Journal articles on the topic 'CBIS-DDSM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CBIS-DDSM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jasim, Hayder Nsaif, Wesam Mohammed Jasim Abid Alrawi, and Mohammed Salah Ibrahim Jassem. "Hyperparameter Optimisation for Breast Cancer Detection Using APO and Pre-Trained CNNs." International Journal of Online and Biomedical Engineering (iJOE) 21, no. 09 (2025): 96–109. https://doi.org/10.3991/ijoe.v21i09.55479.
Full textTİRYAKİ, Volkan Müjdat. "Deep Transfer Learning to Classify Mass and Calcification Pathologies from Screen Film Mammograms." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 12, no. 1 (2023): 57–65. http://dx.doi.org/10.17798/bitlisfen.1190134.
Full textAlkhaleefah, Mohammad, Tan-Hsu Tan, Chuan-Hsun Chang, et al. "Connected-SegNets: A Deep Learning Model for Breast Tumor Segmentation from X-ray Images." Cancers 14, no. 16 (2022): 4030. http://dx.doi.org/10.3390/cancers14164030.
Full textThirumalaisamy, Selvakumar, Kamaleshwar Thangavilou, Hariharan Rajadurai, et al. "Breast Cancer Classification Using Synthesized Deep Learning Model with Metaheuristic Optimization Algorithm." Diagnostics 13, no. 18 (2023): 2925. http://dx.doi.org/10.3390/diagnostics13182925.
Full textRagab, Dina A., Maha Sharkas, Stephen Marshall, and Jinchang Ren. "Breast cancer detection using deep convolutional neural networks and support vector machines." PeerJ 7 (January 28, 2019): e6201. http://dx.doi.org/10.7717/peerj.6201.
Full textZhang, Qian, Yamei Li, Guohua Zhao, Panpan Man, Yusong Lin, and Meiyun Wang. "A Novel Algorithm for Breast Mass Classification in Digital Mammography Based on Feature Fusion." Journal of Healthcare Engineering 2020 (December 22, 2020): 1–11. http://dx.doi.org/10.1155/2020/8860011.
Full textAliniya, Parvaneh, Mircea Nicolescu, Monica Nicolescu, and George Bebis. "Towards Robust Supervised Pectoral Muscle Segmentation in Mammography Images." Journal of Imaging 10, no. 12 (2024): 331. https://doi.org/10.3390/jimaging10120331.
Full textMohammed, Ahmed Dhahi, and Dursun Ekmekci. "Breast Cancer Diagnosis Using YOLO-Based Multiscale Parallel CNN and Flattened Threshold Swish." Applied Sciences 14, no. 7 (2024): 2680. http://dx.doi.org/10.3390/app14072680.
Full textBarthwal, Archana, Kapil Joshi, Adarsh Kumar, et al. "Blockchain and Classification of Mammograms and Histopathology Images in Breast Cancer Lesions." Applied and Computational Engineering 8, no. 1 (2023): 436–42. http://dx.doi.org/10.54254/2755-2721/8/20230208.
Full textKhourdifi, Youness, Alae El Alami, Mounia Zaydi, Yassine Maleh, and Omar Er-Remyly. "Early Breast Cancer Detection Based on Deep Learning: An Ensemble Approach Applied to Mammograms." BioMedInformatics 4, no. 4 (2024): 2338–73. https://doi.org/10.3390/biomedinformatics4040127.
Full textFalconi, Lenin G., Maria Perez, Wilbert G. Aguila, and Aura Conci. "Transfer Learning and Fine Tuning in Breast Mammogram Abnormalities Classification on CBIS-DDSM Database." Advances in Science, Technology and Engineering Systems Journal 5, no. 2 (2020): 154–65. http://dx.doi.org/10.25046/aj050220.
Full textCelis Esteban, Sergio Augusto, Jhoan Felipe Sarmiento Ortiz, and Liliana Calderón-Benavides. "DESARROLLO DE UNA RED NEURONAL CONVOLUCIONAL PARA LA DETECCIÓN DEL CÁNCER DE MAMA MEDIANTE LA CLASIFICACIÓN DE IMÁGENES MAMOGRÁFICAS." REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA) 1, no. 39 (2023): 75–80. http://dx.doi.org/10.24054/rcta.v1i39.1378.
Full textZahoor, Saliha, Umar Shoaib, and Ikram Ullah Lali. "Breast Cancer Mammograms Classification Using Deep Neural Network and Entropy-Controlled Whale Optimization Algorithm." Diagnostics 12, no. 2 (2022): 557. http://dx.doi.org/10.3390/diagnostics12020557.
Full textHabeeb, Zeyad Q., Branislav Vuksanovic, and Imad Q. Al-Zaydi. "Breast Cancer Detection Using Image Processing and Machine Learning." Journal of Image and Graphics 11, no. 1 (2023): 1–8. http://dx.doi.org/10.18178/joig.11.1.1-8.
Full textSait, Abdul Rahaman Wahab, and Ramprasad Nagaraj. "An Enhanced LightGBM-Based Breast Cancer Detection Technique Using Mammography Images." Diagnostics 14, no. 2 (2024): 227. http://dx.doi.org/10.3390/diagnostics14020227.
Full textLiao, Caiqing, Xin Wen, Shuman Qi, Yanan Liu, and Rui Cao. "FSE-Net: feature selection and enhancement network for mammogram classification." Physics in Medicine & Biology 68, no. 19 (2023): 195001. http://dx.doi.org/10.1088/1361-6560/acf559.
Full textCoto Santiesteban, Ariel, Lisbel Garzón Cutiño, and Damian Valdés Santiago. "Deep learning techniques for breast mass malignancy classification on digital mammography." Salud, Ciencia y Tecnología - Serie de Conferencias 4 (January 1, 2025): 669. https://doi.org/10.56294/sctconf2025669.
Full textJaamour, Adam, Craig Myles, Ashay Patel, Shuen-Jen Chen, Lewis McMillan, and David Harris-Birtill. "A divide and conquer approach to maximise deep learning mammography classification accuracies." PLOS ONE 18, no. 5 (2023): e0280841. http://dx.doi.org/10.1371/journal.pone.0280841.
Full textShivani pal, Shivani pal. "ntegrating Mammographic Breast Arterial Calcifications and Clinical Data with Multi-Modal Transformers and GATs for Cardiovascular Risk Prediction." International Journal of Pharmaceutical Research and Applications 10, no. 3 (2025): 1815–28. https://doi.org/10.35629/4494-100318151828.
Full textKumar Singh, Koushlendra, Suraj Kumar, Marios Antonakakis, et al. "Deep Learning Capabilities for the Categorization of Microcalcification." International Journal of Environmental Research and Public Health 19, no. 4 (2022): 2159. http://dx.doi.org/10.3390/ijerph19042159.
Full textAl-Mansour, Ebtihal, Muhammad Hussain, Hatim A. Aboalsamh, and Saad A. Al-Ahmadi. "Comprehensive Analysis of Mammography Images Using Multi-Branch Attention Convolutional Neural Network." Applied Sciences 13, no. 24 (2023): 12995. http://dx.doi.org/10.3390/app132412995.
Full textSarah, Khatun, and Ayan Ghosh Mr. "Breast Cancer Detection from Mammograms Using ResNet-50 Transfer Learning and Physics-Informed Neural Networks." Journal of Advanced Research in Artificial Intelligence & It's Applications 2, no. 3 (2025): 46–51. https://doi.org/10.5281/zenodo.15433574.
Full textRehman, Khalil ur, Jianqiang Li, Yan Pei, Anaa Yasin, Saqib Ali, and Yousaf Saeed. "Architectural Distortion-Based Digital Mammograms Classification Using Depth Wise Convolutional Neural Network." Biology 11, no. 1 (2021): 15. http://dx.doi.org/10.3390/biology11010015.
Full textTalaat, Fatma M., Samah A. Gamel, Rana Mohamed El-Balka, Mohamed Shehata, and Hanaa ZainEldin. "Grad-CAM Enabled Breast Cancer Classification with a 3D Inception-ResNet V2: Empowering Radiologists with Explainable Insights." Cancers 16, no. 21 (2024): 3668. http://dx.doi.org/10.3390/cancers16213668.
Full textK. Geetha. "Estimation of Breast Cancer with a Combined Feature Selection Algorithm." Journal of Innovative Image Processing 4, no. 3 (2022): 206–14. http://dx.doi.org/10.36548/jiip.2022.3.008.
Full textBlahová, Linda, Jozef Kostolný, and Ivan Cimrák. "Neural Network-Based Mammography Analysis: Augmentation Techniques for Enhanced Cancer Diagnosis—A Review." Bioengineering 12, no. 3 (2025): 232. https://doi.org/10.3390/bioengineering12030232.
Full textAl-Tam, Riyadh M., Aymen M. Al-Hejri, Sachin M. Narangale, et al. "A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms." Biomedicines 10, no. 11 (2022): 2971. http://dx.doi.org/10.3390/biomedicines10112971.
Full textMohiyuddin, Aqsa, Asma Basharat, Usman Ghani, et al. "Breast Tumor Detection and Classification in Mammogram Images Using Modified YOLOv5 Network." Computational and Mathematical Methods in Medicine 2022 (January 4, 2022): 1–16. http://dx.doi.org/10.1155/2022/1359019.
Full textOza, Parita Rajiv, Paawan Sharma, and Samir Patel. "A Transfer Representation Learning Approach for Breast Cancer Diagnosis from Mammograms using EfficientNet Models." Scalable Computing: Practice and Experience 23, no. 2 (2022): 51–58. http://dx.doi.org/10.12694/scpe.v23i2.1975.
Full textOliveira, Felipe Victor de Sá, and Anthony Lins. "LUISA: Uma Proposta de Ferramenta para Auxílio Ao Diagnóstico do Câncer de Mama a Partir de Imagens de Mamografias Digitalizadas." Revista de Engenharia e Pesquisa Aplicada 5, no. 2 (2020): 73–83. http://dx.doi.org/10.25286/repa.v5i2.1359.
Full textPavithra M, A N Vinodhini, A. Devendhiran, Saradha S, Gowrishankar Jayaraman,. "Breast Cancer Mammography Classification Using Convolutional Neural Networks and WOA-MPA Optimization." Tuijin Jishu/Journal of Propulsion Technology 44, no. 4 (2023): 2859–73. http://dx.doi.org/10.52783/tjjpt.v44.i4.1376.
Full textWang, Huina, Lan Wei, Bo Liu, et al. "Transformer-Based Explainable Model for Breast Cancer Lesion Segmentation." Applied Sciences 15, no. 3 (2025): 1295. https://doi.org/10.3390/app15031295.
Full textQuintana, Gonzalo Iñaki, Zhijin Li, Laurence Vancamberg, Mathilde Mougeot, Agnès Desolneux, and Serge Muller. "Exploiting Patch Sizes and Resolutions for Multi-Scale Deep Learning in Mammogram Image Classification." Bioengineering 10, no. 5 (2023): 534. http://dx.doi.org/10.3390/bioengineering10050534.
Full textAliniya, Parvaneh, Mircea Nicolescu, Monica Nicolescu, and George Bebis. "Improved Loss Function for Mass Segmentation in Mammography Images Using Density and Mass Size." Journal of Imaging 10, no. 1 (2024): 20. http://dx.doi.org/10.3390/jimaging10010020.
Full textProkopiou, Ioannis, and Panagiota Spyridonos. "Highlighting the Advanced Capabilities and the Computational Efficiency of DeepLabV3+ in Medical Image Segmentation: An Ablation Study." BioMedInformatics 5, no. 1 (2025): 10. https://doi.org/10.3390/biomedinformatics5010010.
Full textZhu, Minjuan, Lei Zhang, Lituan Wang, Zizhou Wang, Yan Wang, and Guangwu Qian. "Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization." Bioengineering 12, no. 4 (2025): 325. https://doi.org/10.3390/bioengineering12040325.
Full textSun, Yeheng, and Yule Ji. "AAWS-Net: Anatomy-aware weakly-supervised learning network for breast mass segmentation." PLOS ONE 16, no. 8 (2021): e0256830. http://dx.doi.org/10.1371/journal.pone.0256830.
Full textChowanda, Andry. "Exploring the Best Parameters of Deep Learning for Breast Cancer Classification System." CommIT (Communication and Information Technology) Journal 16, no. 2 (2022): 143–48. http://dx.doi.org/10.21512/commit.v16i2.8174.
Full textYu, Xiang, Ziquan Zhu, Yoav Alon, David S. Guttery, and Yudong Zhang. "GFNet: A Deep Learning Framework for Breast Mass Detection." Electronics 12, no. 7 (2023): 1583. http://dx.doi.org/10.3390/electronics12071583.
Full textMračko, Adam, Lucia Vanovčanová, and Ivan Cimrák. "Mammography Datasets for Neural Networks—Survey." Journal of Imaging 9, no. 5 (2023): 95. http://dx.doi.org/10.3390/jimaging9050095.
Full textRehman, Shams ur, Muhamamd Attique Khan, Anum Masood, et al. "BRMI-Net: Deep Learning Features and Flower Pollination-Controlled Regula Falsi-Based Feature Selection Framework for Breast Cancer Recognition in Mammography Images." Diagnostics 13, no. 9 (2023): 1618. http://dx.doi.org/10.3390/diagnostics13091618.
Full textYeh, Wei-Chang, Wei-Chung Shia, Yun-Ting Hsu, Chun-Hui Huang, and Yong-Shiuan Lee. "A Lightweight Breast Cancer Mass Classification Model Utilizing Simplified Swarm Optimization and Knowledge Distillation." Bioengineering 12, no. 6 (2025): 640. https://doi.org/10.3390/bioengineering12060640.
Full textDeka, Aniruddha, Debashis Dev Misra, Anindita Das, and Manob Jyoti Saikia. "Breast Cancer Classification via a High-Precision Hybrid IGWO–SOA Optimized Deep Learning Framework." AI 6, no. 8 (2025): 167. https://doi.org/10.3390/ai6080167.
Full textMobark, Nada, Safwat Hamad, and S. Z. Rida. "CoroNet: Deep Neural Network-Based End-to-End Training for Breast Cancer Diagnosis." Applied Sciences 12, no. 14 (2022): 7080. http://dx.doi.org/10.3390/app12147080.
Full textHazheen Sarbast Mahmood. "Automated Mammogram-Based Breast Cancer Detection with Deep Learning and Advanced Image Enhancement." Journal of Information Systems Engineering and Management 10, no. 45s (2025): 800–810. https://doi.org/10.52783/jisem.v10i45s.9013.
Full textAhmed, Md Redwan, Hamdadur Rahman, Zishad Hossain Limon, et al. "Hierarchical Swin Transformer Ensemble with Explainable AI for Robust and Decentralized Breast Cancer Diagnosis." Bioengineering 12, no. 6 (2025): 651. https://doi.org/10.3390/bioengineering12060651.
Full textNazir, Muhammad Saquib, Usman Ghani Khan, Aqsa Mohiyuddin, et al. "A Novel CNN-Inception-V4-Based Hybrid Approach for Classification of Breast Cancer in Mammogram Images." Wireless Communications and Mobile Computing 2022 (July 6, 2022): 1–10. http://dx.doi.org/10.1155/2022/5089078.
Full textHe, Jingzhen, Jing Wang, Zeyu Han, Baojun Li, Mei Lv, and Yunfeng Shi. "Cancer detection for small-size and ambiguous tumors based on semantic FPN and transformer." PLOS ONE 18, no. 2 (2023): e0275194. http://dx.doi.org/10.1371/journal.pone.0275194.
Full textStefano, Alessandro, Fabiano Bini, Eleonora Giovagnoli, et al. "Comparative Evaluation of Machine Learning-Based Radiomics and Deep Learning for Breast Lesion Classification in Mammography." Diagnostics 15, no. 8 (2025): 953. https://doi.org/10.3390/diagnostics15080953.
Full textSrinivashini, N., M. Raveenthini, and R. Lavanya. "Deep ensemble of texture maps for false positive reduction in mammograms." Journal of Physics: Conference Series 2318, no. 1 (2022): 012038. http://dx.doi.org/10.1088/1742-6596/2318/1/012038.
Full text