Journal articles on the topic 'CBRAM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CBRAM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cao, Haichao, and Hao Ren. "A 10-nm-thick silicon oxide based high switching speed conductive bridging random access memory with ultra-low operation voltage and ultra-low LRS resistance." Applied Physics Letters 120, no. 13 (March 28, 2022): 133502. http://dx.doi.org/10.1063/5.0085045.
Full textAbbas, Haider, Jiayi Li, and Diing Shenp Ang. "Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications." Micromachines 13, no. 5 (April 30, 2022): 725. http://dx.doi.org/10.3390/mi13050725.
Full textCha, Jun-Hwe, Sang Yoon Yang, Jungyeop Oh, Shinhyun Choi, Sangsu Park, Byung Chul Jang, Wonbae Ahn, and Sung-Yool Choi. "Conductive-bridging random-access memories for emerging neuromorphic computing." Nanoscale 12, no. 27 (2020): 14339–68. http://dx.doi.org/10.1039/d0nr01671c.
Full textKim, Hae Jin. "Recent Progress of the Cation Based Conductive Bridge Random Access Memory." Ceramist 26, no. 1 (March 31, 2023): 90–105. http://dx.doi.org/10.31613/ceramist.2023.26.1.07.
Full textHsu, Chih-Chieh, Po-Tsun Liu, Kai-Jhih Gan, Dun-Bao Ruan, and Simon M. Sze. "Oxygen Concentration Effect on Conductive Bridge Random Access Memory of InWZnO Thin Film." Nanomaterials 11, no. 9 (August 27, 2021): 2204. http://dx.doi.org/10.3390/nano11092204.
Full textGoux, Ludovic, Janaki Radhakrishnan, Attilio Belmonte, Thomas Witters, Wouter Devulder, Augusto Redolfi, Shreya Kundu, Michel Houssa, and Gouri Sankar Kar. "Key material parameters driving CBRAM device performances." Faraday Discussions 213 (2019): 67–85. http://dx.doi.org/10.1039/c8fd00115d.
Full textAziz, Jamal, Honggyun Kim, and Deok-Kee Kim. "(Digital Presentation) Power Efficient Transistors with Low Subthreshold Swing Using Abrupt Switching Devices." ECS Meeting Abstracts MA2022-02, no. 35 (October 9, 2022): 1283. http://dx.doi.org/10.1149/ma2022-02351283mtgabs.
Full textMerkel, Cory, Dhireesha Kudithipudi, Manan Suri, and Bryant Wysocki. "Stochastic CBRAM-Based Neuromorphic Time Series Prediction System." ACM Journal on Emerging Technologies in Computing Systems 13, no. 3 (May 13, 2017): 1–14. http://dx.doi.org/10.1145/2996193.
Full textSuri, Manan, Damien Querlioz, Olivier Bichler, Giorgio Palma, Elisa Vianello, Dominique Vuillaume, Christian Gamrat, and Barbara DeSalvo. "Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses." IEEE Transactions on Electron Devices 60, no. 7 (July 2013): 2402–9. http://dx.doi.org/10.1109/ted.2013.2263000.
Full textRehman, Shania, Muhammad Farooq Khan, Sikandar Aftab, Honggyun Kim, Jonghwa Eom, and Deok-kee Kim. "Thickness-dependent resistive switching in black phosphorus CBRAM." Journal of Materials Chemistry C 7, no. 3 (2019): 725–32. http://dx.doi.org/10.1039/c8tc04538k.
Full textQin, Shengjun, Zhan Liu, Guo Zhang, Jinyu Zhang, Yaping Sun, Huaqiang Wu, He Qian, and Zhiping Yu. "Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory." Physical Chemistry Chemical Physics 17, no. 14 (2015): 8627–32. http://dx.doi.org/10.1039/c4cp04903a.
Full textSouchier, E., F. D'Acapito, P. Noé, P. Blaise, M. Bernard, and V. Jousseaume. "The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories." Physical Chemistry Chemical Physics 17, no. 37 (2015): 23931–37. http://dx.doi.org/10.1039/c5cp03601a.
Full textChoi, Yeon-Joon, Suhyun Bang, Tae-Hyeon Kim, Kyungho Hong, Sungjoon Kim, Sungjun Kim, Seongjae Cho, and Byung-Gook Park. "Analytically and empirically consistent characterization of the resistive switching mechanism in a Ag conducting-bridge random-access memory device through a pseudo-liquid interpretation approach." Physical Chemistry Chemical Physics 23, no. 48 (2021): 27234–43. http://dx.doi.org/10.1039/d1cp04637c.
Full textJameson, J. R., P. Blanchard, J. Dinh, N. Gonzales, V. Gopalakrishnan, B. Guichet, S. Hollmer, et al. "(Invited) Conductive Bridging RAM (CBRAM): Then, Now, and Tomorrow." ECS Transactions 75, no. 5 (September 23, 2016): 41–54. http://dx.doi.org/10.1149/07505.0041ecst.
Full textMuto, Satoshi, Ryota Yonesaka, Atsushi Tsurumaki-Fukuchi, Masashi Arita, and Yasuo Takahashi. "Observation of Conductive Filament in CBRAM at Switching Moment." ECS Transactions 80, no. 10 (October 25, 2017): 895–902. http://dx.doi.org/10.1149/08010.0895ecst.
Full textShimeng Yu and H. S. Philip Wong. "Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM)." IEEE Transactions on Electron Devices 58, no. 5 (May 2011): 1352–60. http://dx.doi.org/10.1109/ted.2011.2116120.
Full textMahalanabis, Debayan, Rui Liu, Hugh J. Barnaby, Shimeng Yu, Michael N. Kozicki, Adnan Mahmud, and Erica Deionno. "Single Event Susceptibility Analysis in CBRAM Resistive Memory Arrays." IEEE Transactions on Nuclear Science 62, no. 6 (December 2015): 2606–12. http://dx.doi.org/10.1109/tns.2015.2478382.
Full textGonzalez-Velo, Yago, Adnan Mahmud, Wenhao Chen, Jennifer Lynn Taggart, Hugh J. Barnaby, Michael N. Kozicki, Mahesh Ailavajhala, Keith E. Holbert, and Maria Mitkova. "Radiation Hardening by Process of CBRAM Resistance Switching Cells." IEEE Transactions on Nuclear Science 63, no. 4 (August 2016): 2145–51. http://dx.doi.org/10.1109/tns.2016.2569076.
Full textLatif, M. R., P. H. Davis, W. B. Knowton, and M. Mitkova. "CBRAM devices based on a nanotube chalcogenide glass structure." Journal of Materials Science: Materials in Electronics 30, no. 3 (December 15, 2018): 2389–402. http://dx.doi.org/10.1007/s10854-018-0512-0.
Full textKwon, Ki-Hyun, Dong-Won Kim, Hea-Jee Kim, Soo-Min Jin, Dae-Seong Woo, Sang-Hong Park, and Jea-Gun Park. "An electroforming-free mechanism for Cu2O solid-electrolyte-based conductive-bridge random access memory (CBRAM)." Journal of Materials Chemistry C 8, no. 24 (2020): 8125–34. http://dx.doi.org/10.1039/d0tc01325k.
Full textSimanjuntak, Firman Mangasa, Julianna Panidi, Fayzah Talbi, Adam Kerrigan, Vlado K. Lazarov, and Themistoklis Prodromakis. "Formation of a ternary oxide barrier layer and its role in switching characteristic of ZnO-based conductive bridge random access memory devices." APL Materials 10, no. 3 (March 1, 2022): 031103. http://dx.doi.org/10.1063/5.0076903.
Full textKwon, Kyoung-Cheol, Myung-Jin Song, Ki-Hyun Kwon, Han-Vit Jeoung, Dong-Won Kim, Gon-Sub Lee, Jin-Pyo Hong, and Jea-Gun Park. "Nanoscale CuO solid-electrolyte-based conductive-bridging-random-access-memory cell operating multi-level-cell and 1selector1resistor." Journal of Materials Chemistry C 3, no. 37 (2015): 9540–50. http://dx.doi.org/10.1039/c5tc01342a.
Full textCho, Hyojong, and Sungjun Kim. "Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory." Nanomaterials 10, no. 9 (August 29, 2020): 1709. http://dx.doi.org/10.3390/nano10091709.
Full textLee, Daeseok, Sami Oukassi, Gabriel Molas, Catherine Carabasse, Raphael Salot, and Luca Perniola. "Memory and Energy Storage Dual Operation in Chalcogenide-Based CBRAM." IEEE Journal of the Electron Devices Society 5, no. 4 (July 2017): 283–87. http://dx.doi.org/10.1109/jeds.2017.2693220.
Full textGan, Kai-Jhih, Po-Tsun Liu, Dun-Bao Ruan, Yu-Chuan Chiu, and Simon M. Sze. "Annealing effects on resistive switching of IGZO-based CBRAM devices." Vacuum 180 (October 2020): 109630. http://dx.doi.org/10.1016/j.vacuum.2020.109630.
Full textTan, Yung-Fang, Min-Chen Chen, Yu-Hsuan Yeh, Chung-Wei Wu, Tsung-Ming Tsai, Ting-Chang Chang, Sheng-Yao Chou, Yen-Che Huang, and Simon M. Sze. "Utilizing high pressure hydrogen annealing to realize forming free CBRAM." Materials Science and Engineering: B 296 (October 2023): 116619. http://dx.doi.org/10.1016/j.mseb.2023.116619.
Full textZhang, Bo, Vitezslav Zima, Tomas Mikysek, Veronika Podzemna, Pavel Rozsival, and Tomas Wagner. "Multilevel resistive switching in Cu and Ag doped CBRAM device." Journal of Materials Science: Materials in Electronics 29, no. 19 (August 3, 2018): 16836–41. http://dx.doi.org/10.1007/s10854-018-9778-5.
Full textSenapati, Asim, Sourav Roy, Yu-Feng Lin, Mrinmoy Dutta, and Siddheswar Maikap. "Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM." Electronics 9, no. 7 (July 7, 2020): 1106. http://dx.doi.org/10.3390/electronics9071106.
Full textSu, Chaohui, Linbo Shan, Dongliang Yang, Yanfei Zhao, Yujun Fu, Jiande Liu, Guangan Zhang, Qi Wang, and Deyan He. "Effects of heavy ion irradiation on Cu/Al2O3/Pt CBRAM devices." Microelectronic Engineering 247 (July 2021): 111600. http://dx.doi.org/10.1016/j.mee.2021.111600.
Full textTaggart, J. L., W. Chen, Y. Gonzalez-Velo, H. J. Barnaby, K. Holbert, and M. N. Kozicki. "In Situ Synaptic Programming of CBRAM in an Ionizing Radiation Environment." IEEE Transactions on Nuclear Science 65, no. 1 (January 2018): 192–99. http://dx.doi.org/10.1109/tns.2017.2779860.
Full textSong, Jeonghwan, Jiyong Woo, Seokjae Lim, Solomon Amsalu Chekol, and Hyunsang Hwang. "Self-Limited CBRAM With Threshold Selector for 1S1R Crossbar Array Applications." IEEE Electron Device Letters 38, no. 11 (November 2017): 1532–35. http://dx.doi.org/10.1109/led.2017.2757493.
Full textZhao, Jiayi, Qin Chen, Xiaohu Zhao, Gaoqi Yang, Guokun Ma, and Hao Wang. "Self-compliance and high-performance GeTe-based CBRAM with Cu electrode." Microelectronics Journal 131 (January 2023): 105649. http://dx.doi.org/10.1016/j.mejo.2022.105649.
Full textZhao, Xiaolong, Sen Liu, Jiebin Niu, Lei Liao, Qi Liu, Xiangheng Xiao, Hangbing Lv, et al. "Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer." Small 13, no. 35 (February 24, 2017): 1603948. http://dx.doi.org/10.1002/smll.201603948.
Full textYuan, Huanmei, Tianqing Wan, and Hao Bai. "Resistive Switching Characteristic of Cu Electrode-Based RRAM Device." Electronics 12, no. 6 (March 20, 2023): 1471. http://dx.doi.org/10.3390/electronics12061471.
Full textBerco, Dan, and Tseung-Yuen Tseng. "A numerical study of multi filament formation in metal-ion based CBRAM." AIP Advances 6, no. 2 (February 2016): 025212. http://dx.doi.org/10.1063/1.4942209.
Full textRadhakrishnan, J., A. Belmonte, L. Nyns, W. Devulder, G. Vereecke, G. L. Donadio, P. Kumbhare, et al. "Impact of La–OH bonds on the retention of Co/LaSiO CBRAM." Applied Physics Letters 117, no. 15 (October 12, 2020): 151902. http://dx.doi.org/10.1063/5.0021250.
Full textLim, Seokjae, Myounghoon Kwak, and Hyunsang Hwang. "Improved Synaptic Behavior of CBRAM Using Internal Voltage Divider for Neuromorphic Systems." IEEE Transactions on Electron Devices 65, no. 9 (September 2018): 3976–81. http://dx.doi.org/10.1109/ted.2018.2857494.
Full textSankaran, K., L. Goux, S. Clima, M. Mees, J. A. Kittl, M. Jurczak, L. Altimime, G. M. Rignanese, and G. Pourtois. "Modeling of Copper Diffusion in Amorphous Aluminum Oxide in CBRAM Memory Stack." ECS Transactions 45, no. 3 (April 27, 2012): 317–30. http://dx.doi.org/10.1149/1.3700896.
Full textGopalan, C., Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, F. Koushan, P. Blanchard, and S. Hollmer. "Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process." Solid-State Electronics 58, no. 1 (April 2011): 54–61. http://dx.doi.org/10.1016/j.sse.2010.11.024.
Full textJeon, Yu-Rim, Yawar Abbas, Andrey Sergeevich Sokolov, Sohyeon Kim, Boncheol Ku, and Changhwan Choi. "Study of in Situ Silver Migration in Amorphous Boron Nitride CBRAM Device." ACS Applied Materials & Interfaces 11, no. 26 (June 7, 2019): 23329–36. http://dx.doi.org/10.1021/acsami.9b05384.
Full textFujii, Shosuke, Jean Anne C. Incorvia, Fang Yuan, Shengjun Qin, Fei Hui, Yuanyuan Shi, Yang Chai, Mario Lanza, and H. S. Philip Wong. "Scaling the CBRAM Switching Layer Diameter to 30 nm Improves Cycling Endurance." IEEE Electron Device Letters 39, no. 1 (January 2018): 23–26. http://dx.doi.org/10.1109/led.2017.2771718.
Full textShin, Jong Hoon, Qiwen Wang, and Wei D. Lu. "Self-Limited and Forming-Free CBRAM Device With Double Al2O3 ALD Layers." IEEE Electron Device Letters 39, no. 10 (October 2018): 1512–15. http://dx.doi.org/10.1109/led.2018.2868459.
Full textYuhao Wang, Hao Yu, and Wei Zhang. "Nonvolatile CBRAM-Crossbar-Based 3-D-Integrated Hybrid Memory for Data Retention." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, no. 5 (May 2014): 957–70. http://dx.doi.org/10.1109/tvlsi.2013.2265754.
Full textArita, Masashi, Yuuki Ohno, and Yasuo Takahashi. "Switching of Cu/MoO x /TiN CBRAM at MoO x /TiN interface." physica status solidi (a) 213, no. 2 (December 17, 2015): 306–10. http://dx.doi.org/10.1002/pssa.201532414.
Full textBelmonte, A., G. Reale, A. Fantini, J. Radhakrishnan, A. Redolfi, W. Devulder, L. Nyns, et al. "Effect of the switching layer on CBRAM reliability and benchmarking against OxRAM devices." Solid-State Electronics 184 (October 2021): 108058. http://dx.doi.org/10.1016/j.sse.2021.108058.
Full textDietrich, Stefan, Michael Angerbauer, Milena Ivanov, Dietmar Gogl, Heinz Hoenigschmid, Michael Kund, Corvin Liaw, et al. "A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control." IEEE Journal of Solid-State Circuits 42, no. 4 (April 2007): 839–45. http://dx.doi.org/10.1109/jssc.2007.892207.
Full textTaggart, J. L., R. B. Jacobs-Gedrim, M. L. McLain, H. J. Barnaby, E. S. Bielejec, W. Hardy, M. J. Marinella, M. N. Kozicki, and K. Holbert. "Failure Thresholds in CBRAM Due to Total Ionizing Dose and Displacement Damage Effects." IEEE Transactions on Nuclear Science 66, no. 1 (January 2019): 69–76. http://dx.doi.org/10.1109/tns.2018.2882529.
Full textDong, Zhipeng, Huan Zhao, Don DiMarzio, Myung-Geun Han, Lihua Zhang, Jesse Tice, Han Wang, and Jing Guo. "Atomically Thin CBRAM Enabled by 2-D Materials: Scaling Behaviors and Performance Limits." IEEE Transactions on Electron Devices 65, no. 10 (October 2018): 4160–66. http://dx.doi.org/10.1109/ted.2018.2830328.
Full textLiu, Yanming, Kunhe Yang, Xuefeng Wang, He Tian, and Tian-Ling Ren. "Lower Power, Better Uniformity, and Stability CBRAM Enabled by Graphene Nanohole Interface Engineering." IEEE Transactions on Electron Devices 67, no. 3 (March 2020): 984–88. http://dx.doi.org/10.1109/ted.2020.2968731.
Full textIshikawa, Ryusuke, Shuichiro Hirata, Atsushi Tsurumaki-Fukuchi, Masashi Arita, Yasuo Takahashi, Masaki Kudo, and Syo Matsumura. "In-situElectron Microscopy of Cu Movement in MoOx/Al2O3Bilayer CBRAM during Cyclic Switching." ECS Transactions 80, no. 10 (October 25, 2017): 903–10. http://dx.doi.org/10.1149/08010.0903ecst.
Full text