Academic literature on the topic 'CdO Doped Nanocomposite Electrolytes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CdO Doped Nanocomposite Electrolytes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CdO Doped Nanocomposite Electrolytes"

1

Karmakar, A., and A. Ghosh. "Ac conductivity and relaxation in CdO doped poly ethylene oxide-LiI nanocomposite electrolyte." Journal of Applied Physics 110, no. 3 (2011): 034101. http://dx.doi.org/10.1063/1.3610503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Joyce Stella, R., G. Thirumala Rao, B. Babu, et al. "A facile synthesis and spectral characterization of Cu2+ doped CdO/ZnS nanocomposite." Journal of Magnetism and Magnetic Materials 384 (June 2015): 6–12. http://dx.doi.org/10.1016/j.jmmm.2015.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rafique, Asia, Rizwan Raza, Nadeem Akram, et al. "Significance enhancement in the conductivity of core shell nanocomposite electrolytes." RSC Advances 5, no. 105 (2015): 86322–29. http://dx.doi.org/10.1039/c5ra16763a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raza, Rizwan, Xiaodi Wang, Ying Ma, and Bin Zhu. "Study on calcium and samarium co-doped ceria based nanocomposite electrolytes." Journal of Power Sources 195, no. 19 (2010): 6491–95. http://dx.doi.org/10.1016/j.jpowsour.2010.04.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kundu, Ranadip, Debasish Roy, and Sanjib Bhattacharya. "Microstructure, electrical conductivity and modulus spectra of CdI2 doped nanocomposite-electrolytes." Physica B: Condensed Matter 507 (February 2017): 107–13. http://dx.doi.org/10.1016/j.physb.2016.11.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jaiswal, Nandini, Shail Upadhyay, Devendra Kumar, and Om Parkash. "Ionic conduction in Mg2+ and Sr2+ co-doped ceria/carbonates nanocomposite electrolytes." International Journal of Hydrogen Energy 40, no. 8 (2015): 3313–20. http://dx.doi.org/10.1016/j.ijhydene.2015.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ram, Rakesh, and Sanjib Bhattacharya. "Mixed ionic-electronic transport in Na2O doped glassy electrolytes: Promising candidate for new generation sodium ion battery electrolytes." Journal of Applied Physics 133, no. 14 (2023): 145101. http://dx.doi.org/10.1063/5.0145894.

Full text
Abstract:
In the present communication, newly developed glassy electrolytes, Na2O–ZnO–CdO, have been considered to discuss their electrical transport behavior at ambient temperature. The AC conductivity and relaxation behavior of them have been studied in the light of Almond-West formalism. The electrical conductivity (mixed conduction) is found to be a function of frequency as well as temperature. In the low-frequency range, it shows a flat conductivity owing to the diffusional motion of Na+ ions, whereas at high frequency, the conductivity shows dispersion. The DC conductivity [Formula: see text] and
APA, Harvard, Vancouver, ISO, and other styles
8

Agrawal, S. L., and Neelesh Rai. "DMA and Conductivity Studies in PVA:NH4SCN:DMSO:MWNT Nanocomposite Polymer Dried Gel Electrolytes." Journal of Nanomaterials 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/435625.

Full text
Abstract:
This paper deals with findings on dynamic mechanical analysis (DMA) and ion-conduction behavior of MWNTs (multiwall carbon nanotubes) doped PVA:NH4SCN:DMSO dried gel electrolyte system prepared for four filler concentrations (2, 4, 6 & 8 wt%) by solution cast technique. XRD measurements reveal enhancement in amorphous behavior of composite gel electrolyte upon incorporation of filler particles. Better mechanical stability is noticed in the composite system upon dispersal of MWNT along with presence of dynamicTgduring DMA measurements. Enhancement in ionic conductivity has been noticed with
APA, Harvard, Vancouver, ISO, and other styles
9

Suchikova, Yana, Sergii Kovachov, Ihor Bohdanov, Elena Popova, Aleksandra Moskina, and Anatoli Popov. "Characterization of CdxTeyOz/CdS/ZnO Heterostructures Synthesized by the SILAR Method." Coatings 13, no. 3 (2023): 639. http://dx.doi.org/10.3390/coatings13030639.

Full text
Abstract:
CdxTeyOz/CdS/ZnO heterostructures were obtained by the SILAR method using ionic electrolytes. A CdS film was formed as a buffer layer for better adhesion of the cadmium-tellurium oxides to the substrate surface. In turn, the ZnO substrate was previously prepared by electrochemical etching to form a rough textured surface. In addition, an annealing mode was used in an oxygen stream to complete the oxidation process of the heterostructure surface. The resulting nanocomposite was investigated using RAMAN, XRD, SEM, and EDX methods. We assume that the oxides CdO and TeO4 initially form on the surf
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Ben, Yin She, Changgeng Zhang, Shuai Kang, Jin Zhou, and Wei Hu. "Nitrogen Doped Intercalation TiO2/TiN/Ti3C2Tx Nanocomposite Electrodes with Enhanced Pseudocapacitance." Nanomaterials 10, no. 2 (2020): 345. http://dx.doi.org/10.3390/nano10020345.

Full text
Abstract:
Layered two-dimensional titanium carbide (Ti3C2Tx), as an outstanding MXene member, has captured increasing attention in supercapacitor applications due to its excellent chemical and physical properties. However, the low gravimetric capacitance of Ti3C2Tx restricts its rapid development in such applications. Herein, this work demonstrates an effective and facile hydrothermal approach to synthesize nitrogen doped intercalation TiO2/TiN/Ti3C2Tx with greatly improved gravimetric capacitance and excellent cycling stability. The hexamethylenetetramine (C6H12N4) in hydrothermal environment acted as
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!