Journal articles on the topic 'CD27-ligand'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CD27-ligand.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gravestein, L. A., W. van Ewijk, F. Ossendorp, and J. Borst. "CD27 cooperates with the pre-T cell receptor in the regulation of murine T cell development." Journal of Experimental Medicine 184, no. 2 (1996): 675–85. http://dx.doi.org/10.1084/jem.184.2.675.
Full textHintzen, Rogier Q., Susanne M. A. Lens, Gerrit Koopman, Steven T. Pals, Hergen Spits, and René A. W. van Lier. "CD70 represents the human ligand for CD27." International Immunology 6, no. 3 (1994): 477–80. http://dx.doi.org/10.1093/intimm/6.3.477.
Full textRanheim, EA, MJ Cantwell, and TJ Kipps. "Expression of CD27 and its ligand, CD70, on chronic lymphocytic leukemia B cells." Blood 85, no. 12 (1995): 3556–65. http://dx.doi.org/10.1182/blood.v85.12.3556.bloodjournal85123556.
Full textTeplyakov, Alexey, Galina Obmolova, Thomas J. Malia, and Gary L. Gilliland. "Crystal structure of CD27 in complex with a neutralizing noncompeting antibody." Acta Crystallographica Section F Structural Biology Communications 73, no. 5 (2017): 294–99. http://dx.doi.org/10.1107/s2053230x17005957.
Full textAgematsu, Kazunaga, Haruo Nagumo, Yumiko Oguchi, et al. "Generation of Plasma Cells From Peripheral Blood Memory B Cells: Synergistic Effect of Interleukin-10 and CD27/CD70 Interaction." Blood 91, no. 1 (1998): 173–80. http://dx.doi.org/10.1182/blood.v91.1.173.
Full textAgematsu, Kazunaga, Haruo Nagumo, Yumiko Oguchi, et al. "Generation of Plasma Cells From Peripheral Blood Memory B Cells: Synergistic Effect of Interleukin-10 and CD27/CD70 Interaction." Blood 91, no. 1 (1998): 173–80. http://dx.doi.org/10.1182/blood.v91.1.173.173_173_180.
Full textOchsenbein, Adrian F., Stanley R. Riddell, Michele Brown, et al. "CD27 Expression Promotes Long-Term Survival of Functional Effector–Memory CD8+Cytotoxic T Lymphocytes in HIV-infected Patients." Journal of Experimental Medicine 200, no. 11 (2004): 1407–17. http://dx.doi.org/10.1084/jem.20040717.
Full textTai, Yu-Tzu, Xian-Feng Li, Rory Coffey, et al. "CD27-Mediated Apoptosis Is Dependent on Siva-Induced Caspase Activation in Human Multiple Myeloma." Blood 106, no. 11 (2005): 3398. http://dx.doi.org/10.1182/blood.v106.11.3398.3398.
Full textDeng, Yun, Bithi Chatterjee, Kyra Zens, et al. "CD27 is required for protective lytic EBV antigen–specific CD8+ T-cell expansion." Blood 137, no. 23 (2021): 3225–36. http://dx.doi.org/10.1182/blood.2020009482.
Full textRiether, Carsten, Christian M. Schürch, Elias D. Bührer, et al. "CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia." Journal of Experimental Medicine 214, no. 2 (2016): 359–80. http://dx.doi.org/10.1084/jem.20152008.
Full textStarzer, Angelika M., and Anna S. Berghoff. "New emerging targets in cancer immunotherapy: CD27 (TNFRSF7)." ESMO Open 4, Suppl 3 (2020): e000629. http://dx.doi.org/10.1136/esmoopen-2019-000629.
Full textIzawa, Kazushi, Emmanuel Martin, Claire Soudais, et al. "Inherited CD70 deficiency in humans reveals a critical role for the CD70–CD27 pathway in immunity to Epstein-Barr virus infection." Journal of Experimental Medicine 214, no. 1 (2016): 73–89. http://dx.doi.org/10.1084/jem.20160784.
Full textCoquet, Jonathan M., Julie C. Ribot, Nikolina Bąbała, et al. "Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27–CD70 pathway." Journal of Experimental Medicine 210, no. 4 (2013): 715–28. http://dx.doi.org/10.1084/jem.20112061.
Full textHo, Allen W., Xavier Leleu, Evdoxia Hatjiharissi, et al. "A Novel Functional Role for Soluble CD27 in the Pathogenesis of Waldenstrom’s Macroglobulinemia." Blood 106, no. 11 (2005): 4701. http://dx.doi.org/10.1182/blood.v106.11.4701.4701.
Full textLens, Susanne M. A., Rolien De Jong, Berend Hooibrink, et al. "Phenotype and function of human B cells expressing CD70 (CD27 ligand)." European Journal of Immunology 26, no. 12 (1996): 2964–71. http://dx.doi.org/10.1002/eji.1830261223.
Full textHo, A. W., E. Hatjiharissi, A. Branagan, et al. "Therapeutic targeting of CD70 and CD27-CD70 interactions with the monoclonal antibody SGN-70 in Waldenstrom’s Macroglobulinemia (WM)." Journal of Clinical Oncology 24, no. 18_suppl (2006): 2509. http://dx.doi.org/10.1200/jco.2006.24.18_suppl.2509.
Full textGhosh, Sujal, Sevgi Köstel Bal, Emily S. J. Edwards, et al. "Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency." Blood 136, no. 23 (2020): 2638–55. http://dx.doi.org/10.1182/blood.2020006738.
Full textDescatoire, Marc, Sandra Weller, Sabine Irtan, et al. "Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties." Journal of Experimental Medicine 211, no. 5 (2014): 987–1000. http://dx.doi.org/10.1084/jem.20132203.
Full textTesselaar, Kiki, Yanling Xiao, Ramon Arens, et al. "Expression of the Murine CD27 Ligand CD70 In Vitro and In Vivo." Journal of Immunology 170, no. 1 (2003): 33–40. http://dx.doi.org/10.4049/jimmunol.170.1.33.
Full textTroeger, Anja, Ludmila Glouchkova, Birgit Ackermann, et al. "Increased TNF/NGF Receptor Expression on BCP-ALL Blasts Carrying the Prognostically Favorable TEL-AML Rearrangement." Blood 110, no. 11 (2007): 1431. http://dx.doi.org/10.1182/blood.v110.11.1431.1431.
Full textShaw, Joanne, Yui-Hsi Wang, Tomoki Ito, Kazuhiko Arima, and Yong-Jun Liu. "Plasmacytoid dendritic cells regulate B-cell growth and differentiation via CD70." Blood 115, no. 15 (2010): 3051–57. http://dx.doi.org/10.1182/blood-2009-08-239145.
Full textHo, Allen W., Evdoxia Hatjiharissi, Bryan T. Ciccarelli, et al. "CD27-CD70 interactions in the pathogenesis of Waldenström macroglobulinemia." Blood 112, no. 12 (2008): 4683–89. http://dx.doi.org/10.1182/blood-2007-04-084525.
Full textBuchan, Sarah L., Anne Rogel, and Aymen Al-Shamkhani. "The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy." Blood 131, no. 1 (2018): 39–48. http://dx.doi.org/10.1182/blood-2017-07-741025.
Full textHenson, Sian M., Ornella Franzese, Richard Macaulay, et al. "KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells." Blood 113, no. 26 (2009): 6619–28. http://dx.doi.org/10.1182/blood-2009-01-199588.
Full textAnsell, Stephen M., Ian Flinn, Matthew H. Taylor, et al. "Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, for hematologic malignancies." Blood Advances 4, no. 9 (2020): 1917–26. http://dx.doi.org/10.1182/bloodadvances.2019001079.
Full textNolte, Martijn A., and René A. W. van Lier. "The price of the CD27–CD70 costimulatory axis: you can't have it all." Journal of Experimental Medicine 203, no. 11 (2006): 2405–8. http://dx.doi.org/10.1084/jem.20061840.
Full textHe, Li-Zhen, Larry Thomas, Jeffery Weidlick, et al. "Development of a Human Anti-CD27 Antibody with Efficacy in Lymphoma and Leukemia Models by Two Distinct Mechanisms." Blood 118, no. 21 (2011): 2861. http://dx.doi.org/10.1182/blood.v118.21.2861.2861.
Full textKeller, Anna M., Yanling Xiao, Victor Peperzak, Shalin H. Naik, and Jannie Borst. "Costimulatory ligand CD70 allows induction of CD8+ T-cell immunity by immature dendritic cells in a vaccination setting." Blood 113, no. 21 (2009): 5167–75. http://dx.doi.org/10.1182/blood-2008-03-148007.
Full textBurris, Howard A., Jeffrey R. Infante, Stephen M. Ansell, et al. "Safety and Activity of Varlilumab, a Novel and First-in-Class Agonist Anti-CD27 Antibody, in Patients With Advanced Solid Tumors." Journal of Clinical Oncology 35, no. 18 (2017): 2028–36. http://dx.doi.org/10.1200/jco.2016.70.1508.
Full textPadanilam, Babu J., Andrew J. P. Lewington, and Marc R. Hammerman. "Expression of CD27 and ischemia/reperfusion-induced expression of its ligand Siva in rat kidneys." Kidney International 54, no. 6 (1998): 1967–75. http://dx.doi.org/10.1046/j.1523-1755.1998.00197.x.
Full textHeld-Feindt, Janka, and Rolf Mentlein. "CD70/CD27 ligand, a member of the TNF family, is expressed in human brain tumors." International Journal of Cancer 98, no. 3 (2002): 352–56. http://dx.doi.org/10.1002/ijc.10207.
Full textHamann, Dörte, Paul A. Baars, Martin H. G. Rep, et al. "Phenotypic and Functional Separation of Memory and Effector Human CD8+ T Cells." Journal of Experimental Medicine 186, no. 9 (1997): 1407–18. http://dx.doi.org/10.1084/jem.186.9.1407.
Full textChaganti, Sridhar, Noelia Begue Pastor, Gouri Baldwin, et al. "EBV Can Induce Somatic Hypermutation in Naïve B Cells In Vitro but Ig Class Switching Requires T Cell Help." Blood 108, no. 11 (2006): 2370. http://dx.doi.org/10.1182/blood.v108.11.2370.2370.
Full textGruss, HJ, and SK Dower. "Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas." Blood 85, no. 12 (1995): 3378–404. http://dx.doi.org/10.1182/blood.v85.12.3378.bloodjournal85123378.
Full textErdő-Bonyár, Szabina, Judit Rapp, Tünde Minier, et al. "Toll-Like Receptor Mediated Activation of Natural Autoantibody Producing B Cell Subpopulations in an Autoimmune Disease Model." International Journal of Molecular Sciences 20, no. 24 (2019): 6152. http://dx.doi.org/10.3390/ijms20246152.
Full textRojas, José Manuel, Alí Alejo, Jose Miguel Avia, et al. "Activation of OX40 and CD27 Costimulatory Signalling in Sheep through Recombinant Ovine Ligands." Vaccines 8, no. 2 (2020): 333. http://dx.doi.org/10.3390/vaccines8020333.
Full textZambello, Renato, Livio Trentin, Monica Facco, et al. "Analysis of TNF-receptor and ligand superfamily molecules in patients with lymphoproliferative disease of granular lymphocytes." Blood 96, no. 2 (2000): 647–54. http://dx.doi.org/10.1182/blood.v96.2.647.014k18_647_654.
Full textSarvaria, Anushruti, Ahmad Khoder, Abdullah Alsuliman, et al. "B Cell With Regulatory Function Are Enriched Within Transitional and IgM Memory B Cell Subsets In Healthy Donors But Are Reduced and Functionally Impaired In Patients With Chronic Graft-Versus-Host Disease." Blood 122, no. 21 (2013): 4478. http://dx.doi.org/10.1182/blood.v122.21.4478.4478.
Full textZambello, Renato, Livio Trentin, Monica Facco, et al. "Analysis of TNF-receptor and ligand superfamily molecules in patients with lymphoproliferative disease of granular lymphocytes." Blood 96, no. 2 (2000): 647–54. http://dx.doi.org/10.1182/blood.v96.2.647.
Full textConacher, Margaret, Robin Callard, Karen McAulay, et al. "Epstein-Barr Virus Can Establish Infection in the Absence of a Classical Memory B-Cell Population." Journal of Virology 79, no. 17 (2005): 11128–34. http://dx.doi.org/10.1128/jvi.79.17.11128-11134.2005.
Full textYoo, S. J., S. W. Kang, J. Kim, I. S. Yoo, C. K. Park, and H. R. Lee. "AB0109 THE ROLE OF CD70 IN THE DEVELOPMENT OF RHEUMATOID ARTHRITIS." Annals of the Rheumatic Diseases 79, Suppl 1 (2020): 1353.1–1355. http://dx.doi.org/10.1136/annrheumdis-2020-eular.2448.
Full textMasamoto, Izumi, Sawako Horai, Tomohiro Kozako, et al. "CD70 Expression on HTLV-1 Infected T Cells of Carriers and ATL Patients and Its Clinical Significance." Blood 116, no. 21 (2010): 1730. http://dx.doi.org/10.1182/blood.v116.21.1730.1730.
Full textPowell, Daniel J., Mark E. Dudley, Paul F. Robbins, and Steven A. Rosenberg. "Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy." Blood 105, no. 1 (2005): 241–50. http://dx.doi.org/10.1182/blood-2004-06-2482.
Full textDijke, E., K. Derkatz, J. Pearcey, F. Wong, B. Motyka, and L. West. "Cis-Binding of the Inhibitory Molecule CD22 to CD22 Ligand (CD22L) Controls Activation of Human CD27+IgM+ B Cells." Journal of Heart and Lung Transplantation 36, no. 4 (2017): S47. http://dx.doi.org/10.1016/j.healun.2017.01.111.
Full textHumphreys, Tricia L., Lee Ann Baldridge, Steven D. Billings, James J. Campbell, and Stanley M. Spinola. "Trafficking Pathways and Characterization of CD4 and CD8 Cells Recruited to the Skin of Humans Experimentally Infected with Haemophilus ducreyi." Infection and Immunity 73, no. 7 (2005): 3896–902. http://dx.doi.org/10.1128/iai.73.7.3896-3902.2005.
Full textDijke, Esme, Kim Derkatz, Jean Pearcey, Fred Wong, Bruce Motyka, and Lori West. "Regulation of Human CD27+IgM+ B Cell Activation by Cis-Binding of the Inhibitory Molecule CD22 to CD22 Ligand (CD22L)." Transplantation 101 (May 2017): S5. http://dx.doi.org/10.1097/01.tp.0000520297.36145.fc.
Full textKessel, Christoph, Wolfhart Kreuz, Katharina Brassat, Thomas Klingebiel, and Christoph Königs. "Ligand Mediated Targeting of FVIII Inhibitor Specific Primary B Cells Via Surface Immunoglobulin." Blood 106, no. 11 (2005): 3206. http://dx.doi.org/10.1182/blood.v106.11.3206.3206.
Full textSalzer, Ulrich, Chiara Bacchelli, Sylvie Buckridge, et al. "Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes." Blood 113, no. 9 (2009): 1967–76. http://dx.doi.org/10.1182/blood-2008-02-141937.
Full textDe Re, Valli, Alessandro Pavan, Vito Racanelli, Silvia Sansonno, and Giuseppe Toffoli. "Clonal CD27+ CD19+ B-Cell Expansion through Inhibition of FCgIIR in HCV+ Lymphorpoliferative Disorders." Blood 112, no. 11 (2008): 4923. http://dx.doi.org/10.1182/blood.v112.11.4923.4923.
Full textBrugnoni, Duilio, Paolo Airò, and Roberto Cattaneo. "CD70 (CD27 ligand) expression by synovial fluid CD4+ T lymphocytes in rheumatoid arthritis: Comment on the article by Kohen et al." Arthritis & Rheumatism 40, no. 6 (1997): 1186–87. http://dx.doi.org/10.1002/art.1780400635.
Full text