Dissertations / Theses on the topic 'Cauchy-Riemann, Équations de'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Cauchy-Riemann, Équations de.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Alexandre, William. "Régularité des équations de Cauchy-Riemann et Cauchy-Riemann tangentielles sur les domaines convexes de type fini de Cn." Lille 1, 2003. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2003/50376-2003-103-104.pdf.
Full textReizner, Isabelle. "Régularité analytique globale pour l'équation de Cauchy-Riemann." Rouen, 1997. http://www.theses.fr/1997ROUES019.
Full textBièche, Camille. "Structures de Cauchy-Riemann analytiques et G-stuctures holomorphes associées." Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11038.
Full textBarkatou, Moulay Youssef. "Formules locales de type Martinelli-Bochner-Koppelman sur des variétés CR : applications." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10218.
Full textMaati, Abderrabi. "Réalisabilité locale des structures de Cauchy-Riemann rigides de R3, dans les classes Hölderiennes." Lille 1, 1997. http://www.theses.fr/1997LIL10163.
Full textGaussier, Hervé. "Caractérisation de domaines et d'hypersurfaces convexes." Aix-Marseille 1, 1996. http://www.theses.fr/1996AIX11027.
Full textMatthey, Fanny. "Sur la régularité de l'opérateur d-bar et la non-existence d'hypersurface Levi-plate dans des variétés kählériennes compactes." Paris 6, 2010. http://www.theses.fr/2010PA066074.
Full textRuiz, Jérémy. "Analyse mathématique des équations de Born-Infeld." Clermont-Ferrand 2, 2008. http://www.theses.fr/2008CLF21884.
Full textMir, Nordine. "Analyticité et algébricité d'applications CR ou holomorphes." Rouen, 1998. http://www.theses.fr/1998ROUES028.
Full textMenini, Chantal. "Classes de Névanlinna et estimations pour la résolution de l'équation de Cauchy-Riemann sur une intersection d'ouverts strictement pseudoconvexes." Toulouse 3, 1994. http://www.theses.fr/1994TOU30018.
Full textMazzilli, Emmanuel. "Division et extension des fonctions holomorphes dans les ellipsoi͏̈des." Toulouse 3, 1995. http://www.theses.fr/1995TOU30139.
Full textSahmim, Slah. "Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènes." Paris 13, 2005. http://www.theses.fr/2005PA132012.
Full textFructus, Mathieu. "Noyau et métrique de Bergman dans des formules de représentation pour les convexes de type fini et applications." Toulouse 3, 2003. http://www.theses.fr/2003TOU30211.
Full textCumenge, Anne. "Valeurs au bord pour la solution canonique de l'équation de Cauchy-Riemann dans les domaines strictement pseudo-convexes : extension et division holomorphes avec estimations." Toulouse 3, 1989. http://www.theses.fr/1989TOU30174.
Full textVartanian, Arthur Haroutyoun. "Comportement asymptotique des solutions du problème de Cauchy pour l'équation de Schrödinger non-linéaire modifiée." Dijon, 1998. http://www.theses.fr/1998DIJOS018.
Full textDannawi, Ihab. "Contributions aux équations d'évolutions non locales en espace-temps." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS007/document.
Full textIn this thesis, we study four non-local evolution equations. The solutions of these four equations can blow up in finite time. In the theory of nonlinear evolution equations, a solution is qualified as global if it isdefined for any time. Otherwise, if a solution exists only on a bounded interval [0; T), it is called local solution. In this case and when the maximum time of existence is related to a blow up alternative, we say that the solution blows up in finite time. First, we consider the nonlinear Schröodinger equation with a fractional power of the Laplacien operator, and we get a blow up result in finite time Tmax > 0 for any non-trivial non-negative initial condition in the case of sub-critical exponent. Next, we study a damped wave equation with a space-time potential and a non-local in time non-linear term. We obtain a result of local existence of a solution in the energy space under some restrictions on the initial data, the dimension of the space and the growth of nonlinear term. Additionally, we get a blow up result of the solution in finite time for any initial condition positive on average. In addition, we study a Cauchy problem for the evolution p-Laplacien equation with nonlinear memory. We study the local existence of a solution of this equation as well as a result of non-existence of global solution. Finally, we study the maximum interval of existence of solutions of the porous medium equation with a nonlinear non-local in time term
Nguyen, The-Cang. "Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4028/document.
Full textThe aim of this thesis is the study of two topical issues arising from general relativity: finding initial data for the Cauchy problem with respect to the Einstein equations and the positive mass theorem. For the first issue, in the context of the conformal method introduced by Lichnerowicz [Lichnerowicz, 1944], Y. Choquet-Bruhat–J. York [Choquet-Bruhat et York, 1980] and Y. Choquet-Bruhat–J. Isenberg–D. Pollack [Choquet-Bruhat et al., 2007a], we consider the conformal constraint equations on compact Riemannian manifolds of dimension n > 3. In this thesis, we simplify the proof of [Dahl et al., 2012, Theorem 1.1], extend and sharpen the far-from CMC result proven by Holst– Nagy–Tsogtgerel [Holst et al., 2009], Maxwell [Maxwell, 2009] and give an unifying viewpoint of these results. Besides discussing the solvability of the conformal constraint equations, we will also show nonexistence and nonuniqueness results for solutions to the conformal constraint equations under certain assumptions
Dietrich, Gautier. "Nouveaux invariants en géométrie CR et de contact." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS016/document.
Full textCauchy-Riemann geometry, CR for short, is the natural geometry of real pseudoconvex hypersurfaces of $C^{n+1}$ for $ngeq 1$. We consider the generic case when CR manifolds are contact manifolds. CR geometry presents strong analogies with conformal geometry; hence, known invariants and techniques of conformal geometry can be transported to that context. We focus in this thesis on two such invariants. In a first part, using asymptotically complex hyperbolic geometry, we introduce a CR covariant differential operator on maps from a CR manifold to a Riemannian manifold, which coincides on functions with the CR Paneitz operator. In a second part, we propose a Yamabe invariant for contact manifolds which admit a CR structure, and we study its behaviour under connected sum
Casseli, Irène. "Eléments sur la transformée de Berezin et sur les opérateurs de Toeplitz dans des espaces de fonctions polyanalytiques." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0578.
Full textEntire polyanalytic functions generalize entire functions in that they are solutions of "Cauchy-Riemann equations of order n, of the form {\partial}^n f / \partial \overline{z}^n = 0, over the whole complex plane \mathbb{C}. Polyanalytic Fock space F^2_{\alpha,n} is, by analogy with the classical case, the closed subspace of the Hilbert space L^2(\mathbb{C},d\mu_\alpha), where \mu_\alpha is a Gaussian probability measure over \mathbb{C} with weight \alpha>0, of polyentire functions of order n. The aim of this PhD thesis is the study of classical objects of operator theory such that the Berezin transform and Toeplitz operators in the particular case of polyanalytic Fock spaces. In this written, it is shown among other results, that the L^p fixed points of the Berezin transform are constant functions. Concerning Toeplitz operators, the Sarason problem is studied. Given a function f, the Toeplitz operator with symbol f is formally defined by T^n_f(h)=P_{F^2_n}(f h), where P_{F^2_n} is the orthogonal projection from L^2(\mathbb{C},d\mu) on to F^2_n. The so-called Sarason's problem consists in finding necessary and sufficient conditions on the symbols f and g for the Toeplitz product with symbols f and \bar g to be bounded in the Fock space
Fructus, Mathieu. "Noyau et métrique de Bergman dans des formules de représentations pour les convexes de type fini et applications." Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00004225.
Full textMercat, Christian. "Holomorphie discrète et modèle d'Ising." Phd thesis, Université Louis Pasteur - Strasbourg I, 1998. http://tel.archives-ouvertes.fr/tel-00001851.
Full textRICARD, Hélène. "Résolution avec régularité jusqu'au bord de l'équation de Cauchy-Riemann dans des domaines à coins et de l'équation de Cauchy-Riemann tangentielle en codimension quelconque." Phd thesis, 2002. http://tel.archives-ouvertes.fr/tel-00002226.
Full text