Contents
Academic literature on the topic 'Cell adhesion/intégrine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cell adhesion/intégrine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Cell adhesion/intégrine"
Moes, Michèle. "Interaction of the cytoskeletal protein talin with the integrin beta3 subunit cytoplasmic tail: characterization of the talin rod IBS2 integrin binding site." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210658.
Full textIn the first part of this study, we used a combination of three different experimental approaches to define the minimal structure of talin IBS2: 1) an in silico bioinformatics approach to analyse sequence conservation of talin IBS2, 2) an in vivo cell biology approach to study the subcellular localization of recombinant talin fragments covering IBS2 in CHOáIIbâ3 cells, and 3) an in vitro biochemical approach consisting in protein overlay, pull down and Surface Plasmon Resonance (SPR) assays, to study the direct interaction between talin IBS2 and the integrin â3 subunit. We delineated IBS2 to a single amphipathic á-helical repeat of 23 residues within the talin rod domain. We further provided evidence that a two amino acid mutation(L2094I2095/AA) was sufficient to inactivate the IBS2 site, due to a disruption of the á helix structure, as demonstrated by infrared spectroscopy. In addition, we identified 2 lysine residues (K2085, K2089) exposed on the solvent face of á helix 50, which are directly involved in the talin IBS2-integrin interaction.
In the second part of this study, we investigated the functional role of talin IBS2 in spreading defective talin (-/-) cells and showed that in contrast to full-length wild type talin, an IBS2 LI/AA mutant talin was unable to fully rescue the spread phenotype of these cells. These results provide the first direct evidence that IBS2 in the talin rod is essential to link integrins to the actin cytoskeleton.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Fiorucci, Sandrine. "Caractérisation cellulaire et moléculaire de l'activité de dérivés de 2-aryl-3-quinolone, une famille de petites molécules antagonistes de la queue cytoplasmique des intégrines." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENV058/document.
Full textFlavonoïds have been studied for years for their potential chemopreventive and chemotherapeutic action. Several mechanisms might account for their anticancer activity, among which inhibition of cell adhesion and spreading, or inhibition of tumor cell invasion. 3-aryl-2-quinolone derivatives are chemical structures close to flavonoïds and were first designed as anti-migratory agents (Joseph et Al., J.Med.Chem, 2002). As cell migration is highly dependent on the cell adhesion machinery, we decided to investigate the action of these molecules on focal and fibrillar adhesions. These large protein complexes include heterodimeric transmembrane proteins, the integrins, and their cytoplasmic interactors able to link to the cytoskeleton. Integrins allow microenvironment sensing and cellular response to it. Adhesive structures containing integrins are also able to control cell microenvironment (matrix degradation, fibrillogenesis…). Our studies show that 3-aryl-2-quinolone derivatives are able not only to prevent cell spreading but also to disrupt already well-established focal adhesions in a reversible and ECM composition independent manner. The activity of the molecule is closely linked with its structure, as very slight modification of the lateral chain of the compound can totally impair its activity. Our work is focused on establishing a Structure-Activity Relationship of 3-aryl-2-quinolone derivatives and on investigating the molecular mechanisms underlying this activity. Osteoblasts treatment by 3-aryl-2-quinolone derivatives triggers a rapid disassembly of focal and fibrillar adhesions. NMR experiments show a direct interaction between the lead compound of the family and 3 integrin cytoplasmic tail and pull-down assay show that it is able to reduce the interaction between 3 integrin and kindlin, one of its coactivator. As platelet activation is an archetype of 3 integrin activation, we tested the activity of 3-aryl-2-quinolone on this physiological process. Under treatment, platelets failed to become activated and are unable to trigger thrombus formation, providing an interest to the 3-aryl-2-quinolone derivatives as potential anti-thrombotic agents
Luo, Xuan. "In vitro quantitative study of T cell adhesive haptotaxis." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0151/document.
Full textAn efficient immune response relies on a rapid recruitment of leukocytes from blood to the inflamed or damaged tissue. During this process, leukocytes are captured by the endothelium and migrate along the vessel wall to reach permissive transmigration sites. These processes are mediated by multiple external cues among which the role of adhesion molecules remains unclear. Adhesive haptotaxis has been described for mesenchymal cells that develop strong pulling forces with their substrates and orient via a tug of war mechanism – a competition between cells’ adherent pulling edges. In the case of amoeboid cells that migrate with minimal interaction with their substrate, the existence of adhesive haptotaxis has yet to be evidenced. Here, we studied the crawling of human T lymphocytes on substrates with spatially modulated adhesion. and observed robust adhesive haptotaxis. Mechanistically, we show that integrin-mediated adhesive haptotaxis of lymphocytes differs both from active chemotaxis, because no mechanotransduction was detected, and from the passive tug of war mechanism, because different integrins support opposite phenotypes. Cells favored more adherent zones with VLA-4 and, counterintuitively, less adherent zones with LFA-1. These results reveal that integrins control differential adhesive haptotaxis behaviors without mechanotransduction. We further investigated the mechanism behind this specific haptotactic phenotype mediated by LFA-1 and find that the lamellipodial dynamics, rather than the integrin expression level, is involved. Preliminary findings with VASP deficient T cells indicate also that VASP protein may play an important role in T cell adhesive haptotaxis
Kyumurkov, Alexander. "Role of ICAP-1 in integrins' dynamic regulation, mechanosensing and contractility of osteoblast cells." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV057/document.
Full textICAP-1 is involved in integrin dynamics and force generation by controlling integrin endocytosis through nm23-dependent scission of endocytic chlatrin coated pits.ICAP-1 has been identified as a specific partner of b1 integrin (Degani et al., 2002; Zhang and Hemler, 1999). We have previously shown that ICAP-1 is involved in cell mechanoresponse and cell differentiation in a b1 integrin dependent manner (Bouvard et al., 2007; Brunner et al., 2011; Faurobert et al., 2013; Millon-Frémillon et al., 2008; Renz et al., 2015). However, as ICAP-1 is also able to adapt cell migration in response to substrate stiffness in a β1-integrin-independent manner (Bouin et al., 2017), we speculated on a more general role of ICAP-1 in cell adhesion and focal adhesion dynamics. For this purpose we have created cellular environment where b1 integrin and/or ICAP-1 were absent by using four cell lines: WT osteoblast, b1 integrin KO osteoblast cells, ICAP-1 KO osteoblast cells and double KO b1/ICAP-1 osteoblast cells in order to monitor b3 integrin behavior. As expected, depletion of b1 integrin is associated with the loss of cell spreading and force generation according traction force microscopy measurement. Surprisingly, the supplementary deletion of ICAP-1 (b1 integrin and ICAP-1 KO) leads to restoration of cell spreading and force generation which are dependent on b3 integrin. These b3 integrin-mediated forces are correlated with slow diffusion of b3 integrin within adhesion sites and slow turnover of b3 integrin containing focal adhesion (FRAP/TIRF/videomicroscopy). We addressed the question whether ICAP-1 might regulate b3 integrin endocytosis since ICAP-1 interacts with nm23-H2 (Fournier et al., 2002), a nucleoside diphosphate kinases (NDPKs) involved in dynamin-mediated endocytosis by producing GTP through adenosine triphosphate (ATP)–driven conversion of guanosine diphosphate (GDP) (Boissan et al., 2014). We show that the deletion of either nm23 or dynamin or chlatrin in cells depleted in b1 integrin is able to mimic the combined loss of b1 integrin and ICAP-1 by restoring cell spreading, force generation and b3 integrin dynamics. To confirm the involvement of ICAP-1 in b3 integrin endocytosis, we show that the b3 integrin antibody uptake is efficiently blocked in cells depleted in ICAP-1. Our results suggest that ICAP-1 might be involved in integrin dynamics and force generation by controlling integrin endocytosis through nm23-dependent scission of endocytic chlatrin coated pits
Orré, Thomas. "Mécanismes moléculaires d’activation des intégrines par la kindline-2 lors de l’adhésion cellulaire." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0824/document.
Full textFocal adhesions (FAs) are adhesive structures linking the cell to the extracellular matrix (ECM) and constitute molecular platforms for biochemical and mechanical signals controlling cell adhesion, migration, differentiation and survival. Integrin transmembrane receptors are core components of FAs, connecting the ECM to the actin cytoskeleton. During the early 2000s, the intracellular protein talin, which directly binds to the cytoplasmic tail of β-integrins, was considered as the main integrin activator. Nevertheless, it has been shown that kindlin, another intracellular protein that bind to β-integrin, is also a critical integrin activator. In fact, several studies have shown that kindlin and talin play complementary and synergistic roles during integrin activation. The molecular basis of these phenomena remains to determine. Moreover, most studies focusing on the role of kindlin during integrin activation and cell adhesion have been performed with suspended cells and/or with the platelet integrin αIIbβ3. Here we combined PALM microscopy with single protein tracking to decipher the role and behavior of kindlin during key molecular events occurring outside and inside FAs at the plasma membrane and leading to integrin activation, as we have done previously for talin (Rossier et al., 2012). We found that beta1 and beta3-integrins with a point mutation inhibiting binding to kindlin show reduced immobilization inside FAs. We also found that kindlin-2, which is enriched inside FAs, displayed free diffusion at the plasma membrane outside and inside FAs. This constitutes a major difference with talin, which, at the plasma membrane level, is observed almost exclusively in FAs, where it is immobile, which shows that talin is recruited into FAs directly from the cytosol without lateral diffusion along the plasma membrane (Rossier et al. 2012). To determine the molecular basis of kindlin membrane recruitment and diffusion, we used a kindlin variant known to decrease binding to integrins (kindlin-2- QW614/615AA). This mutant displayed increased membrane diffusion, suggesting that kindlin-2 can freely diffuse at the plasma membrane without interacting with integrins. Moreover, the kindlin-2-QW mutant showed decreased immobilization inside FA, showing that part of kindlin immobilization depends on interaction with integrins. This suggests that kindlin can form an immobile complex with integrins inside focal adhesions. Deletion of the kindlin pleckstrin homology (PH) domain strongly reduced the membrane recruitment and diffusion of kindlin. We assessed the functional role of kindlin membrane recruitment and diffusion by re-expressing different kindlin-2 mutants in kindlin-1/kindlin-2 double KO cells. Those experiments demonstrated that kindlin-2 membrane recruitment and diffusion are crucial for integrin activation during cell spreading and favor adhesion formation. This suggests that kindlin uses a different route from talin to reach integrins and trigger their activation, providing a possible molecular basis for their complementarity during integrin activation
Pomies, Pascal. "Approche moléculaire de la régulation de l'adhérence cellulaire médiée par les intégrines." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10011.
Full textFourel, Laure. "Synergie entre récepteurs BMP et intégrines révélée par la présentation de la BMP-2 par un biomatériau." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENI109.
Full textExtracellular matrix binds growth factors and controls their presentation to the cells but also theirsignaling pathway. In this work, we use a polyelectolyte multilayer film made of a polypeptide andof hyaluronan with tunable mechanical properties to mimic BMP-2 presentation by the matrix.Presentation of matrix-bound BMP-2 reveals so far hidden phenomena on myoblast cell adhesionand migration. The spatial patterning of growth factor leads to maximized effects of growth factorand induces synergy between BMP receptors and integrins. We show that cross-talk between BMP2receptors and b3 integrins is required for genetic program associated with SMAD signaling viareorganization of the cell cytoskeleton
Books on the topic "Cell adhesion/intégrine"
D, ED DUNON. Adhesion In Leukocyte Homing And Differentiation (Current Topics in Microbiology & Immunology). Springer, 1993.
Find full textAdhesion in Leukocyte Homing and Differentiation (Current Topics in Microbiology and Immunology). Springer, 1993.
Find full text