Academic literature on the topic 'Cd3As2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cd3As2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cd3As2"

1

Carpenter, G. J. C., J. J. Dubowski, and D. F. Williams. "Transmission electron microscopy characterization of the microstructure of Cd3As2 films prepared by pulsed-laser evaporation." Canadian Journal of Physics 65, no. 8 (1987): 961–65. http://dx.doi.org/10.1139/p87-151.

Full text
Abstract:
Transmission electron microscopy with an analytical X-ray system has been used to investigate Cd3As2 films prepared by pulsed-laser evaporation. The films were deposited on amorphous substrates at ~ 120 °C. They consisted mainly of a fine polycrystalline array. The crystal structure was identified as the body-centered tetragonal form of Cd3As2. No other crystallographic phase of Cd3As2 was observed. Some regions with amorphous or eutectic inclusions were also observed. These results have been correlated with the electrical properties of pulsed-laser evaporated Cd3As2 films.
APA, Harvard, Vancouver, ISO, and other styles
2

Kovaleva, Natalia, Ladislav Fekete, Dagmar Chvostova, and Andrei Muratov. "Morphology and Optical Properties of Thin Cd3As2 Films of a Dirac Semimetal Compound." Metals 10, no. 10 (2020): 1398. http://dx.doi.org/10.3390/met10101398.

Full text
Abstract:
Using atomic-force microscopy (AFM) and wide-band (0.02–8.5 eV) spectroscopic ellipsometry techniques, we investigated the morphology and optical properties of Cd3As2 films grown by non-reactive RF magnetron sputtering on two types of oriented crystalline substrates (100)p-Si and (001) α-Al2O3. The AFM study revealed the grainy morphology of the films due to island incorporation during the film growth. The complex dielectric function spectra of the annealed Cd3As2/Al2O3 films manifest pronounced interband optical transitions at 1.2 and 3.0 eV, in excellent agreement with the theoretical calculations for the body centered tetragonal Cd3As2 crystal structure. We discovered that due to electronic excitations to the Cd(s) conical bands, the low-energy absorption edge of the annealed Cd3As2 films reveals a linear dependence. We found that for the annealed Cd3As2 films, the Cd(s) conical node may be shifted in energy by about 0.08–0.18 eV above the heavy-flat As(p) valence band, determining the optical gap value. The as-grown Cd3As2 films exhibit the pronounced changes of the electronic band structure due to the doping effect associated with Cd non-stoichiometry, where fine-tuning of the Cd concentration may result in the gapless electronic band structure of Dirac semimetals.
APA, Harvard, Vancouver, ISO, and other styles
3

Liang, Gaoming, Guihao Zhai, Jialin Ma, et al. "Strain-induced circular photogalvanic current in Dirac semimetal Cd3As2 films epitaxied on a GaAs(111)B substrate." Nanoscale 14, no. 6 (2022): 2383–92. http://dx.doi.org/10.1039/d1nr05812f.

Full text
Abstract:
The circular photogalvanic current was observed in Dirac semimetal Cd3As2 film, which was suggested to originate from the reduced structure symmetry and modified band structure of Cd3As2 film that undergoes large epitaxial strain.
APA, Harvard, Vancouver, ISO, and other styles
4

Liang, Gaoming, Guihao Zhai, Jialin Ma, et al. "Circular Photogalvanic Current in Ni-Doped Cd3As2 Films Epitaxied on GaAs(111)B Substrate." Nanomaterials 13, no. 13 (2023): 1979. http://dx.doi.org/10.3390/nano13131979.

Full text
Abstract:
Magnetic element doped Cd3As2 Dirac semimetal has attracted great attention for revealing the novel quantum phenomena and infrared opto-electronic applications. In this work, the circular photogalvanic effect (CPGE) was investigated at various temperatures for the Ni-doped Cd3As2 films which were grown on GaAs(111)B substrate by molecular beam epitaxy. The CPGE current generation was found to originate from the structural symmetry breaking induced by the lattice strain and magnetic doping in the Ni-doped Cd3As2 films, similar to that in the undoped ones. However, the CPGE current generated in the Ni-doped Cd3As2 films was approximately two orders of magnitude smaller than that in the undoped one under the same experimental conditions and exhibited a complex temperature variation. While the CPGE current in the undoped film showed a general increase with rising temperature. The greatly reduced CPGE current generation efficiency and its complex variation with temperature in the Ni-doped Cd3As2 films was discussed to result from the efficient capture of photo-generated carriers by the deep-level magnetic impurity bands and enhanced momentum relaxation caused by additional strong impurity scattering when magnetic dopants were introduced.
APA, Harvard, Vancouver, ISO, and other styles
5

Fluegel, B., A. D. Rice, and K. Alberi. "Vibrational modes and crystallographic structure of Cd3As2 and (Cd1-x Zn x )3As2 epilayers." Journal of Physics D: Applied Physics 55, no. 14 (2022): 145103. http://dx.doi.org/10.1088/1361-6463/ac43db.

Full text
Abstract:
Abstract Low-temperature Raman scattering is used to study the crystal structure of molecular-beam epitaxially grown layers of the Dirac semimetal Cd3As2 and its related alloy (Cd1-x Zn x )3As2. The combination of narrow-linewidth spectra, multiple growth directions and full polarization analysis allows improved accuracy in identifying the irreducible representation of over 57 Raman-active vibrations. Several disagreements with previous identifications are found. Structurally, the results agree with the centrosymmetric I41/acd space group of bulk-grown Cd3As2 and are clearly distinct from the Raman spectra of nanoscale platelets and wires. Three-fold twinning is seen in (112) Cd3As2 grown on (111) zincblende substrates corresponding to the three possible tetragonal orientations. In dilute (Cd1-x Zn x )3As2, phonons have a frequency and scattering amplitude dependence on Zn concentration that is continuous with Cd3As2 but at least one frequency is absent at the alloy endpoint, preventing a simple one-mode description of the alloy phonon.
APA, Harvard, Vancouver, ISO, and other styles
6

Rice, Anthony, and Kirstin Alberi. "Epitaxial Integration of Dirac Semimetals with Si(001)." Crystals 13, no. 4 (2023): 578. http://dx.doi.org/10.3390/cryst13040578.

Full text
Abstract:
Topological semimetals contain novel combinations of properties that make them useful in a variety of applications, including optoelectronics, spintronics and low energy computing, and catalysis. Although they have been grown with high quality as bulk single crystals, incorporation with semiconductor substrates will ultimately be required to maximize their technological reach. Here, epitaxial growth of the Dirac semimetal Cd3As2 on Si(001) is demonstrated through two routes. First, Cd3As2(112) epilayers are grown on Si(001) via an intermediate CdTe(111) buffer layer. Second, Cd3As2(112) is grown directly on Si(001). This work sets the foundation for integration of novel semimetal materials with existing CMOS technology.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Na, Zhen-Bing Tan, Jing-Jing Chen, et al. "Gate modulation of anisotropic superconductivity in Al–Dirac semimetal Cd3As2 nanoplate–Al Josephson junctions." Superconductor Science and Technology 35, no. 4 (2022): 044003. http://dx.doi.org/10.1088/1361-6668/ac4c84.

Full text
Abstract:
Abstract Three-dimensional Dirac semimetal Cd3As2, hosting a pair of Dirac cones and Fermi arc-like surface states, displays numerous exotic properties in transport experiments. In particular, when proximitized with a superconductor, Cd3As2 is expected to realize topological superconductivity and Majorana zero modes, which are essential for fault-tolerant quantum computing. Here, using electronic transport measurements on superconductor Al–Cd3As2 nanoplate–Al heterostructures, we investigate the effect of gate modulation and magnetic field on the superconducting properties of Cd3As2. A proximity-induced superconducting state is well achieved in the junction, which can be effectively tuned by the gate voltage. The critical current oscillations under out-of-plane magnetic fields are well fitted with the Fraunhofer function. The critical supercurrent shows a slower decay as the gate voltage is tuned to negative under in-plane magnetic fields, which may arise from the enhanced contribution of surface states. Anisotropic superconductivity is also observed with in-plane rotating magnetic fields. Our results report the gate modulation of supercurrents in different magnetic field directions, which should be valuable for further exploring the topological superconductivity in Dirac semimetals.
APA, Harvard, Vancouver, ISO, and other styles
8

Weber, C. P., Ernest Arushanov, Bryan S. Berggren, Tahereh Hosseini, Nikolai Kouklin, and Alex Nateprov. "Transient reflectance of photoexcited Cd3As2." Applied Physics Letters 106, no. 23 (2015): 231904. http://dx.doi.org/10.1063/1.4922528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Houde, D., S. Jandl, M. Banville, and M. Aubin. "The infrared spectrum of Cd3As2." Solid State Communications 57, no. 4 (1986): 247–48. http://dx.doi.org/10.1016/0038-1098(86)90149-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bartkowski, K., G. Pompe, and E. Hegenbarth. "Specific Heat of Single-Crystalline Cd3As2, Cd3P2, and Zn3P2 at Low Temperatures." Physica Status Solidi (a) 111, no. 2 (1989): K165—K169. http://dx.doi.org/10.1002/pssa.2211110243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!