Academic literature on the topic 'CD309'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CD309.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CD309"
Meamr, Rokhsareh, Hamidreza Nikyar, Ahmad Chitsaz, Leila Dehghani, and Maryam Nasri. "Evaluation of related variables on endothelial progenitor cells in first transient ischemic attack." Journal of Shahrekord University of Medical Sciences 21, no. 4 (August 30, 2019): 157–62. http://dx.doi.org/10.34172/jsums.2019.28.
Full textHuang, Zhi-Xin, Jin Fang, Chang-Hua Zhou, Jie Zeng, Dong Yang, and Zhenguo Liu. "CD34+ cells and endothelial progenitor cell subpopulations are associated with cerebral small vessel disease burden." Biomarkers in Medicine 15, no. 3 (February 2021): 191–200. http://dx.doi.org/10.2217/bmm-2020-0350.
Full textYounes, A., U. Consoli, V. Snell, K. Clodi, K. O. Kliche, J. L. Palmer, H. J. Gruss, et al. "CD30 ligand in lymphoma patients with CD30+ tumors." Journal of Clinical Oncology 15, no. 11 (November 1997): 3355–62. http://dx.doi.org/10.1200/jco.1997.15.11.3355.
Full textBerezin, Alexander E., Alexander A. Kremzer, Daniel Petrovich, Ioana Mozos, and Alexander A. Berezin. "Association of growth-differentiation factor-15 with the number of circulating proangiogenic endothelial progenitor cells in patients with type 2 diabetes mellitus." Biomedical Research and Therapy 5, no. 7 (July 27, 2018): 2480–92. http://dx.doi.org/10.15419/bmrat.v5i7.458.
Full textMori, M., C. Manuelli, N. Pimpinelli, C. Mavilia, E. Maggi, M. Santucci, B. Bianchi, P. Cappugi, B. Giannotti, and M. E. Kadin. "CD30-CD30 Ligand Interaction in Primary Cutaneous CD30+T-Cell Lymphomas: A Clue to the Pathophysiology of Clinical Regression." Blood 94, no. 9 (November 1, 1999): 3077–83. http://dx.doi.org/10.1182/blood.v94.9.3077.
Full textMori, M., C. Manuelli, N. Pimpinelli, C. Mavilia, E. Maggi, M. Santucci, B. Bianchi, P. Cappugi, B. Giannotti, and M. E. Kadin. "CD30-CD30 Ligand Interaction in Primary Cutaneous CD30+T-Cell Lymphomas: A Clue to the Pathophysiology of Clinical Regression." Blood 94, no. 9 (November 1, 1999): 3077–83. http://dx.doi.org/10.1182/blood.v94.9.3077.421k28_3077_3083.
Full textBarbieri, Alessandro, Marzia Dolcino, Elisa Tinazzi, Antonella Rigo, Giuseppe Argentino, Giuseppe Patuzzo, Andrea Ottria, Ruggero Beri, Antonio Puccetti, and Claudio Lunardi. "Characterization of CD30/CD30L+Cells in Peripheral Blood and Synovial Fluid of Patients with Rheumatoid Arthritis." Journal of Immunology Research 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/729654.
Full textRyan, Maureen, Ryan Lyski, Lauren Bou, Ryan Heiser, Bryan Grogan, Dave Meyer, Steven Jin, et al. "SGN-CD30C, an Investigational CD30-Directed Camptothecin Antibody-Drug Conjugate (ADC), Shows Strong Anti Tumor Activity and Superior Tolerability in Preclinical Studies." Blood 136, Supplement 1 (November 5, 2020): 41–42. http://dx.doi.org/10.1182/blood-2020-136577.
Full textBratseth, Vibeke, Hanna D. Margeirsdottir, Gemma Chiva-Blanch, Martin Heier, Svein Solheim, Harald Arnesen, Knut Dahl-Jørgensen, and Ingebjørg Seljeflot. "Annexin V+ Microvesicles in Children and Adolescents with Type 1 Diabetes: A Prospective Cohort Study." Journal of Diabetes Research 2020 (March 30, 2020): 1–8. http://dx.doi.org/10.1155/2020/7216863.
Full textSimhadri, Vijaya Lakshmi, Hinrich P. Hansen, Venkateswara R. Simhadri, Katrin S. Reiners, Martina Bessler, Andreas Engert, and Elke Pogge von Strandmann. "A novel role for reciprocal CD30-CD30L signaling in the cross-talk between natural killer and dendritic cells." Biological Chemistry 393, no. 1-2 (January 1, 2012): 101–6. http://dx.doi.org/10.1515/bc-2011-213.
Full textDissertations / Theses on the topic "CD309"
Golbs, Sebastian. "Entzündungsparameter und Vorläufermarker bei der Coronaratherosklerose." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-20100407-135735-3.
Full textBarbosa, Maria Izabel Neves de Holanda. "Avaliação do PRA e CD30s no transplante renal intervivos. Acompanhamento no 1 ano e após 6 anos em pacientes do Hospital Federal de Bonsucesso (Rio de Janeiro, Brasil)." Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=5592.
Full textFischer, Marie. "Mast cells in Hodgkin lymphoma : or 'What's a nice cell like you doing in a tumour like this?'." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4620.
Full textBengtsson, Åsa. "The role of CD30 in atopic allergy /." Stockholm, 2000. http://diss.kib.ki.se/2000/91-628-4333-8/.
Full textOberbarnscheidt, Martin. "Charakterisierung und Struktur des cd30-Gens." [S.l.] : [s.n.], 2001. http://www.diss.fu-berlin.de/2001/245/index.html.
Full textHahn, Corinna. "Untersuchungen zur Apoptoseresistenz CD30-exprimierender Tumorzellen." [S.l.] : [s.n.], 2004. http://www.diss.fu-berlin.de/2004/258/index.html.
Full textFreitas, Helder Teixeira de. "Papel da sinalização da adenosina na geração de células T regulatórias a partir de células T naive de cordão umbilical e na imunomodulação por células-tronco estromais mesenquimais de medula óssea." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/17/17153/tde-19072018-135504/.
Full textRegulatory T cells (Tregs) are essential for the maintenance of peripheral tolerance, prevention of autoimmune and limiting diseases in chronic inflammatory diseases. In addition, these cells play a key role in the control of transplant rejection. Different protocols have shown that it is possible to obtain Tregs from naive CD4+ T cells in vitro. To this end, there is consensus that TGF-? and interleukin-2 (IL-2) are capable of directing the naive CD4 + T cells to become regulatory following an antigenic stimulus (anti-CD3/CD28).. Our group recently noted that during the immunomodulation of T lymphocytes by mesenchymal stromal cells (MSCs), they were able to produce adenosine which in turn participates in the immunoregulation process. Other studies indicate that MSCs suppress the proliferation of T lymphocytes by generation of Tregs and that MSCs induce generation of Tregs by downregulation of the TCR pathway and the AKT-mTOR pathway. Evidence indicates that adenosine may act by downregulating the mTOR pathway. Therefore, it is believed that adenosine may participate in the generation of Tregs by modulating the mTOR pathway. In addition, recent studies indicate that activation of adenosine receptors, more specifically A2a, with agonist agents, leads to increased production of Treg cells, whereas the use of antagonistic agents of these receptors leads to a decrease in Treg differentiation.. However, these studies show the generation of Tregs from naive T cells of mice. In view of the great importance of Tregs in the immunological context, the efficient production of Tregs in vitro is of fundamental importance for the development of new therapeutic protocols for the treatment of autoimmune diseases and in the fight against transplant rejection. Thus, the central objective of this study was to evaluate the participation of adenosine receptor agonists and antagonists in induction of regulatory T cells generated in vitro (iTreg) by the activation of naive CD4+ T cells isolated from human umbilical cord blood (SCU). For this, mononuclear cells were isolated from SCU and naive T cells were immunomagnetic isolated. These cells were activated with beads bound to anti-CD2/CD3/CD28 antibodies and cultured for five days in the presence of IL-2 and different concentrations of agonist drugs and antagonists of adenosine receptors. Next, the major regulatory T-cell markers were assessed by flow cytometry and the culture medium was collected at the end of the generation for quantification of cytokines. In addition, total RNA was extracted from all culture conditions for the analysis of the expression of genes involved in the generation and development of Tregs by quantitative PCR. The potential for suppression of effector T cells was also evaluated.
Mac, Grogan Gaëtan. "Lymphomes cutanés à grandes cellules CD30 positives." Bordeaux 2, 1993. http://www.theses.fr/1993BOR23110.
Full text三井, 伸二, Masahide Takahashi, Masatoshi Ichihara, Sayaka Sobue, Kaori Ushida, Atsushi Enomoto, Masato Asai, et al. "Epidermal Hyperplasia and Appendage Abnormalities in Mice Lacking CD109." Thesis, Elsevier, 2012. http://hdl.handle.net/2237/17140.
Full textBrum, Liliani Mathias. "ATIVIDADE DA NTPDase DE LINFÓCITOS NA DERMATITE DE CONTATO ANTES E APÓS TRATAMENTO COM DEXAMETASONA NANOESTRUTURADA." Universidade Franciscana, 2008. http://tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/235.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Since the extracellular nucleotides represent an important means of modulating the activity of lymphocytes, it is essential the presence of an enzymatic mechanism to keep constant the concentration of those in the extracellular space. The activity of NTPDase has been recognized as a marker of activation necessary for the function of effector lymphocytes, participate in the processes of recognition of antigen. Contact dermatitis occurs in a delayed hypersensitivity reaction of type IV, mediated by cells through a mechanism that sensitizes the immune T lymphocyte to an antigen protein or a hapten linked to a protein. Among the mediators able to modulate the actions of lymphocytes stand out from the nucleoside and nucleotide adenine, in particular the extracellular ATP that is able to regulate the cell-cell interactions are important processes of activation, differentiation, development, proliferation, cell death and responses of effector lymphocytes. This study sought to determine first of the hydrolysis of adenine nucleotides, the NTPDase (EC 3.6.1.5, nucleoside triphosphate difosfoidrolase, CD39) in lymphocytes from mice with dermatitis induced by nickel sulphate to 5%, before and after treatment with dexamethasone and dexamethasone nanostructured free to try to check the possible changes in the activity of this enzyme front of an inflammatory reaction of type IV hypersensitivity and immunosuppressive therapy. Moreover, it was possible to verify the relationship of submission of the drug in the formulation free and nanostructures with the hydrolysis of adenine nucleotides. The average enzymatic activity of the group with contact dermatitis was significantly higher in the control group by the test of hypotheses to averages T. The results are in line with work done earlier that showed an increase of enzyme activity by the activation of lymphocytes. The hydrolysis of ATP and ADP in the group treated with dexamethasone free and in the group treated with dexamethasone nanostructured was significantly higher in the control group by analysis of variance for a way (ANOVA) followed by Kruskal-Wallis test (P < 0001). The results are in line with work done earlier that showed an increase of enzyme activity by the activation of lymphocytes. Was observed greater hydrolysis of ATP and ADP in the group treated with dexamethasone nanostructures in relation to the group treated with dexamethasone free. However, this difference was not statistically significant. Work previously shown an increase of enzyme activity during treatment with dexamethasone as a possible compensatory effect of the decrease in the number of lymphocytes. The results of this study suggest that dexamethasone nanostructures possess a immunosuppressive effects greatest, which may be the beginning of the evaluation of a more effective and safe treatment for contact dermatitis. From these results we can conclude that the determination of the activity of NTPDase in lymphocytes could be used as an indicator of the efficiency of the treatment of contact dermatitis
Uma vez que os nucleotídeos extracelulares representam uma importante via de modulação da atividade dos linfócitos, é indispensável a presença de um mecanismo enzimático capaz de manter constante a concentração desses no espaço extracelular. A atividade da NTPDase tem sido reconhecida como um marcador de ativação necessário para a função efetora dos linfócitos, participando também dos processos de reconhecimento do antígeno. Na dermatite de contato ocorre uma reação de hipersensibilidade retardada tipo IV, mediada por células, através de um mecanismo imunológico que sensibiliza os linfócitos T frente a um antígeno protéico ou a um hapteno ligado a uma proteína. Dentre os mediadores capazes de modular as ações dos linfócitos destacam-se os nucleosídeos e nucleotídeos da adenina, em especial o ATP extracelular que é capaz de regular as interações célula-célula sendo importante nos processos de ativação, diferenciação, desenvolvimento, proliferação, morte celular e respostas efetoras dos linfócitos. Este estudo procurou determinar primeiramente a hidrólise de nucleotídeos da adenina, pela NTPDase (EC 3.6.1.5, nucleosídeo trifosfato difosfoidrolase, CD39) em linfócitos de ratos com dermatite induzida por sulfato de níquel, antes e após tratamento com dexametasona livre e dexametasona nanoestruturada, para tentar verificar as possíveis alterações na atividade desta enzima frente a uma reação inflamatória de hipersensibilidade tipo IV e na terapia imunossupressora. Além disso, procurou-se verificar a possível relação da apresentação do fármaco na formulação livre e nanoestruturada com a hidrólise de nucleotídeos da adenina. A atividade enzimática média do grupo com dermatite de contato foi significativamente maior em relação ao grupo controle pelo teste de hipóteses para médias T. Os resultados encontrados estão de acordo com trabalhos realizados anteriormente que demonstram um aumento da atividade enzimática pela ativação dos linfócitos. A hidrólise do ATP e do ADP no grupo tratado com dexametasona livre e no grupo tratado com dexametasona nanoestruturada foi significativamente maior em relação ao grupo controle pelo teste de análise de variância de uma via (ANOVA) seguido pelo teste de Kruskal-Wallis (P< 0,001). Observou-se uma maior hidrólise de ADP e ATP, no grupo tratado com dexametasona nanoestruturada em relação ao grupo tratado com dexametasona livre. No entanto, esta diferença não foi estatisticamente significativa. Trabalhos anteriores já demonstraram um aumento de atividade enzimática durante tratamento com dexametasona como um possível efeito compensatório à diminuição do número de linfócitos. Os resultados deste estudo sugerem que a dexametasona nanoestruturada possui um efeito imunossupressor maior, o que pode ser o início da avaliação de um tratamento mais eficaz e seguro para a dermatite de contato. A partir destes resultados podemos concluir que a determinação da atividade da NTPDase em linfócitos poderia ser utilizada como um indicador da eficiência da terapêutica da dermatite de contato.
Books on the topic "CD309"
Lin, Martin. Cloning of the human CD109 cDNA. Ottawa: National Library of Canada, 2000.
Find full textBook chapters on the topic "CD309"
Oflazoglu, Ezogelin, Iqbal S. Grewal, and Hanspeter Gerber. "Targeting CD30/CD30L in Oncology and Autoimmune and Inflammatory Diseases." In Advances in Experimental Medicine and Biology, 174–85. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-89520-8_12.
Full textvan Roy, Frans, Volker Nimmrich, Anton Bespalov, Achim Möller, Hiromitsu Hara, Jacob P. Turowec, Nicole A. St. Denis, et al. "CD39." In Encyclopedia of Signaling Molecules, 306. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100201.
Full textNikolaenko, Liana, Jasmine Zain, Steven T. Rosen, and Christiane Querfeld. "CD30-Positive Lymphoproliferative Disorders." In Cancer Treatment and Research, 249–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99716-2_12.
Full textKaczmarek, Elzbieta, Jonathan B. Siegel, Jean Sevigny, Katarzyna Koziak, Wayne W. Hancock, Adrien Beaudoin, Fritz H. Bach, and Simon C. Robson. "Vascular ATP Diphosphohydrolase (CD39/ATPDase)." In Ecto-ATPases, 171–85. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5955-9_22.
Full textSubtil, Antonio. "Differential Diagnosis of CD30 Expression." In Diagnosis of Cutaneous Lymphoid Infiltrates, 81–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11654-5_17.
Full textBeylot-Barry, M., and B. Vergier. "Lymphoproliférations cutanées CD30+: lymphome cutané primitif à grandes cellules T CD30+ et papulose lymphomatoïde." In Les lymphomes cutanés, 95–110. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0354-8_7.
Full textKazlouskaya, V., J. Ho, and O. E. Akilov. "Case 23. Arthropod reaction with CD30 positive infiltrate and ulceration mimicking CD30 lymphoproliferative disorder." In Cutaneous Lymphomas, 50–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59129-8_23.
Full textBraun-Falco, Markus, Henry J. Mankin, Sharon L. Wenger, Markus Braun-Falco, Stephan DiSean Kendall, Gerard C. Blobe, Christoph K. Weber, et al. "Primary Cutaneous CD30-positive Lymphoproliferative Disorders." In Encyclopedia of Molecular Mechanisms of Disease, 1720. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_7580.
Full textKadin, Marshall E. "CD30+ Cutaneous Lymphoproliferative Disorders and Pseudolymphomas." In Cutaneous Hematopathology, 337–59. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0950-6_12.
Full textKumar, Anita, Stefano Pileri, Anas Younes, and Andreas Engert. "Targeting CD30 in Patients with Hodgkin Lymphoma." In Hodgkin Lymphoma, 343–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12505-3_21.
Full textConference papers on the topic "CD309"
Ryan, Maureen, Ryan Lyski, Lauren Bou, David Meyer, Steven Jin, Jessica Simmons, Dennis Benjamin, Peter Senter, and Scott Jeffrey. "Abstract 2889: SGN-CD30C, a new CD30-directed camptothecin antibody-drug conjugate (ADC), shows strong anti-tumor activity and superior tolerability in preclinical studies." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-2889.
Full textRegairaz, Anne, Caroline Laheurte, Nathalie Bonnefoy, Jean-Francois Eliaou, Gilles Alberici, Armand Bensussan, and Jeremy Bastid. "Abstract B3: CD39+ cancer cells mediate immunosuppression reverted by CD39-blocking antibodies." In Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-b3.
Full textKarkanitsa, Pavel, Sherman Weissman, Peter Rabinovich, Hinrich Abken, Andreas Hombach, Marina Komarovskaya, and Francine M. Foss. "Abstract 1936: Anti CD30 chimeric immune receptor mRNA for therapy of CD30+lymphomas." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1936.
Full textSavoldo, B. "CD30 CAR T for HL and ALCL." In ISCAYAHL 2020. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1701877.
Full textRana, Seema, and Rajiv Tangri. "Anaplastic large cell lymphoma ALK negative vs. peripheral T cell lymphoma (NOS) - diagnostic dilemma." In 16th Annual International Conference RGCON. Thieme Medical and Scientific Publishers Private Ltd., 2016. http://dx.doi.org/10.1055/s-0039-1685354.
Full textHeiser, Ryan A., Bryan M. Grogan, Luke S. Manlove, and Shyra J. Gardai. "Abstract 1789: CD30+T regulatory cells, but not CD30+CD8 T cells, are impaired following brentuximab vedotin treatment in vitro and in vivo." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1789.
Full textGennaro, Victoria, Xiao-yong Zhang, Lauren DeSalle, Duonan Yu, Andrei Thomas-Tikhonenko, and Steven McMahon. "Abstract A40: CD30: A therapeutic target of MYC-driven cancer." In Abstracts: AACR Special Conference on Myc: From Biology to Therapy; January 7-10, 2015; La Jolla, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3125.myc15-a40.
Full textBastid, Jeremy, Cécile Dejou, Jérôme Giustiniani, Stéphanie Cochaud, Gilles Alberici, Armand Bensussan, Jean-François Eliaou, and Nathalie Bonnefoy. "Abstract 5036: Blockade of the CD39 immunoregulatory pathway by monoclonal antibodies." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5036.
Full textZhao, Xing, Narendiran Rajasekaran, Uwe Reusch, Jens-Peter Marschner, Martin Treder, and Holbrook E. Kohrt. "Abstract 2323: Immune checkpoint inhibition by anti-PD-1 or CD137 co-stimulation enhances cytotoxicity towards CD30+tumors mediated by the bispecific tetravalent CD30/CD16A TandAb AFM13." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-2323.
Full textBrzoska, T., E. V. Menchikova, R. Vats, T. W. Kaminski, E. Tutuncuoglu, S. P. Tofovic, E. K. Jackson, M. T. Gladwin, and P. Sundd. "CD39 as a Master Regulator of Pulmonary Thrombosis in Sickle Cell Disease." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a7216.
Full text