To see the other types of publications on this topic, follow the link: CDC2 Protein.

Journal articles on the topic 'CDC2 Protein'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'CDC2 Protein.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Burke, D. J., and D. Church. "Protein synthesis requirements for nuclear division, cytokinesis, and cell separation in Saccharomyces cerevisiae." Molecular and Cellular Biology 11, no. 7 (July 1991): 3691–98. http://dx.doi.org/10.1128/mcb.11.7.3691.

Full text
Abstract:
Protein synthesis inhibitors have often been used to identify regulatory steps in cell division. We used cell division cycle mutants of the yeast Saccharomyces cerevisiae and two chemical inhibitors of translation to investigate the requirements for protein synthesis for completing landmark events after the G1 phase of the cell cycle. We show, using cdc2, cdc6, cdc7, cdc8, cdc17 (38 degrees C), and cdc21 (also named tmp1) mutants, that cells arrested in S phase complete DNA synthesis but cannot complete nuclear division if protein synthesis is inhibited. In contrast, we show, using cdc16, cdc17 (36 degrees C), cdc20, cdc23, and nocodazole treatment, that cells that arrest in the G2 stage complete nuclear division in the absence of protein synthesis. Protein synthesis is required late in the cell cycle to complete cytokinesis and cell separation. These studies show that there are requirements for protein synthesis in the cell cycle, after G1, that are restricted to two discrete intervals.
APA, Harvard, Vancouver, ISO, and other styles
2

Burke, D. J., and D. Church. "Protein synthesis requirements for nuclear division, cytokinesis, and cell separation in Saccharomyces cerevisiae." Molecular and Cellular Biology 11, no. 7 (July 1991): 3691–98. http://dx.doi.org/10.1128/mcb.11.7.3691-3698.1991.

Full text
Abstract:
Protein synthesis inhibitors have often been used to identify regulatory steps in cell division. We used cell division cycle mutants of the yeast Saccharomyces cerevisiae and two chemical inhibitors of translation to investigate the requirements for protein synthesis for completing landmark events after the G1 phase of the cell cycle. We show, using cdc2, cdc6, cdc7, cdc8, cdc17 (38 degrees C), and cdc21 (also named tmp1) mutants, that cells arrested in S phase complete DNA synthesis but cannot complete nuclear division if protein synthesis is inhibited. In contrast, we show, using cdc16, cdc17 (36 degrees C), cdc20, cdc23, and nocodazole treatment, that cells that arrest in the G2 stage complete nuclear division in the absence of protein synthesis. Protein synthesis is required late in the cell cycle to complete cytokinesis and cell separation. These studies show that there are requirements for protein synthesis in the cell cycle, after G1, that are restricted to two discrete intervals.
APA, Harvard, Vancouver, ISO, and other styles
3

Molz, L., R. Booher, P. Young, and D. Beach. "cdc2 and the regulation of mitosis: six interacting mcs genes." Genetics 122, no. 4 (August 1, 1989): 773–82. http://dx.doi.org/10.1093/genetics/122.4.773.

Full text
Abstract:
Abstract A cdc2-3w weel-50 double mutant of fission yeast displays a temperature-sensitive lethal phenotype that is associated with gross abnormalities of chromosome segregation and has been termed mitotic catastrophe. In order to identify new genetic elements that might interact with the cdc2 protein kinase in the regulation of mitosis, we have isolated revertants of the lethal double mutant. The suppressor mutations define six mcs genes (mcs: mitotic catastrophe suppressor) that are not allelic to any of the following mitotic control genes: cdc2, wee 1, cdc13, cdc25, suc1 or nim1. Each mcs mutation is recessive with respect to wild-type in its ability to suppress mitotic catastrophe. None confer a lethal phenotype as a single mutant but few of the mutants are expected to be nulls. A diverse range of genetic interactions between the mcs mutants and other mitotic regulators were uncovered, including the following examples. First, mcs2 cdc2w or mcs6 cdc2w double mutants display a cell cycle defect dependent on the specific wee allele of cdc2. Second, both mcs1 cdc25-22 or mcs4 cdc25-22 double mutants are nonconditionally lethal, even at a temperature normally permissive for cdc25-22. Finally, the characteristic suppression of the cdc25 phenotype by a loss-of-function wee1 mutation is reversed in a mcs3 mutant background. The mcs genes define new mitotic elements that might be activators or substrates of the cdc2 protein kinase.
APA, Harvard, Vancouver, ISO, and other styles
4

Okumura, E., T. Sekiai, S. Hisanaga, K. Tachibana, and T. Kishimoto. "Initial triggering of M-phase in starfish oocytes: a possible novel component of maturation-promoting factor besides cdc2 kinase." Journal of Cell Biology 132, no. 1 (January 1, 1996): 125–35. http://dx.doi.org/10.1083/jcb.132.1.125.

Full text
Abstract:
G2-phase-arrested immature starfish oocytes contain inactive cdc2 kinase and cdc25 phosphatase, and an inactivator for cdc2 kinase. In this system, we have studied how the regulatory balance is apped toward the initial activation of cdc2 kinase. During the hormone-dependent period (Guerrier, P., and M. Doree, 1975. Dev. Biol. 47:341-348), p34cdc2 and cdc25 protein are already converted, though not fully, to active forms, whereas the inactivators for cdc2 kinase and cdc25 phosphatase are able to exhibit their activities if the hormone were removed. We produced "triggered oocytes," in which due to a neutralizing anticdc25 antibody, the activation of cdc2 kinase is prevented out cdc25 protein is phosphorylated slightly after the maturation-inducing hormonal stimulus. In contrast to control immature oocytes, in triggered oocytes the injected cdc2 kinase is not inactivated, and accordingly the level of cdc2 kinase activity required for meiosis reinitiation is much less. These results imply the presence of a cdc2 kinase activity-independent process(es) that suppresses the inactivator for cdc2 kinase and initially phosphorylates cdc25 protein, although this process is reversible during the initial activation of cdc2 kinase. At the most initial triggering of M-phase, the cdc2 kinase activity-independent process might trip the switch leading to the initial activation of cdc2 kinase. Thereafter, in parallel, the cdc2 kinase-dependent feedback loops described by others may cause further increase in cdc2 kinase activity. We propose that a putative suppressor, which downregulates the inactivator for cdc2 kinase independently of nuclear components, might be a previously unrecognized component of maturation-promoting factor.
APA, Harvard, Vancouver, ISO, and other styles
5

Margolis, Seth S., Jennifer A. Perry, Douglas H. Weitzel, Christopher D. Freel, Minoru Yoshida, Timothy A. Haystead, and Sally Kornbluth. "A Role for PP1 in the Cdc2/Cyclin B–mediated Positive Feedback Activation of Cdc25." Molecular Biology of the Cell 17, no. 4 (April 2006): 1779–89. http://dx.doi.org/10.1091/mbc.e05-08-0751.

Full text
Abstract:
The Cdc25 phosphatase promotes entry into mitosis through the removal of inhibitory phosphorylations on the Cdc2 subunit of the Cdc2/CyclinB complex. During interphase, or after DNA damage, Cdc25 is suppressed by phosphorylation at Ser287 (Xenopus numbering; Ser216 of human Cdc25C) and subsequent binding of the small acidic protein, 14-3-3. As reported recently, at the time of mitotic entry, 14-3-3 protein is removed from Cdc25 and S287 is dephosphorylated by protein phosphatase 1 (PP1). After the initial activation of Cdc25 and consequent derepression of Cdc2/CyclinB, Cdc25 is further activated through a Cdc2-catalyzed positive feedback loop. Although the existence of such a loop has been appreciated for some time, the molecular mechanism for this activation has not been described. We report here that phosphorylation of S285 by Cdc2 greatly enhances recruitment of PP1 to Cdc25, thereby accelerating S287 dephosphorylation and mitotic entry. Moreover, we show that two other previously reported sites of Cdc2-catalyzed phosphorylation on Cdc25 are required for maximal biological activity of Cdc25, but they do not contribute to PP1 regulation and do not act solely through controlling S287 phosphorylation. Therefore, multiple mechanisms, including enhanced recruitment of PP1, are used to promote full activation of Cdc25 at the time of mitotic entry.
APA, Harvard, Vancouver, ISO, and other styles
6

Lopez-Girona, Antonia, Odile Mondesert, Janet Leatherwood, and Paul Russell. "Negative Regulation of Cdc18 DNA Replication Protein by Cdc2." Molecular Biology of the Cell 9, no. 1 (January 1998): 63–73. http://dx.doi.org/10.1091/mbc.9.1.63.

Full text
Abstract:
Fission yeast Cdc18, a homologue of Cdc6 in budding yeast and metazoans, is periodically expressed during the S phase and required for activation of replication origins. Cdc18 overexpression induces DNA rereplication without mitosis, as does elimination of Cdc2-Cdc13 kinase during G2 phase. These findings suggest that illegitimate activation of origins may be prevented through inhibition of Cdc18 by Cdc2. Consistent with this hypothesis, we report that Cdc18 interacts with Cdc2 in association with Cdc13 and Cig2 B-type cyclins in vivo. Cdc18 is phosphorylated by the associated Cdc2 in vitro. Mutation of a single phosphorylation site, T104A, activates Cdc18 in the rereplication assay. The cdc18-K9 mutation is suppressed by a cig2 mutation, providing genetic evidence that Cdc2-Cig2 kinase inhibits Cdc18. Moreover, constitutive expression of Cig2 prevents rereplication in cells lacking Cdc13. These findings identify Cdc18 as a key target of Cdc2-Cdc13 and Cdc2-Cig2 kinases in the mechanism that limits chromosomal DNA replication to once per cell cycle.
APA, Harvard, Vancouver, ISO, and other styles
7

Booher, R., and D. Beach. "Site-specific mutagenesis of cdc2+, a cell cycle control gene of the fission yeast Schizosaccharomyces pombe." Molecular and Cellular Biology 6, no. 10 (October 1986): 3523–30. http://dx.doi.org/10.1128/mcb.6.10.3523.

Full text
Abstract:
The cdc2+ gene of Schizosaccharomyces pombe is homologous to the CDC28 gene of Saccharomyces cerevisiae. Both genes share limited homology with vertebrate protein kinases and have protein kinase activity. cdc2+ has been subjected to mutagenesis in vitro. A null allele of the gene, constructed by insertion of the S. cerevisiae LEU2 gene into a site within the gene, has a phenotype similar to that of many temperature-sensitive alleles of cdc2. Mutations within the predicted ATP-binding site and in a region which may be a site of phosphorylation result in loss of cdc2+ activity. A single substitution of Gly-146 to Asp-146 has been identified in cdc2-1w, a dominant activated allele of the gene. The four introns within the cdc2+ gene have been deleted. The resulting gene not only functions in fission yeast but also rescues cdc28(Ts) strains of S. cerevisiae, a property which is not shared by the genomic cdc2+ gene.
APA, Harvard, Vancouver, ISO, and other styles
8

Booher, R., and D. Beach. "Site-specific mutagenesis of cdc2+, a cell cycle control gene of the fission yeast Schizosaccharomyces pombe." Molecular and Cellular Biology 6, no. 10 (October 1986): 3523–30. http://dx.doi.org/10.1128/mcb.6.10.3523-3530.1986.

Full text
Abstract:
The cdc2+ gene of Schizosaccharomyces pombe is homologous to the CDC28 gene of Saccharomyces cerevisiae. Both genes share limited homology with vertebrate protein kinases and have protein kinase activity. cdc2+ has been subjected to mutagenesis in vitro. A null allele of the gene, constructed by insertion of the S. cerevisiae LEU2 gene into a site within the gene, has a phenotype similar to that of many temperature-sensitive alleles of cdc2. Mutations within the predicted ATP-binding site and in a region which may be a site of phosphorylation result in loss of cdc2+ activity. A single substitution of Gly-146 to Asp-146 has been identified in cdc2-1w, a dominant activated allele of the gene. The four introns within the cdc2+ gene have been deleted. The resulting gene not only functions in fission yeast but also rescues cdc28(Ts) strains of S. cerevisiae, a property which is not shared by the genomic cdc2+ gene.
APA, Harvard, Vancouver, ISO, and other styles
9

Sanchez, M., A. Calzada, and A. Bueno. "Functionally homologous DNA replication genes in fission and budding yeast." Journal of Cell Science 112, no. 14 (July 15, 1999): 2381–90. http://dx.doi.org/10.1242/jcs.112.14.2381.

Full text
Abstract:
The cdc18(+) gene of the fission yeast Schizosaccharomyces pombe is involved in the initiation of DNA replication as well as in coupling the S phase to mitosis. In this work, we show that the Saccharomyces cerevisiae CDC6 gene complements cdc18-K46 ts and cdc18 deletion mutant S. pombe strains. The budding yeast gene suppresses both the initiation and the checkpoint defects associated with the lack of cdc18(+). The Cdc6 protein interacts in vivo with Cdc2 kinase complexes. Interestingly, Cdc6 is an in vitro substrate for Cdc13/Cdc2 and Cig1/Cdc2, but not for Cig2/Cdc2-associated kinases. Overexpression of Cdc6 in fission yeast induces multiple rounds of S-phase in the absence of mitosis and cell division. This CDC6-dependent continuous DNA synthesis phenotype is independent of the presence of a functional cdc18(+) gene product and, significantly, requires only Cig2/Cdc2-associated kinase activity. Finally, these S. pombe over-replicating cells do not require any protein synthesis other than that of Cdc6. Our data strongly suggest that CDC6 and cdc18(+) are functional homologues and also support the idea that controls restricting genome duplication diverge in fission and budding yeast.
APA, Harvard, Vancouver, ISO, and other styles
10

Yoon, H. J., S. Loo, and J. L. Campbell. "Regulation of Saccharomyces cerevisiae CDC7 function during the cell cycle." Molecular Biology of the Cell 4, no. 2 (February 1993): 195–208. http://dx.doi.org/10.1091/mbc.4.2.195.

Full text
Abstract:
The yeast Cdc7 function is required for the G1/S transition and is dependent on passage through START, a point controlled by the Cdc28/cdc2/p34 protein kinase. CDC7 encodes a protein kinase activity, and we now show that this kinase activity varies in the cell cycle but that protein levels appear to remain constant. We present several lines of evidence that periodic activation of CDC7 kinase is at least in part through phosphorylation. First, the kinase activity of the Cdc7 protein is destroyed by dephosphorylation of the protein in vitro with phosphatase. Second, Cdc7 protein is hypophosphorylated and inactive as a kinase in extracts of cells arrested at START but becomes active and maximally phosphorylated subsequent to passage through START. The phosphorylation pattern of Cdc7 protein is complex. Phosphopeptide mapping reveals four phosphopeptides in Cdc7 prepared from asynchronous yeast cells. Both autophosphorylation and phosphorylation in trans appear to contribute to this pattern. Autophosphorylation is shown to occur by using a thermolabile Cdc7 protein. A protein in yeast extracts can phosphorylate and activate Cdc7 protein made in Escherichia coli, and phosphorylation is thermolabile in cdc28 mutant extracts. Cdc7 protein carrying a serine to alanine change in the consensus recognition site for Cdc28 kinase shows an altered phosphopeptide map, suggesting that this site is important in determining the overall Cdc7 phosphorylation pattern.
APA, Harvard, Vancouver, ISO, and other styles
11

Decottignies, Anabelle, Patrick Zarzov, and Paul Nurse. "In vivo localisation of fission yeast cyclin-dependent kinase cdc2p and cyclin B cdc13p during mitosis and meiosis." Journal of Cell Science 114, no. 14 (July 15, 2001): 2627–40. http://dx.doi.org/10.1242/jcs.114.14.2627.

Full text
Abstract:
We investigated the in vivo localisation of fission yeast cyclin-dependent kinase cdc2p during mitosis and meiosis. Fusion to yellow fluorescent protein (YFP) revealed that cdc2-YFP is present in the cytoplasm at all stages of the cell cycle. Nuclear cdc2-YFP fluorescence oscillates with that of cdc13-YFP cyclin. At G1/S, at least one of cdc13p, cig1p or cig2p B-type cyclins is required for the accumulation of cdc2-YFP into the nucleus. Cdc2-YFP and cdc13-YFP are highly enriched on the spindle pole body of cells in late G2 or arrested at S phase. Both accumulate on the spindle pole bodies and the spindle in prophase and metaphase independently of the microtubule-associated protein dis1p. In anaphase, the cdc2p/cdc13p complex leaves the spindle prior to sister chromatid separation, and cdc13-YFP is enriched at the nuclear periphery before fluorescence disappears. If cdc13p cannot be recognized by the anaphase-promoting complex, cdc2-YFP and cdc13-YFP remain associated with the spindle. In mating cells, cdc2-YFP enters the nucleus as soon as the cells undergo fusion. During karyogamy and meiotic prophase, cdc2-YFP is highly enriched on the centromeres. In meiosis I, association of cdc2-YFP with the spindle and the spindle pole bodies shows differences to mitotic cells, suggesting different mechanisms of spindle formation. This study suggests that changes in cdc2p localisation are important for both mitosis and meiosis regulation.
APA, Harvard, Vancouver, ISO, and other styles
12

Kanoh, Junko, and Paul Russell. "Slm9, a Novel Nuclear Protein Involved in Mitotic Control in Fission Yeast." Genetics 155, no. 2 (June 1, 2000): 623–31. http://dx.doi.org/10.1093/genetics/155.2.623.

Full text
Abstract:
Abstract In the fission yeast Schizosaccharomyces pombe, as in other eukaryotic cells, Cdc2/cyclin B complex is the key regulator of mitosis. Perhaps the most important regulation of Cdc2 is the inhibitory phosphorylation of tyrosine-15 that is catalyzed by Wee1 and Mik1. Cdc25 and Pyp3 phosphatases dephosphorylate tyrosine-15 and activate Cdc2. To isolate novel activators of Cdc2 kinase, we screened synthetic lethal mutants in a cdc25-22 background at the permissive temperature (25°). One of the genes, slm9, encodes a novel protein of 807 amino acids. Slm9 is most similar to Hir2, the histone gene regulator in budding yeast. Slm9 protein level is constant and Slm9 is localized to the nucleus throughout the cell cycle. The slm9 disruptant is delayed at the G2-M transition as indicated by cell elongation and analysis of DNA content. Inactivation of Wee1 fully suppressed the cell elongation phenotype caused by the slm9 mutation. The slm9 mutant is defective in recovery from G1 arrest after nitrogen starvation. The slm9 mutant is also UV sensitive, showing a defect in recovery from the cell cycle arrest after UV irradiation.
APA, Harvard, Vancouver, ISO, and other styles
13

Rupes̆, Ivan, Bradley A. Webb, Alan Mak, and Paul G. Young. "G2/M Arrest Caused by Actin Disruption Is a Manifestation of the Cell Size Checkpoint in Fission Yeast." Molecular Biology of the Cell 12, no. 12 (December 2001): 3892–903. http://dx.doi.org/10.1091/mbc.12.12.3892.

Full text
Abstract:
In budding yeast, actin disruption prevents nuclear division. This has been explained as activation of a morphogenesis checkpoint monitoring the integrity of the actin cytoskeleton. The checkpoint operates through inhibitory tyrosine phosphorylation of Cdc28, the budding yeast Cdc2 homolog. Wild-type Schizosaccharomyces pombe cells also arrest before mitosis after actin depolymerization. Oversized cells, however, enter mitosis uninhibited. We carried out a careful analysis of the kinetics of mitotic initiation after actin disruption in undersized and oversized cells. We show that an inability to reach the mitotic size threshold explains the arrest in smaller cells. Among the regulators that control the level of the inhibitory Cdc2-Tyr15 phosphorylation, the Cdc25 protein tyrosine phosphatase is required to link cell size monitoring to mitotic control. This represents a novel function of the Cdc25 phosphatase. Furthermore, we demonstrate that this cell size-monitoring system fulfills the formal criteria of a cell cycle checkpoint.
APA, Harvard, Vancouver, ISO, and other styles
14

Furnari, Beth, Alessandra Blasina, Michael N. Boddy, Clare H. McGowan, and Paul Russell. "Cdc25 Inhibited In Vivo and In Vitro by Checkpoint Kinases Cds1 and Chk1." Molecular Biology of the Cell 10, no. 4 (April 1999): 833–45. http://dx.doi.org/10.1091/mbc.10.4.833.

Full text
Abstract:
In the fission yeast Schizosaccharomyces pombe, the protein kinase Cds1 is activated by the S–M replication checkpoint that prevents mitosis when DNA is incompletely replicated. Cds1 is proposed to regulate Wee1 and Mik1, two tyrosine kinases that inhibit the mitotic kinase Cdc2. Here, we present evidence from in vivo and in vitro studies, which indicates that Cds1 also inhibits Cdc25, the phosphatase that activates Cdc2. In an in vivo assay that measures the rate at which Cdc25 catalyzes mitosis, Cds1 contributed to a mitotic delay imposed by the S–M replication checkpoint. Cds1 also inhibited Cdc25-dependent activation of Cdc2 in vitro. Chk1, a protein kinase that is required for the G2–M damage checkpoint that prevents mitosis while DNA is being repaired, also inhibited Cdc25 in the in vitro assay. In vitro, Cds1 and Chk1 phosphorylated Cdc25 predominantly on serine-99. The Cdc25 alanine-99 mutation partially impaired the S–M replication and G2–M damage checkpoints in vivo. Thus, Cds1 and Chk1 seem to act in different checkpoint responses to regulate Cdc25 by similar mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
15

Kanoh, Junko, and Paul Russell. "The Protein Kinase Cdr2, Related to Nim1/Cdr1 Mitotic Inducer, Regulates the Onset of Mitosis in Fission Yeast." Molecular Biology of the Cell 9, no. 12 (December 1998): 3321–34. http://dx.doi.org/10.1091/mbc.9.12.3321.

Full text
Abstract:
Cdc2–Cyclin B, the protein kinase that catalyzes the onset of mitosis, is subject to multiple forms of regulation. In the fission yeast Schizosaccharomyces pombe and most other species, a key mode of Cdc2–Cyclin B regulation is the inhibitory phosphorylation of Cdc2 on tyrosine-15. This phosphorylation is catalyzed by the protein kinases Wee1 and Mik1 and removed by the phosphatase Cdc25. These proteins are also regulated, a notable example being the inhibition of Wee1 by the protein kinase Nim1/Cdr1. The temperature-sensitive mutation cdc25–22 is synthetic lethal with nim1/cdr1 mutations, suggesting that a synthetic lethal genetic screen could be used to identify novel mitotic regulators. Here we describe that such a screen has identifiedcdr2 +, a gene that has an important role in the mitotic control. Cdr2 is a 775 amino acid protein kinase that is closely related to Nim1 and mitotic control proteins in budding yeast. Deletion of cdr2 causes a G2-M delay that is more severe than that caused by nim1/cdr1 mutations. Genetic studies are consistent with a model in which Cdr2 negatively regulates Wee1. This model is supported by experiments showing that Cdr2 associates with the N-terminal regulatory domain of Wee1 in cell lysates and phosphorylates Wee1 in vitro. Thus, Cdr2 is a novel mitotic control protein that appears to regulate Wee1.
APA, Harvard, Vancouver, ISO, and other styles
16

Hudson, J. D., H. Feilotter, and P. G. Young. "stf1: non-wee mutations epistatic to cdc25 in the fission yeast Schizosaccharomyces pombe." Genetics 126, no. 2 (October 1, 1990): 309–15. http://dx.doi.org/10.1093/genetics/126.2.309.

Full text
Abstract:
Abstract In Schizosaccharomyces pombe, cdc25 is a cell cycle regulated inducer of mitosis. wee1 and phenotypically wee alleles of cdc2 are epistatic to cdc25. Mutant alleles of a new locus, stf1 (suppressor of twenty-five), identified in a reversion analysis of conditionally lethal cdr1-76 cdc25-22 and cdr2-96 cdc25-22 double mutant strains, also suppress both temperature-sensitive and gene disruption alleles of cdc25. These mutants, by themselves, are phenotypically indistinguishable from wild type strains; hence they represent the first known mutations that are epistatic to cdc25 and do not display a wee phenotype. stf1 genetically interacts with other elements of mitotic control in S. pombe. stf1-1 is additive with wee1-50, cdc2-1w and cdc2-3w for suppression of cdc25-22. Also, like wee1- and cdc2-w, stf1- suppression of cdc25 is reversed by overexpression of the putative type 1 protein phosphatase bws1+/dis2+. Interaction with various mutants and plasmid overexpression experiments suggest that stf1 does not operate either upstream or downstream of wee1. Similarly, it does not operate through cdc25 since it rescues the disruption. stf1 appears to encode an important new element of mitotic control.
APA, Harvard, Vancouver, ISO, and other styles
17

Izumi, T., D. H. Walker, and J. L. Maller. "Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity." Molecular Biology of the Cell 3, no. 8 (August 1992): 927–39. http://dx.doi.org/10.1091/mbc.3.8.927.

Full text
Abstract:
The cdc25 tyrosine phosphatase is known to activate cdc2 kinase in the G2/M transition by dephosphorylation of tyrosine 15. To determine how entry into M-phase in eukaryotic cells is controlled, we have investigated the regulation of the cdc25 protein in Xenopus eggs and oocytes. Two closely related Xenopus cdc25 genes have been cloned and sequenced and specific antibodies generated. The cdc25 phosphatase activity oscillates in both meiotic and mitotic cell cycles, being low in interphase and high in M-phase. Increased activity of cdc25 at M-phase is accompanied by increased phosphorylation that retards electrophoretic mobility in gels from 76 to 92 kDa. Treatment of cdc25 with either phosphatase 1 or phosphatase 2A removes phosphate from cdc25, reverses the mobility shift, and decreases its ability to activate cdc2 kinase. Furthermore, the addition of okadaic acid to egg extracts arrested in S-phase by aphidicolin causes phosphorylation and activation of the cdc25 protein before cyclin B/cdc2 kinase activation. These results demonstrate that the activity of the cdc25 phosphatase at the G2/M transition is directly regulated through changes in its phosphorylation state.
APA, Harvard, Vancouver, ISO, and other styles
18

Langan, T. A., J. Gautier, M. Lohka, R. Hollingsworth, S. Moreno, P. Nurse, J. Maller, and R. A. Sclafani. "Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells." Molecular and Cellular Biology 9, no. 9 (September 1989): 3860–68. http://dx.doi.org/10.1128/mcb.9.9.3860.

Full text
Abstract:
Mammalian growth-associated H1 histone kinase, an enzyme whose activity is sharply elevated at mitosis, is similar to cdc2+ protein kinase from Schizosaccharomyces pombe and CDC28 protein kinase from Saccharomyces cerevisiae with respect to immunoreactivity, molecular size, and specificity for phosphorylation sites in H1 histone. Phosphorylation of specific growth-associated sites in H1 histone is catalyzed by yeast cdc2+/CDC28 kinase, as shown by the in vitro thermal lability of this activity in extracts prepared from temperature-sensitive mutants. In addition, highly purified Xenopus maturation-promoting factor catalyzes phosphorylation of the same sites in H1 as do the mammalian and yeast kinases. The data indicate that growth-associated H1 kinase is encoded by a mammalian homolog of cdc2+/CDC28 protein kinase, which controls entry into mitosis in yeast and frog cells. Since H1 histone is known to be an in vivo substrate of the mammalian kinase, this suggests that phosphorylation of H1 histone or an H1 histone counterpart is an important component of the mechanism for entry of cells into mitosis.
APA, Harvard, Vancouver, ISO, and other styles
19

Langan, T. A., J. Gautier, M. Lohka, R. Hollingsworth, S. Moreno, P. Nurse, J. Maller, and R. A. Sclafani. "Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells." Molecular and Cellular Biology 9, no. 9 (September 1989): 3860–68. http://dx.doi.org/10.1128/mcb.9.9.3860-3868.1989.

Full text
Abstract:
Mammalian growth-associated H1 histone kinase, an enzyme whose activity is sharply elevated at mitosis, is similar to cdc2+ protein kinase from Schizosaccharomyces pombe and CDC28 protein kinase from Saccharomyces cerevisiae with respect to immunoreactivity, molecular size, and specificity for phosphorylation sites in H1 histone. Phosphorylation of specific growth-associated sites in H1 histone is catalyzed by yeast cdc2+/CDC28 kinase, as shown by the in vitro thermal lability of this activity in extracts prepared from temperature-sensitive mutants. In addition, highly purified Xenopus maturation-promoting factor catalyzes phosphorylation of the same sites in H1 as do the mammalian and yeast kinases. The data indicate that growth-associated H1 kinase is encoded by a mammalian homolog of cdc2+/CDC28 protein kinase, which controls entry into mitosis in yeast and frog cells. Since H1 histone is known to be an in vivo substrate of the mammalian kinase, this suggests that phosphorylation of H1 histone or an H1 histone counterpart is an important component of the mechanism for entry of cells into mitosis.
APA, Harvard, Vancouver, ISO, and other styles
20

Den Haese, G. J., N. Walworth, A. M. Carr, and K. L. Gould. "The Wee1 protein kinase regulates T14 phosphorylation of fission yeast Cdc2." Molecular Biology of the Cell 6, no. 4 (April 1995): 371–85. http://dx.doi.org/10.1091/mbc.6.4.371.

Full text
Abstract:
The Cdc2 protein kinase is a key regulator of the G1-S and G2-M cell cycle transitions in the fission yeast Schizosaccharomyces pombe. The activation of Cdc2 at the G2-M transition is triggered by dephosphorylation at a conserved tyrosine residue Y15. The level of Y15 phosphorylation is controlled by the Wee1 and Mik1 protein kinases acting in opposition to the Cdc25 protein phosphatase. Here, we demonstrate that Wee1 overexpression leads to a high stoichiometry of phosphorylation at a previously undetected site in S. pombe Cdc2, T14. T14 phosphorylation was also detected in certain cell cycle mutants blocked in progression through S phase, indicating that T14 phosphorylation might normally occur at low stoichiometry during DNA replication or early G2. Strains in which the chromosomal copy of cdc2 was replaced with either a T14A or a T14S mutant allele were generated and the phenotypes of these strains are consistent with T14 phosphorylation playing an inhibitory role in the activation of Cdc2 as it does in higher eukaryotes. We have also obtained evidence that Wee1 but not Mik1 or Chk1 is required for phosphorylation at this site, that the Mik1 and Chk1 protein kinases are unable to drive T14 phosphorylation in vivo, that residue 14 phosphorylation requires previous phosphorylation at Y15, and that the T14A mutant, unlike Y15F, is recessive to wild-type Cdc2 activity. Finally, the normal duration of G2 delay after irradiation or hydroxyurea treatment in a T14A mutant strain indicates that T14 phosphorylation is not required for the DNA damage or replication checkpoint controls.
APA, Harvard, Vancouver, ISO, and other styles
21

Hadwiger, J. A., and S. I. Reed. "Invariant phosphorylation of the Saccharomyces cerevisiae Cdc28 protein kinase." Molecular and Cellular Biology 8, no. 7 (July 1988): 2976–79. http://dx.doi.org/10.1128/mcb.8.7.2976.

Full text
Abstract:
The phosphorylation level of the Saccharomyces cerevisiae Cdc28 protein remained invariant under conditions that resulted in cell cycle arrest in the G1 phase and loss of Cdc28-specific protein kinase activity when the activity was assayed in vitro. These results are in contrast to the proposed regulation of the homologous Cdc2 protein kinase of Schizosaccharomyces pombe.
APA, Harvard, Vancouver, ISO, and other styles
22

Hadwiger, J. A., and S. I. Reed. "Invariant phosphorylation of the Saccharomyces cerevisiae Cdc28 protein kinase." Molecular and Cellular Biology 8, no. 7 (July 1988): 2976–79. http://dx.doi.org/10.1128/mcb.8.7.2976-2979.1988.

Full text
Abstract:
The phosphorylation level of the Saccharomyces cerevisiae Cdc28 protein remained invariant under conditions that resulted in cell cycle arrest in the G1 phase and loss of Cdc28-specific protein kinase activity when the activity was assayed in vitro. These results are in contrast to the proposed regulation of the homologous Cdc2 protein kinase of Schizosaccharomyces pombe.
APA, Harvard, Vancouver, ISO, and other styles
23

Jin, Huaibing, Zhiqiang Du, Yanjing Zhang, Judit Antal, Zongliang Xia, Yan Wang, Yang Gao, et al. "A distinct class of plant and animal viral proteins that disrupt mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1." Science Advances 6, no. 20 (May 2020): eaba3418. http://dx.doi.org/10.1126/sciadv.aba3418.

Full text
Abstract:
Many animal viral proteins, e.g., Vpr of HIV-1, disrupt host mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. However, it is unknown whether plant viruses may use this mechanism in their pathogenesis. Here, we report that the 17K protein, encoded by barley yellow dwarf viruses and related poleroviruses, delays G2/M transition and disrupts mitosis in both host (barley) and nonhost (fission yeast, Arabidopsis thaliana, and tobacco) cells through interrupting the function of Wee1-Cdc25-CDKA/Cdc2 via direct protein-protein interactions and alteration of CDKA/Cdc2 phosphorylation. When ectopically expressed, 17K disrupts the mitosis of cultured human cells, and HIV-1 Vpr inhibits plant cell growth. Furthermore, 17K and Vpr share similar secondary structural feature and common amino acid residues required for interacting with plant CDKA. Thus, our work reveals a distinct class of mitosis regulators that are conserved between plant and animal viruses and play active roles in viral pathogenesis.
APA, Harvard, Vancouver, ISO, and other styles
24

Michaelis, Christine, Qian Luo, and Gerald Weeks. "ADictyostelium discoideumgene, which is highly related tomo15fromXenopus, is expressed during growth but not during development." Biochemistry and Cell Biology 73, no. 1-2 (January 1, 1995): 51–58. http://dx.doi.org/10.1139/o95-006.

Full text
Abstract:
We have isolated a cDNA from the cellular slime mold Dictyostelium discoideum encoding a protein that is 52% identical to the Xenopus Mo15 kinase and highly related to the equivalent proteins from human (52% identity), rice (52.7% identity), and yeast (47.6% identity). Mo15 is responsible for the activation of Cdc2 kinase and is itself a member of the large Cdc2-related family of protein kinases. The Dictyostelium protein is more related to the Xenopus Mo15 protein than it is to either the Dictyostelium Cdc2 or Crp proteins. Southern blot analysis of genomic V12-M2 DNA indicated that mo15 is present as a single copy gene that cross hybridizes with cdc2 at low stringency. Northern blot analysis of RNA from different stages of Dictyostelium development showed that mo15 is only expressed during vegetative cell growth.Key words: cell cycle, differentiation, cell type determination, Cdc2 kinase, Dictyostelium, Mo15 protein.
APA, Harvard, Vancouver, ISO, and other styles
25

Ducommun, B., P. Brambilla, and G. Draetta. "Mutations at sites involved in Suc1 binding inactivate Cdc2." Molecular and Cellular Biology 11, no. 12 (December 1991): 6177–84. http://dx.doi.org/10.1128/mcb.11.12.6177.

Full text
Abstract:
suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.
APA, Harvard, Vancouver, ISO, and other styles
26

Ducommun, B., P. Brambilla, and G. Draetta. "Mutations at sites involved in Suc1 binding inactivate Cdc2." Molecular and Cellular Biology 11, no. 12 (December 1991): 6177–84. http://dx.doi.org/10.1128/mcb.11.12.6177-6184.1991.

Full text
Abstract:
suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.
APA, Harvard, Vancouver, ISO, and other styles
27

Barth, Holger, Manuela Klingler, Klaus Aktories, and Volker Kinzel. "Clostridium botulinum C2 Toxin Delays Entry into Mitosis and Activation of p34cdc2Kinase and cdc25-C Phosphatase in HeLa cells." Infection and Immunity 67, no. 10 (October 1, 1999): 5083–90. http://dx.doi.org/10.1128/iai.67.10.5083-5090.1999.

Full text
Abstract:
ABSTRACT The Clostridium botulinum C2 toxin ADP-ribosylates monomeric actin, thereby inducing disassembly of actin filaments, alteration of focal adhesions, and rounding of cells. After treatment with C2 toxin, cells stop to proliferate but remain viable for about 2 days. In view of reported correlations between the structure of the actin cytoskeleton and cell cycle transition, the effects of C2 toxin on the G2/M phase transition of the cell division cycle were studied. Since C2 toxin delayed entry into mitosis in HeLa cells, those enzymes which control entry into mitosis, the cyclin-dependent protein kinase mitosis-promoting factor (MPF) and the phosphatase cdc25-C were examined after treatment of synchronized cells with C2 toxin. MPF is composed of the regulatory cyclin B and the enzymatic p34 cdc2 kinase subunits. For its activation at the G2/M border, p34 cdc2 needs to be associated with cyclin B and additionally dephosphorylated at Tyr-15 by the specific phosphatase cdc25-C. Treatment of synchronized cells in S or G2 phase with C. botulinum C2 toxin prevented p34 cdc2 protein kinase activation by inhibiting its tyrosine dephosphorylation at the G2/M border. Furthermore, the activity of cdc25-C phosphatase was decreased after treatment of cells with C2 toxin. Our results suggest that the prevented activation of the mitotic inducers p34 cdc2 kinase and cdc25-C phosphatase represents the final downstream events in the action of C2 toxin resulting in a G2 phase cell cycle delay in synchronized HeLa cells.
APA, Harvard, Vancouver, ISO, and other styles
28

RUSSO, Gian Luigi, Christian VAN DEN BOS, Ann SUTTON, Paola COCCETTI, Maurizio D. BARONI, Lilia ALBERGHINA, and Daniel R. MARSHAK. "Phosphorylation of Cdc28 and regulation of cell size by the protein kinase CKII in Saccharomyces cerevisiae." Biochemical Journal 351, no. 1 (September 26, 2000): 143–50. http://dx.doi.org/10.1042/bj3510143.

Full text
Abstract:
The CDK (cyclin-dependent kinase) family of enzymes is required for the G1-to-S-phase and G2-to-M-phase transitions during the cell-division cycle of eukaryotes. We have shown previously that the protein kinase CKII catalyses the phosphorylation of Ser-39 in Cdc2 during the G1 phase of the HeLa cell-division cycle [Russo, Vandenberg, Yu, Bae, Franza and Marshak (1992) J. Biol. Chem. 267, 20317–20325]. To identify a functional role for this phosphorylation, we have studied the homologous enzymes in the budding yeast Saccharomyces cerevisiae. The S. cerevisiae homologue of Cdc2, Cdc28, contains a consensus CKII site (Ser-46), which is homologous with that of human Cdc2. Using in vitro kinase assays, metabolic labelling, peptide mapping and phosphoamino acid analysis, we demonstrate that this site is phosphorylated in Cdc28 in vivo as well in vitro. In addition, S. cerevisiae cells in which Ser-46 has been mutated to alanine show a decrease in both cell volume and protein content of 33%, and this effect is most pronounced in the stationary phase. Because cell size in S. cerevisiae is regulated primarily at the G1 stage, we suggest that CKII contributes to the regulation of the cell cycle in budding yeast by phosphorylation of Cdc28 as a checkpoint for G1 progression.
APA, Harvard, Vancouver, ISO, and other styles
29

Pal-Ghosh, Ruma, Danfeng Xue, Rod Warburton, Nicholas Hill, Peter Polgar, and Jamie L. Wilson. "CDC2 Is an Important Driver of Vascular Smooth Muscle Cell Proliferation via FOXM1 and PLK1 in Pulmonary Arterial Hypertension." International Journal of Molecular Sciences 22, no. 13 (June 28, 2021): 6943. http://dx.doi.org/10.3390/ijms22136943.

Full text
Abstract:
A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.
APA, Harvard, Vancouver, ISO, and other styles
30

Frank-Vaillant, M., O. Haccard, C. Thibier, R. Ozon, Y. Arlot-Bonnemains, C. Prigent, and C. Jessus. "Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes." Journal of Cell Science 113, no. 7 (April 1, 2000): 1127–38. http://dx.doi.org/10.1242/jcs.113.7.1127.

Full text
Abstract:
Xenopus prophase oocytes reenter meiotic division in response to progesterone. The signaling pathway leading to Cdc2 activation depends on neosynthesized proteins and a decrease in PKA activity. We demonstrate that Eg2 protein, a Xenopus member of the Aurora/Ipl1 family of protein kinases, accumulates in response to progesterone and is degraded after parthenogenetic activation. The polyadenylation and cap ribose methylation of Eg2 mRNA are not needed for the protein accumulation. Eg2 protein accumulation is induced by progesterone through a decrease in PKA activity, upstream of Cdc2 activation. Eg2 kinase activity is undetectable in prophase and is raised in parallel with Cdc2 activation. In contrast to Eg2 protein accumulation, Eg2 kinase activation is under Cdc2 control. Furthermore, by using an anti-sense strategy, we show that Eg2 accumulation is not required in the transduction pathway leading to Cdc2 activation. Altogether, our results strongly suggest that Eg2 is not necessary for Cdc2 activation, though it could participate in the organization of the meiotic spindles, in agreement with the well-conserved roles of the members of the Aurora family, from yeast to man.
APA, Harvard, Vancouver, ISO, and other styles
31

Fleig, U. N., K. L. Gould, and P. Nurse. "A dominant negative allele of p34cdc2 shows altered phosphoamino acid content and sequesters p56cdc13 cyclin." Molecular and Cellular Biology 12, no. 5 (May 1992): 2295–301. http://dx.doi.org/10.1128/mcb.12.5.2295.

Full text
Abstract:
The cdc2 gene product, a 34-kDa phosphoprotein with serine/threonine protein kinase activity, has been implicated as the key component in the regulation of the eucaryotic cell cycle. Activation of the cdc2 protein kinase is regulated by its phosphorylation state and by interaction with other proteins. We have mutagenized the fission yeast cdc2 gene to obtain conditionally dominant negative alleles. One of these mutants, named DL2, is characterized in this report. Overexpression of the mutant protein in a wild-type cdc2 background is lethal and leads to arrest in the G2 phase of the cell cycle. The mutant phenotype is the result of a single amino acid change in the GDSEID motif of the protein, a region of identity in all cdc2 homologs, and results in a nonfunctional protein that shows an altered content of phosphothreonine. Multicopy suppressors of the dominant negative phenotype have been isolated, and one of these has been shown to encode the cdc13 cyclin B gene product.
APA, Harvard, Vancouver, ISO, and other styles
32

Fleig, U. N., K. L. Gould, and P. Nurse. "A dominant negative allele of p34cdc2 shows altered phosphoamino acid content and sequesters p56cdc13 cyclin." Molecular and Cellular Biology 12, no. 5 (May 1992): 2295–301. http://dx.doi.org/10.1128/mcb.12.5.2295-2301.1992.

Full text
Abstract:
The cdc2 gene product, a 34-kDa phosphoprotein with serine/threonine protein kinase activity, has been implicated as the key component in the regulation of the eucaryotic cell cycle. Activation of the cdc2 protein kinase is regulated by its phosphorylation state and by interaction with other proteins. We have mutagenized the fission yeast cdc2 gene to obtain conditionally dominant negative alleles. One of these mutants, named DL2, is characterized in this report. Overexpression of the mutant protein in a wild-type cdc2 background is lethal and leads to arrest in the G2 phase of the cell cycle. The mutant phenotype is the result of a single amino acid change in the GDSEID motif of the protein, a region of identity in all cdc2 homologs, and results in a nonfunctional protein that shows an altered content of phosphothreonine. Multicopy suppressors of the dominant negative phenotype have been isolated, and one of these has been shown to encode the cdc13 cyclin B gene product.
APA, Harvard, Vancouver, ISO, and other styles
33

Smith-Donald, Benjamin A., and Bernard Roizman. "The Interaction of Herpes Simplex Virus 1 Regulatory Protein ICP22 with the cdc25C Phosphatase Is Enabled In Vitro by Viral Protein Kinases US3 and UL13." Journal of Virology 82, no. 9 (February 13, 2008): 4533–43. http://dx.doi.org/10.1128/jvi.02022-07.

Full text
Abstract:
ABSTRACT Earlier studies have shown that ICP22 and the UL13 protein kinase but not the US3 kinase are required for optimal expression of a subset of late (γ2) genes exemplified by UL38, UL41, and US11. In primate cells, ICP22 mediates the disappearance of inactive isoforms of cdc2 and degradation of cyclins A and B1. Active cdc2 acquires a new partner, the viral DNA synthesis processivity factor UL42. The cdc2-UL42 complex recruits and phosphorylates topoisomerase IIα for efficient expression of the γ2 genes listed above. In uninfected cells, the cdc25C phosphatase activates cdc2 by removing two inhibitory phosphates. The accompanying report shows that in the absence of cdc25C, the rate of degradation of cyclin B1 is similar to that occurring in infected wild-type mouse embryo fibroblast cells but the levels of cdc2 increase, and the accumulation of a subset of late proteins and virus yields are reduced. This report links ICP22 with cdc25C. We show that in infected cells, ICP22 and US3 protein kinase mediate the phosphorylation of cdc25C at its C-terminal domain. In in vitro assays with purified components, both UL13 and US3 viral kinases phosphorylate cdc25C and ICP22. cdc25C also interacts with cdc2. However, in infected cells, the ability of cdc25C to activate cdc2 by dephosphorylation of the inactive cdc2 protein is reduced. Coupled with the phosphorylation of cdc25C by the US3 kinase, the results raise the possibility that herpes simplex virus 1 diverts cdc25C to perform functions other than those performed in uninfected cells.
APA, Harvard, Vancouver, ISO, and other styles
34

Pickham, K. M., and D. J. Donoghue. "Mutants at Ser277 of Xenopus cdc2 protein kinase induce oocyte maturation in the absence of the positive regulatory phosphorylation site Thr161." Molecular Biology of the Cell 5, no. 5 (May 1994): 587–96. http://dx.doi.org/10.1091/mbc.5.5.587.

Full text
Abstract:
The cdc2 protein kinase is an important regulatory protein for both meiosis and mitosis. Previously, we demonstrated that simultaneous mutation of Thr14-->Ala14 and Tyr15-->Phe15 in the Xenopus cdc2 protein results in an activated cdc2 mutant that induces maturation in resting oocytes. In addition, we confirmed the importance of the positive regulatory phosphorylation site, Thr161, by demonstrating that cdc2 mutants containing additional mutations of Thr161-->Ala161 or Glu161 are inactive in the induction of oocyte maturation. Here, we have analyzed the importance of an additional putative cdc2 phosphorylation site,Ser277. Single mutation of Ser277-->Asp277 or Ala277 had no effect on activity, and these mutants were unable to induce Xenopus oocyte maturation. However, the double mutant Ala161/Asp277 was capable of inducing oocyte maturation, suggesting that mutation of Ser277-->Asp277 could compensate for the mutation of Thr161-->Ala161. The Asp277 mutation could also compensate for the Ala161 mutation in the background of the activating mutations Ala14/Phe15. Although mutants containing the compensatory Ala161 and Asp277 mutations were capable of inducing oocyte maturation, these mutant cdc2 proteins lacked detectable in vitro kinase activity. Tryptic phosphopeptide mapping of mutant cdc2 protein and comparison with in vitro synthesized peptides indicated that Ser277 is not a major site of phosphorylation in Xenopus oocytes; however, we cannot rule out the possibility of phosphorylation at this site in a biologically active subpopulation of cdc2 molecules. The data presented here, together with prior reports of Ser277 phosphorylation in somatic cells, suggest an important role for Ser277 in the regulation of cdc2 activity. The regulatory role of Ser277 most likely involves its indirect effects on the nearby residue Arg275, which participates in a structurally important ion pair with Glu173, which lies in the same loop as Thr161 in the cdc2 protein.
APA, Harvard, Vancouver, ISO, and other styles
35

McConnell, J., and M. Lee. "Presence of cdc2(+)-like proteins in the preimplantation mouse embryo." Development 107, no. 3 (November 1, 1989): 481–87. http://dx.doi.org/10.1242/dev.107.3.481.

Full text
Abstract:
An antibody raised against a portion of the human equivalent of the yeast cdc2+ protein reacts with a 34K protein in mouse cell lines and early embryonic cells. Western blot analysis coupled with phosphatase treatment of material collected from the early preimplantation embryo has shown that the murine cdc2+ homologue does not correspond to the previously described newly synthesised proteins that are phosphorylated in a cell-cycle-dependent fashion [Howlett, 1986]. The cdc2(+)-like protein is converted into a slower migrating form on entry into S-phase and is further modified during G2 prior to mitosis. Studies of embryos that are held in extended periods of M-phase, i.e. unfertilised eggs or 1-cell embryos treated with nocodazole, demonstrate that the cdc2(+)-like protein becomes demodified in these cells.
APA, Harvard, Vancouver, ISO, and other styles
36

Cottarel, Guillaume. "Mcs4, a Two-Component System Response Regulator Homologue, Regulates the Schizosaccharomyces pombe Cell Cycle Control." Genetics 147, no. 3 (November 1, 1997): 1043–51. http://dx.doi.org/10.1093/genetics/147.3.1043.

Full text
Abstract:
The Schizosaccharomyces pombe cdc2-3w weel-50 double mutant displays a temperature-sensitive lethal phenotype termed mitotic catastrophe. Six mitotic catastrophe suppressor (mcs1-6) genes were identified in a genetic screen designed to identify regulators of cdc2. Mutations in mcs1-6 suppress the cdc2-3w weel-50 temperature-sensitive growth defect. Here, the cloning of mcs4 is described. The mcs4 gene product displays significant sequence homology to members of the two-component system response regulator protein family. Strains carrying the mcs4 and cdc25 mutations display a synthetic osmotic lethal phenotype along with an inability to grow on minimal synthetic medium. These phenotypes are suppressed by a mutation in wee1. In addition, the wis1 gene, encoding a stress-activated mitogen-activated protein kinase kinase, was identified as a dosage suppressor in this screen. These findings link the two-component signal transduction system to stress response and cell cycle control in S. pombe.
APA, Harvard, Vancouver, ISO, and other styles
37

Mohapatra, S., X. Yang, J. A. Wright, E. A. Turley, and A. H. Greenberg. "Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression." Journal of Experimental Medicine 183, no. 4 (April 1, 1996): 1663–68. http://dx.doi.org/10.1084/jem.183.4.1663.

Full text
Abstract:
The hyaluronan (HA) receptor RHAMM is an important regulator of cell growth. Overexpression of RHAMM is transforming and is required for H-ras transformation. The molecular mechanism underlying growth control by RHAMM and other extracellular matrix receptors remains largely unknown. We report that soluble RHAMM induces G2/M arrest by suppressing the expression of Cdc2/Cyclin B1, a protein kinase complex essential for mitosis. Down-regulation of RHAMM by use of dominant negative mutants or antisense of mRNA also decreases Cdc2 protein levels. Suppression of Cdc2 occurs as a result of an increased rate of cdc2 mRNA degradation. Moreover, tumor cells treated with soluble RHAMM are unable to form lung metastases. Thus, we show that mitosis is directly linked to RHAMM through control of Cdc2 and Cyclin B1 expression. Failure to sustain levels of Cdc2 and Cyclin B1 proteins leads to cell cycle arrest.
APA, Harvard, Vancouver, ISO, and other styles
38

Baber-Furnari, Beth A., Nick Rhind, Michael N. Boddy, Paul Shanahan, Antonia Lopez-Girona, and Paul Russell. "Regulation of Mitotic Inhibitor Mik1 Helps to Enforce the DNA Damage Checkpoint." Molecular Biology of the Cell 11, no. 1 (January 2000): 1–11. http://dx.doi.org/10.1091/mbc.11.1.1.

Full text
Abstract:
The protein kinase Chk1 enforces the DNA damage checkpoint. This checkpoint delays mitosis until damaged DNA is repaired. Chk1 regulates the activity and localization of Cdc25, the tyrosine phosphatase that activates the cdk Cdc2. Here we report that Mik1, a tyrosine kinase that inhibits Cdc2, is positively regulated by the DNA damage checkpoint. Mik1 is required for checkpoint response in strains that lack Cdc25. Long-term DNA damage checkpoint arrest fails inΔmik1 cells. DNA damage increases Mik1 abundance in a Chk1-dependent manner. Ubiquitinated Mik1 accumulates in a proteasome mutant, which indicates that Mik1 normally has a short half-life. Thus, the DNA damage checkpoint might regulate Mik1 degradation. Mik1 protein and mRNA oscillate during the unperturbed cell cycle, with peak amounts detected around S phase. These data indicate that regulation of Mik1 abundance helps to couple mitotic onset to the completion of DNA replication and repair. Coordinated negative regulation of Cdc25 and positive regulation of Mik1 ensure the effective operation of the DNA damage checkpoint.
APA, Harvard, Vancouver, ISO, and other styles
39

Dorée, Marcel, and Tim Hunt. "From Cdc2 to Cdk1: when did the cell cycle kinase join its cyclin partner?" Journal of Cell Science 115, no. 12 (June 15, 2002): 2461–64. http://dx.doi.org/10.1242/jcs.115.12.2461.

Full text
Abstract:
The idea that Cdc2 and cyclins play a key role in the control of the G2/M transition of the cell cycle came largely from genetic analysis of fission yeast and physiological studies of clam, frog, sea urchin and starfish eggs and oocytes. However, it took a long time to realise that Cdc2 and cyclins form a stoichiometric complex and that a cyclin subunit is necessary for the Cdc2 subunit to gain its protein kinase activity. Cyclins were first recognized as proteins whose abundance oscillates during the early cell cycles of marine invertebrate eggs and their connection with MPF (maturation-promoting factor), the entity defined in frog and starfish oocytes whose activity controls entry into M phase, was far from clear at first. Indeed, it was a long time before MPF was shown to be a protein kinase,and direct proof that MPF is a heterodimer comprising one molecule of cyclin and one molecule of Cdc2 was finally obtained only when the Cdc2-associated component of purified starfish MPF was sequenced and found to be cyclin B. When this fundamental discovery was confirmed in vertebrates and mammalian members of the Cdc2 family were also shown to bind cyclins, Cdc2 became Cdk1,the first cyclin-dependent protein kinase.
APA, Harvard, Vancouver, ISO, and other styles
40

Johnson, K. W., and K. A. Smith. "Molecular cloning of a novel human cdc2/CDC28-like protein kinase." Journal of Biological Chemistry 266, no. 6 (February 1991): 3402–7. http://dx.doi.org/10.1016/s0021-9258(19)67807-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Basi, Gabriele, and Tamar Enoch. "Identification of Residues in Fission Yeast and Human p34cdc2 Required for S-M Checkpoint Control." Genetics 144, no. 4 (December 1, 1996): 1413–24. http://dx.doi.org/10.1093/genetics/144.4.1413.

Full text
Abstract:
In fission yeast, regulation of p34cdc2 plays an important role in the checkpoint coupling mitosis to completion of DNA replication. The cdc2 mutations cdc2-3w (C67Y) and cdc2-4w (C67F) abolish checkpoint control without seriously affecting normal cell proliferation. However the molecular basis of this phenotype is not known. To better understand the role of p34cdc2 in checkpoint control, we have screened for more mutations in Schizosaccharomyces pombe cdc2 with this phenotype. We have isolated cdc2-3w and cdc2-4w, as well as three new cdc2 alleles: cdc2-6w (N66I), cdc2-7w (E8V) and cdc2-8w (K9E). The altered residues map to two different regions on opposite faces of the protein, suggesting that the interaction between p34cdc2 and components of the checkpoint pathway may be complex. In contrast to cdc2-3w and cdc2-4w, the new mutations alter residues that are conserved between the fission yeast cdc + and other cdks, including the human CDC2 protein. Expression of the equivalent human CDC2 mutants in fission yeast abolishes checkpoint control, suggesting that these residues could be involved in checkpoint-dependent regulation of other eukaryotic cdks.
APA, Harvard, Vancouver, ISO, and other styles
42

Egan, Elizabeth A., and Mark J. Solomon. "Cyclin-Stimulated Binding of Cks Proteins to Cyclin-Dependent Kinases." Molecular and Cellular Biology 18, no. 7 (July 1, 1998): 3659–67. http://dx.doi.org/10.1128/mcb.18.7.3659.

Full text
Abstract:
ABSTRACT Although Cks proteins were the first identified binding partners of cyclin-dependent protein kinases (cdks), their cell cycle functions have remained unclear. To help elucidate the function of Cks proteins, we examined whether their binding to p34 cdc2 (the mitotic cdk) varies during the cell cycle in Xenopusegg extracts. We observed that binding of human CksHs2 to p34 cdc2 was stimulated by cyclin B. This stimulation was dependent on the activating phosphorylation of p34 cdc2 on Thr-161, which follows cyclin binding and is mediated by the cdk-activating kinase. Neither the inhibitory phosphorylations of p34 cdc2 nor the catalytic activity of p34 cdc2 was required for this stimulation. Stimulated binding of CksHs2 to another cdk, p33 cdk2 , required both cyclin A and activating phosphorylation. Our findings support recent models that suggest that Cks proteins target active forms of p34 cdc2 to substrates.
APA, Harvard, Vancouver, ISO, and other styles
43

Gould, K. L., and A. Feoktistova. "Characterization of novel mutations at the Schizosaccharomyces pombe cdc2 regulatory phosphorylation site, tyrosine 15." Molecular Biology of the Cell 7, no. 10 (October 1996): 1573–86. http://dx.doi.org/10.1091/mbc.7.10.1573.

Full text
Abstract:
The cdc2 protein kinase family is regulated negatively by phosphorylation in the glycine ATP-binding loop at a conserved tyrosine residue, Y15, alone or in combination with T14 phosphorylation. In Schizosaccharomyces pombe and other systems, substitution of these residues with structurally similar but nonphosphorylatable amino acids has generated proteins (Y15F or T14AY15F) that behave as constitutively tyrosine-dephosphorylated proteins or threonine and tyrosine-dephosphorylated proteins. Here we report the characteristics of three additional mutants at Y15--Y15E, Y15S, and Y15T--in S. pombe cdc2p. All three mutant proteins are active in in vitro kinase assays, but are unable to functionally complement cdc2 loss-of-function mutations in vivo. Additionally, all three mutants are dominant negatives. A more detailed analysis of the Y15T mutant indicates that it can initiate chromosome condensation and F-actin contractile ring formation, but is unable to drive the reorganization of microtubules into a mitotic spindle.
APA, Harvard, Vancouver, ISO, and other styles
44

Girard, F., U. Strausfeld, J. C. Cavadore, P. Russell, A. Fernandez, and N. J. Lamb. "cdc25 is a nuclear protein expressed constitutively throughout the cell cycle in nontransformed mammalian cells." Journal of Cell Biology 118, no. 4 (August 15, 1992): 785–94. http://dx.doi.org/10.1083/jcb.118.4.785.

Full text
Abstract:
A family of proteins homologous to the cdc25 gene product of the fission yeast bear specific protein tyrosine phosphatase activity involved in the activation of the p34cdc2-cyclin B kinase. Using affinity-purified antibodies raised against a synthetic peptide corresponding to the catalytic site of the cdc25 phosphatase, we show that cdc25 protein is constitutively expressed throughout the cell cycle of nontransformed mammalian fibroblasts and does not undergo major changes in protein level. By indirect immunofluorescence, cdc25 protein is found essentially localized in the nucleus throughout interphase and during early prophase. Just before the complete nuclear envelope breakdown at the prophase-prometaphase boundary, cdc25 proteins are redistributed throughout the cytoplasm. During metaphase and anaphase, cdc25 staining remains distributed throughout the cell and excludes the condensed chromosomes. The nuclear locale reappears during telophase. In light of the recent data describing the cytoplasmic localization of cyclin B protein (Pines, J., and T. Hunter. 1991. J. Cell Biol. 115:1-17), the data presented here suggest that separation in two distinct cellular compartments of the cdc25 phosphatase and its substrate p34cdc2-cyclin B may be of importance in the regulation of the cdc2 kinase activity.
APA, Harvard, Vancouver, ISO, and other styles
45

AMADOR, ERICK, KARLA LÓPEZ-PACHECO, NATALY MORALES, ROBERTO CORIA, and IMELDA LÓPEZ-VILLASEÑOR. "Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis." Parasitology 144, no. 5 (December 8, 2016): 571–82. http://dx.doi.org/10.1017/s0031182016002195.

Full text
Abstract:
SUMMARYCyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.
APA, Harvard, Vancouver, ISO, and other styles
46

Hutchins, James R. A., Dina Dikovskaya, and Paul R. Clarke. "Regulation of Cdc2/Cyclin B Activation in Xenopus Egg Extracts via Inhibitory Phosphorylation of Cdc25C Phosphatase by Ca2+/Calmodium-dependent Kinase II." Molecular Biology of the Cell 14, no. 10 (October 2003): 4003–14. http://dx.doi.org/10.1091/mbc.e03-02-0061.

Full text
Abstract:
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.
APA, Harvard, Vancouver, ISO, and other styles
47

Tommasi, S., and G. P. Pfeifer. "In vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression." Molecular and Cellular Biology 15, no. 12 (December 1995): 6901–13. http://dx.doi.org/10.1128/mcb.15.12.6901.

Full text
Abstract:
In quiescent cells, cdc2 mRNA is almost undetectable. Stimulation of cells to reenter the cell cycle results in induction of cdc2 expression, beginning at the G1-to-S transition and reaching maximum levels during late S and G2 phases. To investigate cdc2 transcriptional regulation throughout cell cycle progression, we monitored protein-DNA interactions by in vivo footprinting along 800 bp of the human cdc2 promoter in quiescent fibroblasts and at different time points following serum stimulation. We found 11 in vivo protein-binding sites, but no protein binding was observed at a high-affinity E2F site that had previously been implicated in cdc2 regulation. Nine of the identified in vivo binding sites (among them were two inverted CCAAT boxes, two Sp1 sites, and one ets-2 site) bind transcription factors constitutively throughout the cell cycle. However, at two elements located at positions -60 and -20 relative to the transcription start site, the binding pattern changes significantly as the cells are entering S phase. A G0- and G1-specific protein complex disappears at the -20 element at the beginning of S phase. This sequence deviates at one base position from known E2F consensus binding sites. We found that the major E2F activity in human fibroblasts contains E2F-4 and p130. The -20 element of the cdc2 gene specifically interacts with a subset of E2F-4-p130 complexes present in G0 cells but does not interact with S-phase-specific E2F complexes. Transient-transfection experiments with wild-type and mutant cdc2 promoter constructs indicate that the -20 element is involved in suppressing cdc2 activity in quiescent cells. We suggest that the presence of the p130-E2F-4 complex in G0/G1 blocks access of components of the basal transcription machinery or prevents transaction by the constitutively bound upstream activator proteins.
APA, Harvard, Vancouver, ISO, and other styles
48

Göke, R., P. Barth, A. Schmidt, B. Samans, and B. Lankat-Buttgereit. "Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21Waf1/Cip1." American Journal of Physiology-Cell Physiology 287, no. 6 (December 2004): C1541—C1546. http://dx.doi.org/10.1152/ajpcell.00025.2004.

Full text
Abstract:
We show that the recently discovered tumor suppressor pdcd4 represses the transcription of the mitosis-promoting factor cyclin-dependent kinase (CDK)1/cdc2 via upregulation of p21Waf1/Cip1. p21Waf1/Cip1 inhibits CDK4/6 and CDK2. Decrease of CDK4/6 and CDK2 enhances the binding of pRb to E2F/DP, which in turn together bind to and repress the cdc2 promoter. Upregulation of CDK1/cdc2 accompanied by a malignant change was previously reported in colon cancer. We show that expression of pdcd4 as an indirect suppressor of CDK1/cdc2 is lost in progressed carcinomas of lung, breast, colon, and prostate. Furthermore, it seems that localization and expression of pdcd4 directly correlate with tumor progression. Finally, the CDK1/cdc2 inhibitor roscovitine reduces the proliferation of several tumor cell lines, suggesting that inhibition of CDK1/cdc2 may be a useful strategy against malignant transformation. Therefore, pdcd4 might serve as a novel target for antineoplastic therapies.
APA, Harvard, Vancouver, ISO, and other styles
49

Murakami, M. S., and G. F. Vande Woude. "Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos." Development 125, no. 2 (January 15, 1998): 237–48. http://dx.doi.org/10.1242/dev.125.2.237.

Full text
Abstract:
In Xenopus, cdc2 tyrosine phosphorylation is detected in the first 60–75 minute cell cycle but not in the next eleven cell cycles (cycles 2–12) which are only 30 minutes long. Here we report that the wee1/cdc25 ratio increases before the first mitotic interphase. We show that the Xe-wee1 protein is absent in stage VI oocytes and is expressed from meiosis II until gastrulation. A dominant negative form of Xe-wee1 (KM wee1) reduced the level cdc2 tyrosine phosphorylation and length of the first cycle. However, the ratio of wee1/cdc25 did not decrease after the first cycle and therefore did not explain the lack of cdc2 tyrosine phosphorylation in, nor the rapidity of, cycles 2–12. Furthermore, there was no evidence for a wee1/myt1 inhibitor in cycles 2–12. We examined the role of Mos in the first cycle because it is present during the first 20 minutes of this cycle. We arrested the rapid embryonic cell cycle (cycle 2 or 3) with Mos and restarted the cell cycle with calcium ionophore; the 30 minute cycle was converted into a 60 minute cycle, with cdc2 tyrosine phosphorylation. In addition, the injection of a non-degradable Mos (MBP-Mos) into the first cycle resulted in a dramatic elongation of this cycle (to 140 minutes). MBP-Mos did not delay DNA replication or the translation of cyclins A or B; it did, however, result in the marked accumulation of tyrosine phosphorylated cdc2. Thus, while the wee1/cdc25 ratio changes during development, these changes may not be responsible for the variety of cell cycles observed during early Xenopus embryogenesis. Our experiments indicate that Mos/MAPK can also contribute to cell cycle length.
APA, Harvard, Vancouver, ISO, and other styles
50

Wu, L., K. Shiozaki, R. Aligue, and P. Russell. "Spatial organization of the Nim1-Wee1-Cdc2 mitotic control network in Schizosaccharomyces pombe." Molecular Biology of the Cell 7, no. 11 (November 1996): 1749–58. http://dx.doi.org/10.1091/mbc.7.11.1749.

Full text
Abstract:
In Schizosaccharomyces pombe the onset of mitosis is regulated by a network of protein kinases and phosphatases. The M-phase inducing Cdc2-Cdc13 cyclin-dependent kinase is inhibited by Wee1 tyrosine kinase and activated by Cdc25 phosphatase. Wee1 is negatively regulated by Nim1 protein kinase. Here, we describe investigations aimed at better understanding the role of Nim1 in the mitotic control. The most important finding to emerge from these studies is that Wee1 and Nim1 have different patterns of intracellular localization. Immunofluorescence confocal microscopy has revealed that Nim1 is localized in the cytoplasm, whereas it substrate Wee1 is predominantly localized in the nucleus. Previous studies showed that the Cdc2-Cdc13 complex is located in the nucleus. Diversion of Nim1 to the nucleus, accomplished by addition of the SV40 nuclear localization signal, caused the advancement of M, confirming that Nim1 has restricted access to Wee1 in vivo. We propose that the intracellular distribution of Nim1 and Wee1 may serve to coordinate the regulation of nuclear Cdc2-Cdc13 with cytoplasmic growth.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography