Journal articles on the topic 'CDC50 proteins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CDC50 proteins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Furuta, Nobumichi, Konomi Fujimura-Kamada, Koji Saito, Takaharu Yamamoto, and Kazuma Tanaka. "Endocytic Recycling in Yeast Is Regulated by Putative Phospholipid Translocases and the Ypt31p/32p–Rcy1p Pathway." Molecular Biology of the Cell 18, no. 1 (January 2007): 295–312. http://dx.doi.org/10.1091/mbc.e06-05-0461.
Full textSaito, Koji, Konomi Fujimura-Kamada, Nobumichi Furuta, Utako Kato, Masato Umeda, and Kazuma Tanaka. "Cdc50p, a Protein Required for Polarized Growth, Associates with the Drs2p P-Type ATPase Implicated in Phospholipid Translocation in Saccharomyces cerevisiae." Molecular Biology of the Cell 15, no. 7 (July 2004): 3418–32. http://dx.doi.org/10.1091/mbc.e03-11-0829.
Full textGarcía-Sánchez, Sebastián, María P. Sánchez-Cañete, Francisco Gamarro, and Santiago Castanys. "Functional role of evolutionarily highly conserved residues, N-glycosylation level and domains of the Leishmania miltefosine transporter-Cdc50 subunit." Biochemical Journal 459, no. 1 (March 14, 2014): 83–94. http://dx.doi.org/10.1042/bj20131318.
Full textLópez-Marqués, Rosa L., Lisbeth R. Poulsen, Susanne Hanisch, Katharina Meffert, Morten J. Buch-Pedersen, Mia K. Jakobsen, Thomas Günther Pomorski, and Michael G. Palmgren. "Intracellular Targeting Signals and Lipid Specificity Determinants of the ALA/ALIS P4-ATPase Complex Reside in the Catalytic ALA α-Subunit." Molecular Biology of the Cell 21, no. 5 (March 2010): 791–801. http://dx.doi.org/10.1091/mbc.e09-08-0656.
Full textHanadate, Yuki, Yumiko Saito-Nakano, Kumiko Nakada-Tsukui, and Tomoyoshi Nozaki. "Identification and Characterization of the Entamoeba Histolytica Rab8a Binding Protein: A Cdc50 Homolog." International Journal of Molecular Sciences 19, no. 12 (November 30, 2018): 3831. http://dx.doi.org/10.3390/ijms19123831.
Full textBryde, Susanne, Hanka Hennrich, Patricia M. Verhulst, Philippe F. Devaux, Guillaume Lenoir, and Joost C. M. Holthuis. "CDC50 Proteins Are Critical Components of the Human Class-1 P4-ATPase Transport Machinery." Journal of Biological Chemistry 285, no. 52 (October 20, 2010): 40562–72. http://dx.doi.org/10.1074/jbc.m110.139543.
Full textvan der Velden, Lieke M., Catharina G. K. Wichers, Adriana E. D. van Breevoort, Jonathan A. Coleman, Robert S. Molday, Ruud Berger, Leo W. J. Klomp, and Stan F. J. van de Graaf. "Heteromeric Interactions Required for Abundance and Subcellular Localization of Human CDC50 Proteins and Class 1 P4-ATPases." Journal of Biological Chemistry 285, no. 51 (October 14, 2010): 40088–96. http://dx.doi.org/10.1074/jbc.m110.139006.
Full textMisu, Kenjiro, Konomi Fujimura-Kamada, Takashi Ueda, Akihiko Nakano, Hiroyuki Katoh, and Kazuma Tanaka. "Cdc50p, a Conserved Endosomal Membrane Protein, Controls Polarized Growth in Saccharomyces cerevisiae." Molecular Biology of the Cell 14, no. 2 (February 2003): 730–47. http://dx.doi.org/10.1091/mbc.e02-06-0314.
Full textLi, Xin, Baohui Chen, Sawako Yoshina, Tanxi Cai, Fuquan Yang, Shohei Mitani, and Xiaochen Wang. "Inactivation of Caenorhabditis elegans aminopeptidase DNPP-1 restores endocytic sorting and recycling in tat-1 mutants." Molecular Biology of the Cell 24, no. 8 (April 15, 2013): 1163–75. http://dx.doi.org/10.1091/mbc.e12-10-0730.
Full textPark, Chong J., Sukgil Song, Thomas H. Giddings, Hyeon-Su Ro, Krisada Sakchaisri, Jung-Eun Park, Yeon-Sun Seong, Mark Winey, and Kyung S. Lee. "Requirement for Bbp1p in the Proper Mitotic Functions of Cdc5p in Saccharomyces cerevisiae." Molecular Biology of the Cell 15, no. 4 (April 2004): 1711–23. http://dx.doi.org/10.1091/mbc.e03-07-0461.
Full textKabra, Ritika, Prajakta Ingale, and Shailza Singh. "Computationally designed synthetic peptides for transporter proteins imparts allostericity in Miltefosine resistant L. major." Biochemical Journal 477, no. 10 (May 29, 2020): 2007–26. http://dx.doi.org/10.1042/bcj20200176.
Full textNakano, Kenzi, Takaharu Yamamoto, Takuma Kishimoto, Takehiro Noji, and Kazuma Tanaka. "Protein Kinases Fpk1p and Fpk2p are Novel Regulators of Phospholipid Asymmetry." Molecular Biology of the Cell 19, no. 4 (April 2008): 1783–97. http://dx.doi.org/10.1091/mbc.e07-07-0646.
Full textOhi, Melanie D., Andrew J. Link, Liping Ren, Jennifer L. Jennings, W. Hayes McDonald, and Kathleen L. Gould. "Proteomics Analysis Reveals Stable Multiprotein Complexes in Both Fission and Budding Yeasts Containing Myb-Related Cdc5p/Cef1p, Novel Pre-mRNA Splicing Factors, and snRNAs." Molecular and Cellular Biology 22, no. 7 (April 1, 2002): 2011–24. http://dx.doi.org/10.1128/mcb.22.7.2011-2024.2002.
Full textMcDonald, W. Hayes, Ryoma Ohi, Natalia Smelkova, David Frendewey, and Kathleen L. Gould. "Myb-Related Fission Yeast cdc5p Is a Component of a 40S snRNP-Containing Complex and Is Essential for Pre-mRNA Splicing." Molecular and Cellular Biology 19, no. 8 (August 1, 1999): 5352–62. http://dx.doi.org/10.1128/mcb.19.8.5352.
Full textBoronat, Susanna, and Judith L. Campbell. "Mitotic Cdc6 Stabilizes Anaphase-Promoting Complex Substrates by a Partially Cdc28-Independent Mechanism, and This Stabilization Is Suppressed by Deletion of Cdc55." Molecular and Cellular Biology 27, no. 3 (November 27, 2006): 1158–71. http://dx.doi.org/10.1128/mcb.01745-05.
Full textMui, Melissa Z., Diana E. Roopchand, Matthew S. Gentry, Richard L. Hallberg, Jackie Vogel, and Philip E. Branton. "Adenovirus Protein E4orf4 Induces Premature APCCdc20 Activation in Saccharomyces cerevisiae by a Protein Phosphatase 2A-Dependent Mechanism." Journal of Virology 84, no. 9 (February 17, 2010): 4798–809. http://dx.doi.org/10.1128/jvi.02434-09.
Full textOhi, Ryoma, Anna Feoktistova, Stacey McCann, Virginia Valentine, A. Thomas Look, Joseph S. Lipsick, and Kathleen L. Gould. "Myb-Related Schizosaccharomyces pombecdc5p Is Structurally and Functionally Conserved in Eukaryotes." Molecular and Cellular Biology 18, no. 7 (July 1, 1998): 4097–108. http://dx.doi.org/10.1128/mcb.18.7.4097.
Full textTakeda, Miyoko, Kanako Yamagami, and Kazuma Tanaka. "Role of Phosphatidylserine in Phospholipid Flippase-Mediated Vesicle Transport in Saccharomyces cerevisiae." Eukaryotic Cell 13, no. 3 (January 3, 2014): 363–75. http://dx.doi.org/10.1128/ec.00279-13.
Full textKitada, K., A. L. Johnson, L. H. Johnston, and A. Sugino. "A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5." Molecular and Cellular Biology 13, no. 7 (July 1993): 4445–57. http://dx.doi.org/10.1128/mcb.13.7.4445.
Full textKitada, K., A. L. Johnson, L. H. Johnston, and A. Sugino. "A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5." Molecular and Cellular Biology 13, no. 7 (July 1993): 4445–57. http://dx.doi.org/10.1128/mcb.13.7.4445-4457.1993.
Full textWang, Y., and D. J. Burke. "Cdc55p, the B-type regulatory subunit of protein phosphatase 2A, has multiple functions in mitosis and is required for the kinetochore/spindle checkpoint in Saccharomyces cerevisiae." Molecular and Cellular Biology 17, no. 2 (February 1997): 620–26. http://dx.doi.org/10.1128/mcb.17.2.620.
Full textKhondker, Shoily, Sam Kajjo, Devon Chandler-Brown, Jan Skotheim, Adam Rudner, and Amy Ikui. "PP2ACdc55 dephosphorylates Pds1 and inhibits spindle elongation in S. cerevisiae." Journal of Cell Science 133, no. 14 (June 26, 2020): jcs243766. http://dx.doi.org/10.1242/jcs.243766.
Full textAhn, Jae-Woo, Sangwoo Kim, Eun-Jung Kim, Yeo-Jin Kim, and Kyung-Jin Kim. "Structural insights into the novel ARM-repeat protein CTNNBL1 and its association with the hPrp19–CDC5L complex." Acta Crystallographica Section D Biological Crystallography 70, no. 3 (February 22, 2014): 780–88. http://dx.doi.org/10.1107/s139900471303318x.
Full textRossio, Valentina, and Satoshi Yoshida. "Spatial regulation of Cdc55–PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast." Journal of Cell Biology 193, no. 3 (May 2, 2011): 445–54. http://dx.doi.org/10.1083/jcb.201101134.
Full textGrote, Michael, Elmar Wolf, Cindy L. Will, Ira Lemm, Dmitry E. Agafonov, Adrian Schomburg, Wolfgang Fischle, Henning Urlaub, and Reinhard Lührmann. "Molecular Architecture of the Human Prp19/CDC5L Complex." Molecular and Cellular Biology 30, no. 9 (February 22, 2010): 2105–19. http://dx.doi.org/10.1128/mcb.01505-09.
Full textKishimoto, Takuma, Takaharu Yamamoto, and Kazuma Tanaka. "Defects in Structural Integrity of Ergosterol and the Cdc50p-Drs2p Putative Phospholipid Translocase Cause Accumulation of Endocytic Membranes, onto Which Actin Patches Are Assembled in Yeast." Molecular Biology of the Cell 16, no. 12 (December 2005): 5592–609. http://dx.doi.org/10.1091/mbc.e05-05-0452.
Full textWillems, A. R., T. Goh, L. Taylor, I. Chernushevich, A. Shevchenko, and M. Tyers. "SCF ubiquitin protein ligases and phosphorylation–dependent proteolysis." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354, no. 1389 (September 29, 1999): 1533–50. http://dx.doi.org/10.1098/rstb.1999.0497.
Full textConnors, Bernadette, Lauren Rochelle, Asela Roberts, and Graham Howard. "A Synthetic Interaction between CDC20 and RAD4 in Saccharomyces cerevisiae upon UV Irradiation." Molecular Biology International 2014 (February 23, 2014): 1–8. http://dx.doi.org/10.1155/2014/519290.
Full textLeslie, Mitch. "Proteins keep Cdc55 in its place." Journal of Cell Biology 193, no. 3 (May 2, 2011): 426. http://dx.doi.org/10.1083/jcb.1933iti1.
Full textGao, Yang, Pengbo Wen, Bin Chen, Guanshuo Hu, Lijun Wu, An Xu, and Guoping Zhao. "Downregulation of CDC20 Increases Radiosensitivity through Mcl-1/p-Chk1-Mediated DNA Damage and Apoptosis in Tumor Cells." International Journal of Molecular Sciences 21, no. 18 (September 12, 2020): 6692. http://dx.doi.org/10.3390/ijms21186692.
Full textDi Fiore, Barbara, and Jonathon Pines. "How cyclin A destruction escapes the spindle assembly checkpoint." Journal of Cell Biology 190, no. 4 (August 23, 2010): 501–9. http://dx.doi.org/10.1083/jcb.201001083.
Full textMathias, N., S. L. Johnson, M. Winey, A. E. Adams, L. Goetsch, J. R. Pringle, B. Byers, and M. G. Goebl. "Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins." Molecular and Cellular Biology 16, no. 12 (December 1996): 6634–43. http://dx.doi.org/10.1128/mcb.16.12.6634.
Full textKramer, Edgar R., Nadja Scheuringer, Alexandre V. Podtelejnikov, Matthias Mann, and Jan-Michael Peters. "Mitotic Regulation of the APC Activator Proteins CDC20 and CDH1." Molecular Biology of the Cell 11, no. 5 (May 2000): 1555–69. http://dx.doi.org/10.1091/mbc.11.5.1555.
Full textFlescher, EG, K. Madden, and M. Snyder. "Components required for cytokinesis are important for bud site selection in yeast." Journal of Cell Biology 122, no. 2 (July 15, 1993): 373–86. http://dx.doi.org/10.1083/jcb.122.2.373.
Full textNath, Somsubhra, Abhishek Chowdhury, Sanjib Dey, Anirban Roychoudhury, Abira Ganguly, Dibyendu Bhattacharyya, and Susanta Roychoudhury. "Deregulation of Rb-E2F1 Axis Causes Chromosomal Instability by Engaging the Transactivation Function of Cdc20–Anaphase-Promoting Complex/Cyclosome." Molecular and Cellular Biology 35, no. 2 (November 3, 2014): 356–69. http://dx.doi.org/10.1128/mcb.00868-14.
Full textPiano, Valentina, Amal Alex, Patricia Stege, Stefano Maffini, Gerardo A. Stoppiello, Pim J. Huis in ’t Veld, Ingrid R. Vetter, and Andrea Musacchio. "CDC20 assists its catalytic incorporation in the mitotic checkpoint complex." Science 371, no. 6524 (December 31, 2020): 67–71. http://dx.doi.org/10.1126/science.abc1152.
Full textLei, X. H., X. Shen, X. Q. Xu, and H. S. Bernstein. "Human Cdc5, a regulator of mitotic entry, can act as a site-specific DNA binding protein." Journal of Cell Science 113, no. 24 (December 15, 2000): 4523–31. http://dx.doi.org/10.1242/jcs.113.24.4523.
Full textYellman, Christopher M., and Daniel J. Burke. "The Role of Cdc55 in the Spindle Checkpoint Is through Regulation of Mitotic Exit in Saccharomyces cerevisiae." Molecular Biology of the Cell 17, no. 2 (February 2006): 658–66. http://dx.doi.org/10.1091/mbc.e05-04-0336.
Full textVigneron, Suzanne, Susana Prieto, Cyril Bernis, Jean-Claude Labbé, Anna Castro, and Thierry Lorca. "Kinetochore Localization of Spindle Checkpoint Proteins: Who Controls Whom?" Molecular Biology of the Cell 15, no. 10 (October 2004): 4584–96. http://dx.doi.org/10.1091/mbc.e04-01-0051.
Full textPoddar, Atasi, P. Todd Stukenberg, and Daniel J. Burke. "Two Complexes of Spindle Checkpoint Proteins Containing Cdc20 and Mad2 Assemble during Mitosis Independently of the Kinetochore in Saccharomyces cerevisiae." Eukaryotic Cell 4, no. 5 (May 2005): 867–78. http://dx.doi.org/10.1128/ec.4.5.867-878.2005.
Full textWhitehall, Simon, Peter Stacey, Keren Dawson, and Nic Jones. "Cell Cycle–regulated Transcription in Fission Yeast: Cdc10–Res Protein Interactions during the Cell Cycle and Domains Required for Regulated Transcription." Molecular Biology of the Cell 10, no. 11 (November 1999): 3705–15. http://dx.doi.org/10.1091/mbc.10.11.3705.
Full textBen-Yehuda, Sigal, Ian Dix, Caroline S. Russell, Margaret McGarvey, Jean D. Beggs, and Martin Kupiec. "Genetic and Physical Interactions Between Factors Involved in Both Cell Cycle Progression and Pre-mRNA Splicing inSaccharomyces cerevisiae." Genetics 156, no. 4 (December 1, 2000): 1503–17. http://dx.doi.org/10.1093/genetics/156.4.1503.
Full textDeAntoni, Anna, Valeria Sala, and Andrea Musacchio. "Explaining the oligomerization properties of the spindle assembly checkpoint protein Mad2." Philosophical Transactions of the Royal Society B: Biological Sciences 360, no. 1455 (March 29, 2005): 637–48. http://dx.doi.org/10.1098/rstb.2004.1618.
Full textLi, Min, J. Philippe York, and Pumin Zhang. "Loss of Cdc20 Causes a Securin-Dependent Metaphase Arrest in Two-Cell Mouse Embryos." Molecular and Cellular Biology 27, no. 9 (February 26, 2007): 3481–88. http://dx.doi.org/10.1128/mcb.02088-06.
Full textTavormina, Penny A., and Daniel J. Burke. "Cell Cycle Arrest in cdc20 Mutants of Saccharomyces cerevisiae Is Independent of Ndc10p and Kinetochore Function but Requires a Subset of Spindle Checkpoint Genes." Genetics 148, no. 4 (April 1, 1998): 1701–13. http://dx.doi.org/10.1093/genetics/148.4.1701.
Full textGordienko, I. M., L. M. Shlapatska, L. M. Kovalevska, and S. P. Sidorenko. "DIFFERENTIAL EXPRESSION OF CD150/SLAMF1 IN NORMAL AND MALIGNANT B CELLS ON THE DIFFERENT STAGES OF MATURATION." Experimental Oncology 38, no. 2 (June 22, 2016): 101–7. http://dx.doi.org/10.31768/2312-8852.2016.38(2):101-107.
Full textConnolly, T., M. Caligiuri, and D. Beach. "The Cdc2 protein kinase controls Cdc10/Sct1 complex formation." Molecular Biology of the Cell 8, no. 6 (June 1997): 1105–15. http://dx.doi.org/10.1091/mbc.8.6.1105.
Full textShen, Wen-Hui, Yves Parmentier, Hanjo Hellmann, Esther Lechner, Aiwu Dong, Jean Masson, Fabienne Granier, Loı̈c Lepiniec, Mark Estelle, and Pascal Genschik. "Null Mutation of AtCUL1 Causes Arrest in Early Embryogenesis in Arabidopsis." Molecular Biology of the Cell 13, no. 6 (June 2002): 1916–28. http://dx.doi.org/10.1091/mbc.e02-02-0077.
Full textKim, Y. J., L. Francisco, G. C. Chen, E. Marcotte, and C. S. Chan. "Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation." Journal of Cell Biology 127, no. 5 (December 1, 1994): 1381–94. http://dx.doi.org/10.1083/jcb.127.5.1381.
Full textBen-Yehuda, Sigal, Caroline S. Russell, Ian Dix, Jean D. Beggs, and Martin Kupiec. "Extensive Genetic Interactions Between PRP8 and PRP17/CDC40, Two Yeast Genes Involved in Pre-mRNA Splicing and Cell Cycle Progression." Genetics 154, no. 1 (January 1, 2000): 61–71. http://dx.doi.org/10.1093/genetics/154.1.61.
Full text