To see the other types of publications on this topic, follow the link: Cd1-xZnxTe.

Journal articles on the topic 'Cd1-xZnxTe'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cd1-xZnxTe.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nway, Han Myat Thin, and Kaung Pho. "Characterization of CdS/Cd1-xZnxTe Films." Dagon University Research Journal Vol.3, no. 2011 (2019): Pg.115–125. https://doi.org/10.5281/zenodo.3542347.

Full text
Abstract:
A method of forming a compound film can be fabricated by using the cadmium sulphide (CdS) compound and cadmium zinc telluride (Cd1-xZnxTe) compounds with the ways of coating the pastes on the glass substrates and sintering the films in a suitable atmosphere. The structural properties of (CdS and Cd1-xZnxTe) compound powders were analyzed by X-ray diffraction (XRD) analysis. The electrical properties of the films were investigated by photoconductivity measurement. The n-CdS/p-Cd1-xZnxTe heterojunction solar cells were fabricated on glass substrates by screen printing method and by sintering met
APA, Harvard, Vancouver, ISO, and other styles
2

Orletskyi, I. G., M. I. Ilashchuk, E. V. Maistruk, M. M. Solovan, P. D. Maryanchuk, and S. V. Nichyi. "Electrical Properties of Sis Heterostructures n-SnS2/CdTeO3/p-CdZnTe." Ukrainian Journal of Physics 64, no. 2 (2019): 164. http://dx.doi.org/10.15407/ujpe64.2.164.

Full text
Abstract:
Conditions for the production of rectifying semiconductor-insulator-semiconductor (SIS) heterostructures n-SnS2/CdTeO3/p-Cd1−xZnxTe with the use of the spray-pyrolysis of SnS2 thin films on p-Cd1−xZnxTe crystalline substrates with the formation of an intermediate tunnel-thin CdTeO3 oxide layer have been studied. By analyzing the temperature dependences of the current-voltage characteristics, the dynamics of the heterostructure energy parameters is determined, and the role of energy states at the CdTeO3/p-Cd1−xZnxTe interface in the formation of forward and reverse currents is elucidated. By an
APA, Harvard, Vancouver, ISO, and other styles
3

Zheng, Wei, Yu Li Wu, Yen Ting Chen, et al. "Determination of Bond Lengths and Electronic Structure of Cd1-xZnxTe Ternary Alloys by Synchrotron Radiation." Advanced Materials Research 706-708 (June 2013): 56–59. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.56.

Full text
Abstract:
High-resolution synchrotron radiation x-ray absorption spectroscopy on Zn K-, Cd L3- and Te L3-edges for Cd1-xZnxTe ternary alloys with x = 0.10, 0.30, 0.50 and 0.90 are presented. A detailed analysis of the extended x-ray absorption fine structure using the IFEFFIT program, and the chemical bonds of Zn-Te are obtained, suggesting distortion of the Te sub-lattice. The x-ray absorption near-edge structure of the Zn K-, Cd L3- and Te L3-edge are investigated, and the electronic structures of Cd1-xZnxTe with various compositions are studied.
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Jun. "Preparation and Performance of CdZnTe Ray Detector." Modern Electronic Technology 6, no. 1 (2022): 1. http://dx.doi.org/10.26549/met.v6i1.9507.

Full text
Abstract:
γ-ray and x-ray detectors made by Cd1-xZnxTe alloy can gain high energy resolution and detect efficiency at room temperature due to its high atomic number, large energy gap and high density, which were well-developed recently. By well controlled of Cadmium partial pressure and compensatory doping technique, Ф90 mm Cd1-xZnxTe alloy obtained successfully (ρ≥1011 Ω·cm) by an improved-Bridgman method. 3 mm × 3 mm × 3 mm CZT detector was made at Kunming Institute of Physics, which has energy resolution of 3.52% (FWHM) at room temperature when detect 59.54 KeV Am241 γ-ray source.
APA, Harvard, Vancouver, ISO, and other styles
5

Hofmann, D. M., W. Stadler, P. Christmann, and B. K. Meyer. "Defects in CdTe and Cd1−xZnxTe." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 380, no. 1-2 (1996): 117–20. http://dx.doi.org/10.1016/s0168-9002(96)00287-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferekides, C. S., R. Mamazza, U. Balasubramanian, and D. L. Morel. "Cd1−XZnXTe thin films and junctions." Thin Solid Films 480-481 (June 2005): 471–76. http://dx.doi.org/10.1016/j.tsf.2004.11.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yao, G. D., J. Wu, T. Fanning, and M. Dudley. "Investigation of Semiconductor Heterostructures by White Beam Synchrotron X-Ray Topography in Grazing Bragg-Laue and Conventional Bragg Geometries." Advances in X-ray Analysis 35, A (1991): 247–53. http://dx.doi.org/10.1154/s0376030800008892.

Full text
Abstract:
AbstractWhite beam synchrotron X-ray topography has been applied both to the characterization of two semiconductor heterostructures, GaAs/Si and InxGa1-xAs/GaAs strained layers, and a substrate to be used for growing semiconductor epilayers, Cd1-xZnxTe. In the case of the heterostructures, misfit dislocations were observed using depth sensitive X-ray topographic imaging in grazing incidence Bragg-Laue geometries. The X-ray penetration depth, which can be varied from several hundreds of angstroms to hundreds of micrometers by rotating about the main reflection vector, which in this specific cas
APA, Harvard, Vancouver, ISO, and other styles
8

Fochuk, P., E. Nykonyuk, Z. Zakharuk, et al. "Comparison of Electrophysical Characteristics of Undoped Cd1 – xZnxTe, Cd1 – yMnyTe and Cd1 – x – yZnxMnyTe (x, y < 0,1) Crystals." Journal of Nano- and Electronic Physics 8, no. 4(1) (2016): 04011–1. http://dx.doi.org/10.21272/jnep.8(4(1)).04011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brytan, V. B., Yu V. Pavlovskyy, Yu O. Uhryn, and R. M. Peleshchak. "Vanadium and Chlorine doping Influence on Magnetic Susceptibility of Cd0.9Zn0.1Te Monocrystals." Фізика і хімія твердого тіла 17, no. 2 (2016): 198–201. http://dx.doi.org/10.15330/pcss.17.2.198-201.

Full text
Abstract:
The magnetic field experimental dependences of vanadium and chlorine doped Cd1-xZnxTe monocrystals magnetic susceptibility have been research. The magnetic susceptibility non-linearity has been observed. It is shown that this non-linearity due to super paramagnetic nature magnetic clusters forming.
APA, Harvard, Vancouver, ISO, and other styles
10

Terauchi, Hikaru, Yasuhiro Yoneda, Hirofumi Kasatani, et al. "Ferroelectric Behaviors in Semiconductive Cd1-xZnxTe Crystals." Japanese Journal of Applied Physics 32, S2 (1993): 728. http://dx.doi.org/10.7567/jjaps.32s2.728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cavalcoli, D., B. Fraboni, and A. Cavallini. "Surface photovoltage spectroscopy analyses of Cd1−xZnxTe." Journal of Applied Physics 103, no. 4 (2008): 043713. http://dx.doi.org/10.1063/1.2885350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zelaya-Angel, O., J. G. Mendoza-Alvarez, M. Becerril, H. Navarro-Contreras, and L. Tirado-Mejı́a. "On the bowing parameter in Cd1−xZnxTe." Journal of Applied Physics 95, no. 11 (2004): 6284–88. http://dx.doi.org/10.1063/1.1699493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ruzin, A. "Simulation of compensated and overcompensated Cd1−xZnxTe." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 718 (August 2013): 361–62. http://dx.doi.org/10.1016/j.nima.2012.10.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhu, Shi-fu, Bei-jun Zhao, Qi-feng Li, Feng-liang Yu, Shuang-yun Shao, and Xing-hua Zhu. "Modified growth of Cd1−xZnxTe single crystals." Journal of Crystal Growth 208, no. 1-4 (2000): 264–68. http://dx.doi.org/10.1016/s0022-0248(99)00409-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mazilu, M., D. Ohlmann, and B. Hönerlage. "Adjustable optical nonlinearities in Cd1−xZnxTe alloys." Journal of Luminescence 72-74 (June 1997): 824–25. http://dx.doi.org/10.1016/s0022-2313(96)00318-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gupta, P., K. K. Chattopadhyay, S. Chaudhuri, and A. K. Pal. "II?VI semiconductor alloy films: Cd1?xZnxTe." Journal of Materials Science 28, no. 2 (1993): 496–500. http://dx.doi.org/10.1007/bf00357829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Benguigui, L., R. Weil, E. Muranevich, A. Chack, E. Fredj, and Alex Zunger. "Ferroelectric properties of Cd1−xZnxTe solid solutions." Journal of Applied Physics 74, no. 1 (1993): 513–20. http://dx.doi.org/10.1063/1.355262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Parnham, Kevin B. "Recent progress in Cd1−xZnxTe radiation detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 377, no. 2-3 (1996): 487–91. http://dx.doi.org/10.1016/0168-9002(96)00026-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hofmann, D. M., W. Stadler, K. Oettinger, et al. "Structural properties of defects in Cd1−xZnxTe." Materials Science and Engineering: B 16, no. 1-3 (1993): 128–33. http://dx.doi.org/10.1016/0921-5107(93)90028-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wojciechowski, T., E. Janik, E. Dynowska, K. Fronc, and G. Karczewski. "Conductivity switching effect in Cd1–xZnxTe films." physica status solidi (c) 3, no. 4 (2006): 1197–200. http://dx.doi.org/10.1002/pssc.200564727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kolesnikov, Nikolai, Elena Borisenko, Dmitrii Borisenko, and Boris Gnesin. "Ceramic materials made of CdTe and Cd-Zn-Te nanocrystalline powders." Open Chemistry 9, no. 4 (2011): 619–23. http://dx.doi.org/10.2478/s11532-011-0038-2.

Full text
Abstract:
AbstractIn the present study newly produced semiconductor ceramic nanopowder materials made of CdTe and Cd1−xZnxTe (CZT) are considered. Common features and differences in microstructures, phase transformations, grain growth and properties of the ceramic materials of the binary and ternary compositions are studied.
APA, Harvard, Vancouver, ISO, and other styles
22

Wolf, Herbert, F. Wagner, J. Kronenberg, and Th Wichert. "On the Formation of Unusual Diffusion Profiles in CdxZn1-xTe Crystals after Implantation of Different Elements." Defect and Diffusion Forum 289-292 (April 2009): 587–92. http://dx.doi.org/10.4028/www.scientific.net/ddf.289-292.587.

Full text
Abstract:
It is known that the diffusion of Ag and Cu in Cd1 xZnxTe crystals exhibits unusual concentration profiles depending strongly on the external vapor pressure of Cd during diffusion. Recent experiments show that the dopant Na forms qualitatively the same diffusion profiles including the phenomenon of uphill diffusion. Also the transition elements Ni and Co show a strong dependence of the diffusion behavior on the external Cd pressure, but the shapes of the concentration profiles differ significantly from those known for Ag and Cu. The different behavior of Ag, Cu, and Na, on the one hand, and Ni
APA, Harvard, Vancouver, ISO, and other styles
23

Koç, Mehmet, Giray Kartopu, and Selcuk Yerci. "Combined Optical-Electrical Optimization of Cd1−xZnxTe/Silicon Tandem Solar Cells." Materials 13, no. 8 (2020): 1860. http://dx.doi.org/10.3390/ma13081860.

Full text
Abstract:
Although the fundamental limits have been established for the single junction solar cells, tandem configurations are one of the promising approaches to surpass these limits. One of the candidates for the top cell absorber is CdTe, as the CdTe photovoltaic technology has significant advantages: stability, high performance, and relatively inexpensive. In addition, it is possible to tune the CdTe bandgap by introducing, for example, Zn into the composition, forming Cd1−xZnxTe alloys, which can fulfill the Shockley–Queisser limit design criteria for tandem devices. The interdigitated back contact
APA, Harvard, Vancouver, ISO, and other styles
24

Alfadhili, Fadhil K., Geethika K. Liyanage, Adam B. Phillips, and Michael J. Heben. "Development of CdCl2 Activation to Minimize Zn Loss from Sputtered Cd1-xZnxTe Thin Films for Use in Tandem Solar Cells." MRS Advances 3, no. 52 (2018): 3129–34. http://dx.doi.org/10.1557/adv.2018.521.

Full text
Abstract:
ABSTRACTIncreasing the band gap of cadmium telluride (CdTe) from 1.48 eV to &gt; 2 eV can be achieved by alloying CdTe with ZnTe. Like CdTe, the alloyed films are expected to allow for low cost production, suggesting that Cd1-xZnxTe could be an ideal top cell for mass produced tandem devices. However, the CdCl2 activation of the alloyed films results in a significant loss of Zn, thereby reducing the bandgap. In this study, we demonstrate a novel CdCl2 activation method that does not result in significant Zn loss. By performing the activation step in a closed, inert environment we are able to a
APA, Harvard, Vancouver, ISO, and other styles
25

Dremlyuzhenko, S. G. "State of Cd1-xZnxTe and Cd1-xMnxTe surface depending on treatment type." Semiconductor Physics, Quantum Electronics and Optoelectronics 7, no. 1 (2004): 52–55. http://dx.doi.org/10.15407/spqeo7.01.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Alhaddad, T., M. B. Shoker, O. Pagès, et al. "Raman study of Cd1−xZnxTe phonons and phonon–polaritons—Experiment and ab initio calculations." Journal of Applied Physics 133, no. 6 (2023): 065701. http://dx.doi.org/10.1063/5.0134454.

Full text
Abstract:
Backward/near-forward Raman scattering and ab initio Raman/phonon calculations are combined, together with x-ray diffraction and ellipsometry measurements to further inform the debate on the compact phonon behavior of the II–VI Cd1−xZnxTe alloy. The compacity favors the coupling of polar optic modes in both the transverse and longitudinal symmetries via the related [Formula: see text] long-wave electric fields. The [Formula: see text]-coupling achieves maximum in the Zn-dilute limit, which enhances the (upper) ZnTe-like (impurity) mode at the expense of the (lower) CdTe-like (matrix-like) one,
APA, Harvard, Vancouver, ISO, and other styles
27

Maistruk, E. V., I. P. Koziarskyi, D. P. Koziarskyi та P. D. Maryanchuk. "Electrical Properties of the Сu2O/Cd1 – xZnxTe Heterostructure". Journal of Nano- and Electronic Physics 11, № 2 (2019): 02007–1. http://dx.doi.org/10.21272/jnep.11(2).02007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Giakos, G. C., B. Pillai, S. Vedantham, et al. "Optimization of Cd1–xZnxTe Detectors for Digital Radiography." Journal of X-Ray Science and Technology 7, no. 1 (1997): 37–49. http://dx.doi.org/10.3233/xst-1997-7104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brovko, A., O. Amzallag, A. Adelberg, and A. Ruzin. "Printed silver contacts for Cd1−xZnxTe radiation detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1014 (October 2021): 165696. http://dx.doi.org/10.1016/j.nima.2021.165696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Feldman, R. D., R. F. Austin, A. H. Dayem, and E. H. Westerwick. "Growth of Cd1−xZnxTe by molecular beam epitaxy." Applied Physics Letters 49, no. 13 (1986): 797–99. http://dx.doi.org/10.1063/1.97550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ohlmann, D., M. Mazilu, R. Levy, and B. Hönerlage. "Tunable optical nonlinearities in Cd1−xZnxTe ternary alloys." Journal of Applied Physics 82, no. 3 (1997): 1355–58. http://dx.doi.org/10.1063/1.365910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Oettinger, K., D. M. Hofmann, Al L. Efros, B. K. Meyer, M. Salk, and K. W. Benz. "Excitonic line broadening in bulk grown Cd1−xZnxTe." Journal of Applied Physics 71, no. 9 (1992): 4523–26. http://dx.doi.org/10.1063/1.350798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Alexandrou, A., M. K. Jackson, D. Hulin, N. Magnea, H. Mariette, and Y. Merle d’Aubigné. "Hole delocalization in CdTe/Cd1−xZnxTe quantum wells." Physical Review B 50, no. 4 (1994): 2727–30. http://dx.doi.org/10.1103/physrevb.50.2727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Y. F., C. S. Tsai, Y. H. Chang, Y. M. Chang, T. K. Chen, and Y. M. Pang. "Hydrogen passivation in Cd1−xZnxTe studied by photoluminescence." Applied Physics Letters 58, no. 5 (1991): 493–95. http://dx.doi.org/10.1063/1.104618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chattopadhyay, KK, A. Sarkar, S. Chaudhuri, and AK Pal. "Preparation and optical properties of Cd1−xZnxTe films." Vacuum 42, no. 17 (1991): 1113–16. http://dx.doi.org/10.1016/0042-207x(91)90183-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hirata, K., and O. Oda. "Lattice constants of Cd1−xZnxTe mixed compound semiconductor." Materials Letters 5, no. 1-2 (1986): 42–44. http://dx.doi.org/10.1016/0167-577x(86)90088-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Qadri, S. B., E. F. Skelton, A. W. Webb, J. Z. Hu, J. Kennedy, and C. Kim. "Phase Transitions in Cd1-xZnxTe(0.LEQ.x.LEQ.0.55)." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 319–21. http://dx.doi.org/10.4131/jshpreview.7.319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Koh, A. K., D. J. Miller, and C. T. Grainger. "Hyperfine coupling constant in manganese-doped Cd1−xZnxTe." Journal of Physics and Chemistry of Solids 47, no. 8 (1986): 789–93. http://dx.doi.org/10.1016/0022-3697(86)90007-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yujie, Li, Ma Guoli, Zhan Xiaona, and Jie Wanqi. "The annealing of Cd1−xZnxTe in CdZn vapors." Journal of Electronic Materials 31, no. 8 (2002): 834–40. http://dx.doi.org/10.1007/s11664-002-0192-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Benhlal, J. T., R. Granger, D. Lemoine, R. Triboulet, and Y. Marqueton. "Irreversible optical response in Cd1−xZnxTe mixed crystals." Journal of Crystal Growth 117, no. 1-4 (1992): 281–84. http://dx.doi.org/10.1016/0022-0248(92)90760-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yom, S. S., S. Perkowitz, P. M. Amirtharaj, and J. J. Kennedy. "Picosecond photoluminescence from bound excitons in Cd1−xZnxTe." Solid State Communications 65, no. 9 (1988): 1055–58. http://dx.doi.org/10.1016/0038-1098(88)90756-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Giakos, G. "Optimization of Cd1−xZnxTe Detectors for Digital Radiography." Journal of X-Ray Science and Technology 7, no. 1 (1997): 37–49. http://dx.doi.org/10.1006/jxra.1997.0248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tuffigo, H., R. T. Cox, N. Magnea, Y. Merle d’Aubigné, and A. Million. "Luminescence from quantized exciton-polariton states inCd1−xZnxTe/CdTe/Cd1−xZnxTe thin-layer heterostructures." Physical Review B 37, no. 8 (1988): 4310–13. http://dx.doi.org/10.1103/physrevb.37.4310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Brovko, Artem, and Arie Ruzin. "Study of material uniformity in high-resistivity Cd1−xZnxTe and Cd1−xMnxTe crystals." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 958 (April 2020): 161996. http://dx.doi.org/10.1016/j.nima.2019.03.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Takeyama, S., G. Grabecki, S. Adachi, et al. "Exciton Magneto-Optical Study on Single Quantum Wells, Cd1-xZnxTe/Cd1-x'-yZnx'MnyTe." Acta Physica Polonica A 88, no. 5 (1995): 945–48. http://dx.doi.org/10.12693/aphyspola.88.945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dremlyuzhenko, S. G., Z. I. Zakharuk, A. I. Savchuk, and P. M. Fochuk. "Effect of treatment on the CdTe, Cd1–xMnxTe and Cd1–xZnxTe surface stoichiometry." physica status solidi (b) 244, no. 5 (2007): 1650–54. http://dx.doi.org/10.1002/pssb.200675124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Qadri, S. B., E. F. Skelton, A. W. Webb, and J. Kennedy. "Evidence for bond strengthening in Cd1−xZnxTe (x=0.04)." Applied Physics Letters 46, no. 3 (1985): 257–59. http://dx.doi.org/10.1063/1.95650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Amirtharaj, P. M., J. H. Dinan, J. J. Kennedy, P. R. Boyd, and O. J. Glembocki. "Photoreflectance study of Hg0.7Cd0.3Te and Cd1−xZnxTe: E1 transition." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, no. 4 (1986): 2028–33. http://dx.doi.org/10.1116/1.574021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sang, Wenbin, Yongbiao Qian, Weiming Shi, Linjun Wang, Ju Yang, and Donghua Liu. "Equilibrium partial pressures and crystal growth of Cd1−xZnxTe." Journal of Crystal Growth 214-215 (June 2000): 30–34. http://dx.doi.org/10.1016/s0022-0248(00)00048-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Szeles, Cs, Y. Y. Shan, K. G. Lynn, and E. E. Eissler. "Deep electronic levels in high-pressure Bridgman Cd1−xZnxTe." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 380, no. 1-2 (1996): 148–52. http://dx.doi.org/10.1016/s0168-9002(96)00331-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!