Journal articles on the topic 'CDKL deficiency disorder'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CDKL deficiency disorder.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mukhin, K. Yu, O. A. Pylaeva, M. Yu Bobylova, and V. A. Chadaev. "Genetic epilepsy caused by CDKL5 gene mutations as an example of epileptic encephalopathy and developmental encephalopathy: literature review and own observations." Russian Journal of Child Neurology 16, no. 1-2 (2021): 10–41. http://dx.doi.org/10.17650/2073-8803-2021-16-1-2-10-41.
Full textDemarest, Scott, Elia M. Pestana-Knight, Heather E. Olson, et al. "Severity Assessment in CDKL5 Deficiency Disorder." Pediatric Neurology 97 (August 2019): 38–42. http://dx.doi.org/10.1016/j.pediatrneurol.2019.03.017.
Full textKadam, Shilpa D., Brennan J. Sullivan, Archita Goyal, Mary E. Blue, and Constance Smith-Hicks. "Rett Syndrome and CDKL5 Deficiency Disorder: From Bench to Clinic." International Journal of Molecular Sciences 20, no. 20 (2019): 5098. http://dx.doi.org/10.3390/ijms20205098.
Full textJakimiec, Martyna, Justyna Paprocka, and Robert Śmigiel. "CDKL5 Deficiency Disorder—A Complex Epileptic Encephalopathy." Brain Sciences 10, no. 2 (2020): 107. http://dx.doi.org/10.3390/brainsci10020107.
Full textBrock, Dylan, Andrea Fidell, Jacob Thomas, Elizabeth Juarez-Colunga, Tim A. Benke, and Scott Demarest. "Cerebral Visual Impairment in CDKL5 Deficiency Disorder Correlates With Developmental Achievement." Journal of Child Neurology 36, no. 11 (2021): 974–80. http://dx.doi.org/10.1177/08830738211019284.
Full textJhang, Cian-Ling, Hom-Yi Lee, Jin-Chung Chen, and Wenlin Liao. "Dopaminergic loss of cyclin-dependent kinase-like 5 recapitulates methylphenidate-remediable hyperlocomotion in mouse model of CDKL5 deficiency disorder." Human Molecular Genetics 29, no. 14 (2020): 2408–19. http://dx.doi.org/10.1093/hmg/ddaa122.
Full textBarbiero, Isabella, Roberta De Rosa, and Charlotte Kilstrup-Nielsen. "Microtubules: A Key to Understand and Correct Neuronal Defects in CDKL5 Deficiency Disorder?" International Journal of Molecular Sciences 20, no. 17 (2019): 4075. http://dx.doi.org/10.3390/ijms20174075.
Full textLa Montanara, Paolo, Arnau Hervera, Lucas L. Baltussen, et al. "Cyclin-dependent–like kinase 5 is required for pain signaling in human sensory neurons and mouse models." Science Translational Medicine 12, no. 551 (2020): eaax4846. http://dx.doi.org/10.1126/scitranslmed.aax4846.
Full textJagtap, Smita, Jessica M. Thanos, Ting Fu, et al. "Aberrant mitochondrial function in patient-derived neural cells from CDKL5 deficiency disorder and Rett syndrome." Human Molecular Genetics 28, no. 21 (2019): 3625–36. http://dx.doi.org/10.1093/hmg/ddz208.
Full textGill, Deepak. "A potential new treatment for CDKL5 deficiency disorder." Lancet Neurology 21, no. 5 (2022): 394–95. http://dx.doi.org/10.1016/s1474-4422(22)00127-2.
Full textRodak, Małgorzata, Mariola Jonderko, Patrycja Rozwadowska, Magdalena Machnikowska-Sokołowska, and Justyna Paprocka. "CDKL5 Deficiency Disorder (CDD)—Rare Presentation in Male." Children 9, no. 12 (2022): 1806. http://dx.doi.org/10.3390/children9121806.
Full textPeikes, Tyler, Jessica N. Hartley, Aizeddin A. Mhanni, Cheryl R. Greenberg, and Juan Pablo Appendino. "Reflex Seizures in a Patient with CDKL5 Deficiency Disorder." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 46, no. 04 (2019): 482–85. http://dx.doi.org/10.1017/cjn.2019.29.
Full textMorkous, Sameh S. "Quality Of Life in Individuals with CDKL5 Deficiency Disorder." Pediatric Neurology Briefs 36 (December 30, 2022): 5. http://dx.doi.org/10.15844/pedneurbriefs-36-5.
Full textPatnaik, Abhisarika, Eleonora Spiombi, Angelisa Frasca, Nicoletta Landsberger, Marta Zagrebelsky, and Martin Korte. "Fingolimod Modulates Dendritic Architecture in a BDNF-Dependent Manner." International Journal of Molecular Sciences 21, no. 9 (2020): 3079. http://dx.doi.org/10.3390/ijms21093079.
Full textDe Rosa, Roberta De, Serena Valastro, Clara Cambria, et al. "Loss of CDKL5 Causes Synaptic GABAergic Defects That Can Be Restored with the Neuroactive Steroid Pregnenolone-Methyl-Ether." International Journal of Molecular Sciences 24, no. 1 (2022): 68. http://dx.doi.org/10.3390/ijms24010068.
Full textKatayama, Syouichi, Noriyuki Sueyoshi, Tetsuya Inazu, and Isamu Kameshita. "Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder." Neural Plasticity 2020 (June 5, 2020): 1–14. http://dx.doi.org/10.1155/2020/6970190.
Full textLupori, Leonardo, Giulia Sagona, Claudia Fuchs, et al. "Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder." Human Molecular Genetics 28, no. 17 (2019): 2851–61. http://dx.doi.org/10.1093/hmg/ddz102.
Full textHector, Ralph D., Vera M. Kalscheuer, Friederike Hennig, et al. "CDKL5 variants." Neurology Genetics 3, no. 6 (2017): e200. http://dx.doi.org/10.1212/nxg.0000000000000200.
Full textTassinari, Marianna, Nicola Mottolese, Giuseppe Galvani, et al. "Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder." International Journal of Molecular Sciences 23, no. 15 (2022): 8719. http://dx.doi.org/10.3390/ijms23158719.
Full textLeonard, Helen, Mohammed Junaid, Kingsley Wong, Alex A. Aimetti, Elia Pestana Knight, and Jenny Downs. "Influences on the trajectory and subsequent outcomes in CDKL5 deficiency disorder." Epilepsia 63, no. 2 (2021): 352–63. http://dx.doi.org/10.1111/epi.17125.
Full textMacKay, Conor I., David Bick, Jeremy W. Prokop, et al. "Expanding the phenotype of the CDKL5 deficiency disorder: Are seizures mandatory?" American Journal of Medical Genetics Part A 182, no. 5 (2020): 1217–22. http://dx.doi.org/10.1002/ajmg.a.61504.
Full textHong, William, Isabel Haviland, Elia Pestana-Knight, et al. "CDKL5 Deficiency Disorder-Related Epilepsy: A Review of Current and Emerging Treatment." CNS Drugs 36, no. 6 (2022): 591–604. http://dx.doi.org/10.1007/s40263-022-00921-5.
Full textBenke, Tim A., and Peter C. Kind. "Proof-of-concept for a gene replacement approach to CDKL5 deficiency disorder." Brain 143, no. 3 (2020): 716–18. http://dx.doi.org/10.1093/brain/awaa055.
Full textDemarest, Scott T., Heather E. Olson, Angela Moss, et al. "CDKL5 deficiency disorder: Relationship between genotype, epilepsy, cortical visual impairment, and development." Epilepsia 60, no. 8 (2019): 1733–42. http://dx.doi.org/10.1111/epi.16285.
Full textDi Nardo, Alessia, Alina Rühmkorf, Patricia Award, Ashton Brennecke, Michela Fagiolini, and Mustafa Sahin. "Phenotypic characterization of Cdkl5-knockdown neurons establishes elongated cilia as a functional assay for CDKL5 Deficiency Disorder." Neuroscience Research 176 (March 2022): 73–78. http://dx.doi.org/10.1016/j.neures.2021.10.001.
Full textLoi, Manuela, Laura Gennaccaro, Claudia Fuchs та ін. "Treatment with a GSK-3β/HDAC Dual Inhibitor Restores Neuronal Survival and Maturation in an In Vitro and In Vivo Model of CDKL5 Deficiency Disorder". International Journal of Molecular Sciences 22, № 11 (2021): 5950. http://dx.doi.org/10.3390/ijms22115950.
Full textSiri, Barbara, Costanza Varesio, Elena Freri, et al. "CDKL5 deficiency disorder in males: Five new variants and review of the literature." European Journal of Paediatric Neurology 33 (July 2021): 9–20. http://dx.doi.org/10.1016/j.ejpn.2021.04.007.
Full textVan Bergen, Nicole J., Sean Massey, Tegan Stait, et al. "Abnormalities of mitochondrial dynamics and bioenergetics in neuronal cells from CDKL5 deficiency disorder." Neurobiology of Disease 155 (July 2021): 105370. http://dx.doi.org/10.1016/j.nbd.2021.105370.
Full textAppendino, Juan Pablo. "Hypermotor-tonic-spasms seizure sequence related to CDKL5 deficiency disorder: a typical case." Epileptic Disorders 24, no. 6 (2022): 1–2. http://dx.doi.org/10.1684/epd.2022.1480.
Full textMacKay, Conor I., Kingsley Wong, Scott T. Demarest, Tim A. Benke, Jenny Downs, and Helen Leonard. "Exploring genotype‐phenotype relationships in the CDKL5 deficiency disorder using an international dataset." Clinical Genetics 99, no. 1 (2020): 157–65. http://dx.doi.org/10.1111/cge.13862.
Full textDale, Tristan, Jenny Downs, Heather Olson, Ann Marie Bergin, Stephanie Smith, and Helen Leonard. "Cannabis for refractory epilepsy in children: A review focusing on CDKL5 Deficiency Disorder." Epilepsy Research 151 (March 2019): 31–39. http://dx.doi.org/10.1016/j.eplepsyres.2019.02.001.
Full textElagib, Kamaleldin E., Ivailo S. Mihaylov, Lorrie L. Delehanty, et al. "Cross-talk of GATA-1 and P-TEFb in megakaryocyte differentiation." Blood 112, no. 13 (2008): 4884–94. http://dx.doi.org/10.1182/blood-2008-03-145722.
Full textBao, Junxiang, Guangbi Li, Xinxu Yuan, Pin-Lan Li, and Erich Gulbins. "Contribution of p62 to Phenotype Transition of Coronary Arterial Myocytes with Defective Autophagy." Cellular Physiology and Biochemistry 41, no. 2 (2017): 555–68. http://dx.doi.org/10.1159/000457877.
Full textFrasca, Angelisa, Efterpi Pavlidou, Matteo Bizzotto, et al. "Not Just Loss-of-Function Variations." Neurology Genetics 8, no. 2 (2022): e666. http://dx.doi.org/10.1212/nxg.0000000000000666.
Full textYennawar, Madhumita, Rachel S. White, and Frances E. Jensen. "AMPA Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of CDKL5 Deficiency Disorder." Journal of Neuroscience 39, no. 24 (2019): 4814–28. http://dx.doi.org/10.1523/jneurosci.2041-18.2019.
Full textPizzo, R., A. Lamarca, M. Sassoè-Pognetto, and M. Giustetto. "Structural Bases of Atypical Whisker Responses in a Mouse Model of CDKL5 Deficiency Disorder." Neuroscience 445 (October 2020): 130–43. http://dx.doi.org/10.1016/j.neuroscience.2019.08.033.
Full textLim, Zhan, Kingsley Wong, Jenny Downs, Keely Bebbington, Scott Demarest, and Helen Leonard. "Vagus nerve stimulation for the treatment of refractory epilepsy in the CDKL5 Deficiency Disorder." Epilepsy Research 146 (October 2018): 36–40. http://dx.doi.org/10.1016/j.eplepsyres.2018.07.013.
Full textSaldaris, Jacinta M., Peter Jacoby, Helen Leonard, et al. "Psychometric properties of QI-Disability in CDKL5 Deficiency Disorder: Establishing readiness for clinical trials." Epilepsy & Behavior 139 (February 2023): 109069. http://dx.doi.org/10.1016/j.yebeh.2022.109069.
Full textYoshimura, Yuri, Atsushi Morii, Yuuki Fujino, et al. "Comprehensive In Silico Functional Prediction Analysis of CDKL5 by Single Amino Acid Substitution in the Catalytic Domain." International Journal of Molecular Sciences 23, no. 20 (2022): 12281. http://dx.doi.org/10.3390/ijms232012281.
Full textDevinsky, Orrin, LaToya King, Judith Bluvstein, and Daniel Friedman. "Ataluren for drug‐resistant epilepsy in nonsense variant‐mediated Dravet syndrome and CDKL5 deficiency disorder." Annals of Clinical and Translational Neurology 8, no. 3 (2021): 639–44. http://dx.doi.org/10.1002/acn3.51306.
Full textDale, Tristan, Jenny Downs, Kingsley Wong, and Helen Leonard. "The perceived effects of cannabis products in the management of seizures in CDKL5 Deficiency Disorder." Epilepsy & Behavior 122 (September 2021): 108152. http://dx.doi.org/10.1016/j.yebeh.2021.108152.
Full textKluckova, Daniela, Miriam Kolnikova, Veronika Medova, et al. "Clinical manifestation of CDKL5 deficiency disorder and identified mutations in a cohort of Slovak patients." Epilepsy Research 176 (October 2021): 106699. http://dx.doi.org/10.1016/j.eplepsyres.2021.106699.
Full textTangarorang, Jodilee, Helen Leonard, Amy Epstein, and Jenny Downs. "A framework for understanding quality of life domains in individuals with the CDKL5 deficiency disorder." American Journal of Medical Genetics Part A 179, no. 2 (2018): 249–56. http://dx.doi.org/10.1002/ajmg.a.61012.
Full textFuchs, Claudia, Laura Gennaccaro, Elisa Ren, et al. "Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder." Neuropharmacology 167 (May 2020): 107746. http://dx.doi.org/10.1016/j.neuropharm.2019.107746.
Full textLeonard, Helen, Mohammed Junaid, Kingsley Wong, Scott Demarest, and Jenny Downs. "Exploring quality of life in individuals with a severe developmental and epileptic encephalopathy, CDKL5 Deficiency Disorder." Epilepsy Research 169 (January 2021): 106521. http://dx.doi.org/10.1016/j.eplepsyres.2020.106521.
Full textAledo-Serrano, Ángel, Patricia Gómez-Iglesias, Rafael Toledano, et al. "Sodium channel blockers for the treatment of epilepsy in CDKL5 deficiency disorder: Findings from a multicenter cohort." Epilepsy & Behavior 118 (May 2021): 107946. http://dx.doi.org/10.1016/j.yebeh.2021.107946.
Full textTalamo, M. C., M. Pellas, C. Urbinati, L. Cosentino, and B. De Filippis. "P.236 Inhibition of p21-activated kinase rescues disrupted phenotype in a mouse model of CDKL5 deficiency disorder." European Neuropsychopharmacology 31 (February 2020): S45—S46. http://dx.doi.org/10.1016/j.euroneuro.2019.12.062.
Full textAdemuwagun, Ibitayo Abigail, Gbolahan Oladipupo Oduselu, Solomon Oladapo Rotimi, and Ezekiel Adebiyi. "Pharmacophore-Aided Virtual Screening and Molecular Dynamics Simulation Identifies TrkB Agonists for Treatment of CDKL5-Deficiency Disorders." Bioinformatics and Biology Insights 17 (January 2023): 117793222311582. http://dx.doi.org/10.1177/11779322231158254.
Full textGorbenko Del Blanco, Darya, Laura C. G. de Graaff, Dirk Posthouwer, Theo J. Visser, and Anita C. S. Hokken-Koelega. "Isolated GH deficiency: mutation screening and copy number analysis of HMGA2 and CDK6 genes." European Journal of Endocrinology 165, no. 4 (2011): 537–44. http://dx.doi.org/10.1530/eje-11-0478.
Full textTerzic, Barbara, Yue Cui, Andrew C. Edmondson, et al. "X-linked cellular mosaicism underlies age-dependent occurrence of seizure-like events in mouse models of CDKL5 deficiency disorder." Neurobiology of Disease 148 (January 2021): 105176. http://dx.doi.org/10.1016/j.nbd.2020.105176.
Full text