Academic literature on the topic 'Cavitando chirale'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cavitando chirale.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cavitando chirale"

1

Mann, Enrique, and Julius Rebek. "Deepened chiral cavitands." Tetrahedron 64, no. 36 (2008): 8484–87. http://dx.doi.org/10.1016/j.tet.2008.05.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Irwin, Jacob L., David J. Sinclair, Alison J. Edwards, and Michael S. Sherburn. "Chiral Conjoined Cavitands." Australian Journal of Chemistry 57, no. 4 (2004): 339. http://dx.doi.org/10.1071/ch03299.

Full text
Abstract:
Tetrabromocavitand bowls are converted into rim-connected hexabromodimers in one step in 17–22% yields by oxidative coupling of higher order arylcuprates. 1H NMR and single crystal X-ray analyses of the rim-connected dimers reveal a conformationally restricted structure in which the rims of the two cavitand bowls describe planes angled at 78.8° to one another. Each of the two bowl cavities are occupied by a guest, in addition to being partially occluded by a portion of the complementary bowl rim. These new host compounds exhibit a very unusual form of enantioisomerism.
APA, Harvard, Vancouver, ISO, and other styles
3

Martín Carmona, María Antonia. "Natural and synthetic cavitands: challenges in chemistry and pharmaceutical technology." Anales de la Real Academia Nacional de Farmacia 87, no. 87(04) (2021): 381–94. http://dx.doi.org/10.53519/analesranf.2021.87.04.02.

Full text
Abstract:
Supramolecular chemistry involves non-covalent interactions and specific molecular recognition of molecules/analytes by host molecules or supramolecules. These events are present in synthesis, catalysis, chiral separations, design of sensors, cell signaling processes and drug transport by carriers. The typical behavior of supramolecules is derived from their ability to build well-structured self-assembled and self-organized entities. Cavitands are a particular group of supramolecules possessing a cavity able to include a variety of compounds thanks to host-guest non-covalent interactions devel
APA, Harvard, Vancouver, ISO, and other styles
4

Stefanelli, Manuela, Donato Monti, Valeria Van Axel Castelli, et al. "Chiral supramolecular capsule by ligand promoted self-assembly of resorcinarene-Zn porphyrin conjugate." Journal of Porphyrins and Phthalocyanines 12, no. 12 (2008): 1279–88. http://dx.doi.org/10.1142/s1088424608000662.

Full text
Abstract:
Cavitand- Zn porphyrin conjugates self-assemble to give supramolecular (1 + 1) structures upon coordination of bifunctional ligands such as 4,4'-bipyridine and the like. The formation of the capsule depends on key structural factors, such as the size of the cavity, and the possibility of the onset of hydrogen bonds, π–π and π–cation interactions. The extension of this protocol to chiral bifunctional ligands, such as (+)-cinchonine and (−)-cinchonidine, and cinchona alkaloid derivatives, results in the achievement of supramolecular structures with chiral cavities, whose configuration is depende
APA, Harvard, Vancouver, ISO, and other styles
5

Desai, Arpita S., Thennati Rajamannar, and Shailesh R. Shah. "Molecular Container and Metal Ion Sensor Chiral Cavitands." ChemistrySelect 5, no. 34 (2020): 10588–92. http://dx.doi.org/10.1002/slct.202002273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Na, Fan Yang, Hillary A. Stock, David V. Dearden, John D. Lamb, and Roger G. Harrison. "Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition." Organic & Biomolecular Chemistry 10, no. 36 (2012): 7392. http://dx.doi.org/10.1039/c2ob25613d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Inoue, Mami, Yoshino Fujii, Yasuhiro Matsumoto, Michael P. Schramm, and Tetsuo Iwasawa. "Inherently Chiral Cavitand Curvature: Diastereoselective Oxidation of Tethered Allylsilanes." European Journal of Organic Chemistry 2019, no. 34 (2019): 5862–74. http://dx.doi.org/10.1002/ejoc.201900891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

D'Urso, Alessandro, Cristina Tudisco, Francesco P. Ballistreri, et al. "Enantioselective extraction mediated by a chiral cavitand–salen covalently assembled on a porous silicon surface." Chem. Commun. 50, no. 39 (2014): 4993–96. http://dx.doi.org/10.1039/c4cc00034j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nishimura, Ryo, Ryo Yasutake, Shota Yamada, et al. "Chiral metal nanoparticles encapsulated by a chiral phosphine cavitand with the tetrakis-BINAP moiety: their remarkable stability toward ligand exchange and thermal racemization." Dalton Transactions 45, no. 11 (2016): 4486–90. http://dx.doi.org/10.1039/c5dt04660b.

Full text
Abstract:
A chiral phosphine cavitand1induced the formation of chiral metal (Ru, Rh, Pd, Ag, Pt, and Au) nanoparticles (NPs). The ligand1of the chiral metal NPs prevents both thermal racemization and ligand exchange with a thiol.
APA, Harvard, Vancouver, ISO, and other styles
10

Maffei, Francesca, Giovanna Brancatelli, Tahnie Barboza, Enrico Dalcanale, Silvano Geremia, and Roberta Pinalli. "Inherently chiral phosphonate cavitands as enantioselective receptors for mono-methylated L-amino acids." Supramolecular Chemistry 30, no. 7 (2017): 600–609. http://dx.doi.org/10.1080/10610278.2017.1417991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!