's thesis, 2019. http://hdl.handle.net/11086/11747.

Full text
Abstract:
Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2019.
El objetivo de este trabajo es presentar de la manera más autocontenida posible a las categorías modulares de dimensión impar, sus propiedades e invariantes. En la primera parte se exponen las nociones de categorías tensoriales y categorías de fusión. Se presentan construcciones útiles, como la graduación y la equivariantización por grupos finitos, y clases distinguidas de categorías: punteadas, de tipo grupo, nilpotentes, solubles, entre otras. En una segunda parte se aborda el estudio de las categorías modulares y se tratan algunos de sus invariantes: S-matriz, T -matriz, Sumas de Gauss e Indicadores de Frobenius-Schur. Finalmente se discuten algunos problemas actuales y nuevas herramientas, como el Teorema de Cauchy para categorías de fusión esféricas, la clasificación de categorías modulares de dimensión impar de rango pequeño y la clasificación de categorías modulares casi libres de cuadrados de dimensión impar. Se presentan además algunos resultados propios vinculados a dichos problemas y técnicas.
The main goal of this work is to present, in the most comprehensive way we can achieve, odd dimensional modular categories, their properties and invariants. The first part sets out the notions of tensor and fusion categories. Useful constructions are included, such as grading and equivariantization by finite groups, and distinguished classes of categories are introduced: pointed, group-theoretical, nilpotent and solvable, among others. A second part approaches the study of modular categories and some of their invariants: S-matrix, T -matrix, Gauss Sums and Frobenius-Schur Indicators. Finally, some current problems and new techniques are discussed, such as the Cauchy Theorem for spherical fusion categories, the classification of odd dimensional modular categories of small rank and the classification of odd dimensional almost square-free modular categories. Some original results related to the mentioned problems and techniques are exhibited.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography