Academic literature on the topic 'Cell synchronization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cell synchronization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cell synchronization"

1

PRESNOV, E. V. "SYNCHRONIZATION OF CELL DIVISION." Journal of Biological Systems 07, no. 02 (June 1999): 213–23. http://dx.doi.org/10.1142/s0218339099000140.

Full text
Abstract:
Most living organisms display many types of biological rhythms. We describe how a growing population of cells may be distributed between age classes or cell types, and define conditions necessary to produce synchronous population development. A probabilistic model describing the changes in cell numbers during proliferation is presented. The model predicts that during cell reproduction with constant parameters any cell population approaches a stationary behavior. According to this model, synchronization of cell growth is possible if there is a uniform parameter set for cell division. This point is illustrated by a set of graphs showing snapshots of model simulations with different parameter sets for transient and stationary behaviors.
APA, Harvard, Vancouver, ISO, and other styles
2

Galgano, Paul J., and Carl L. Schildkraut. "Cell Synchronization Using Centrifugal Elutriation." Cold Spring Harbor Protocols 2006, no. 2 (July 2006): pdb.prot4490. http://dx.doi.org/10.1101/pdb.prot4490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yong, Guo Qing Xiong, and Pan Fei Wu. "Performance Analysis of Synchronization Detection Algorithms in TD-LTE Cell Search." Advanced Materials Research 1049-1050 (October 2014): 1911–16. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.1911.

Full text
Abstract:
This paper mainly studies the TD-LTE cell search synchronization process. The synchronization process is mainly divided into the Primary Synchronization and the secondary synchronization detection process synchronization process. This paper present a mixed-correlation primary synchronization detection algorithm and Non-coherent secondary synchronization detection algorithm. Mixed-related synchronization detection algorithm can reduce the impact of frequency offset and multipath effects of detection. Non-coherent detection algorithm can reduce computation complexity so that it can improve the secondary synchronous detection rate.
APA, Harvard, Vancouver, ISO, and other styles
4

Kumagai-Sano, Fumi, Tomomi Hayashi, Toshio Sano, and Seiichiro Hasezawa. "Cell cycle synchronization of tobacco BY-2 cells." Nature Protocols 1, no. 6 (December 2006): 2621–27. http://dx.doi.org/10.1038/nprot.2006.381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kryukov, Yakov, Dmitriy Pokamestov, and Eugeniy Rogozhnikov. "Cell search and synchronization in 5G NR." ITM Web of Conferences 30 (2019): 04007. http://dx.doi.org/10.1051/itmconf/20193004007.

Full text
Abstract:
An overview of the physical signals foreseen by the 3GPP 5G New Radio specification for frame synchronization and cell search in fifth- generation wireless broadband access systems is presented in the paper. The frame synchronization algorithm and the cell initialization procedure are demonstrated. An estimate of probability of error detection of a physical identifier by the signals of the primary and secondary synchronization is obtained. The comparison of the successful synchronization in AWGN channel for 4G LTE and 5G NR is shown.
APA, Harvard, Vancouver, ISO, and other styles
6

Koo, Ok Jae, Mohammad Shamim Hossein, So Gun Hong, Jose A. Martinez-Conejero, and Byeong Chun Lee. "Cell cycle synchronization of canine ear fibroblasts for somatic cell nuclear transfer." Zygote 17, no. 1 (February 2009): 37–43. http://dx.doi.org/10.1017/s096719940800498x.

Full text
Abstract:
SummaryCycle synchronization of donor cells in the G0/G1 stage is a crucial step for successful somatic cell nuclear transfer. In the present report, we evaluated the effects of contact inhibition, serum starvation and the reagents – dimethyl sulphoxide (DMSO), roscovitine and cycloheximide (CHX) – on synchronization of canine fibroblasts at the G0/G1 stage. Ear fibroblast cells were collected from a beagle dog, placed into culture and used for analysis at passages three to eight. The population doubling time was 36.5 h. The proportion of G0/G1 cells was significantly increased by contact inhibition (77.1%) as compared with cycling cells (70.1%); however, extending the duration of culture did not induce further synchronization. After 24 h of serum starvation, cells were effectively synchronized at G0/G1 (77.1%). Although synchronization was further increased gradually after 24 h and even showed significant difference after 72 h (82.8%) of starvation, the proportion of dead cells also significantly increased after 24 h. The percentage of cells at the G0/G1 phase was increased (as compared with controls) after 72 h treatment with DMSO (76.1%) and after 48 h treatment with CHX (73.0%) or roscovitine (72.5%). However, the rate of cell death was increased after 24 and 72 h of treatment with DMSO and CHX, respectively. Thus, we recommend the use of roscovitine for cell cycle synchronization of canine ear fibroblasts as a preparatory step for SCNT.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, De Min, Xiang Zhu, Zhi Hui Qiu, and Chao Bo Duan. "Design and Implementation of Cell Search Time Synchronization in LTE System Based on FPGA." Applied Mechanics and Materials 380-384 (August 2013): 4076–79. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.4076.

Full text
Abstract:
LTE is accepted worldwide as the Long Term Evolution Perspective for todays 3G and 4G networks. Cell search time synchronization is an important physical layer procedure by which a user equipment (UE) acquires synchronization with a cell and detects the physical layer cell ID of that cell. Timing synchronization is consisted of the symbol timing synchronization and frame synchronization. This paper supplies the introduction of synchronization signals, presents the detection method, and analyzes the design based on FPGA platform and finally simulated on the Modelsim 6.5 and implemented in Xilinx Virtex-6 kit.
APA, Harvard, Vancouver, ISO, and other styles
8

Hyun, Hyuk, Seung-Eun Lee, Yeo-Jin Son, Min-Young Shin, Yun-Gwi Park, Eun-Young Kim, and Se-Pill Park. "Cell Synchronization by Rapamycin Improves the Developmental Competence of Porcine SCNT Embryos." Cellular Reprogramming 18, no. 3 (June 2016): 195–205. http://dx.doi.org/10.1089/cell.2015.0090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Biberstein, M., Y. Harel, and A. Heilper. "Clock synchronization in Cell/B.E. traces." Concurrency and Computation: Practice and Experience 21, no. 14 (September 25, 2009): 1760–74. http://dx.doi.org/10.1002/cpe.1436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tian, Yuan, Chunxiong Luo, Yuheng Lu, Chao Tang, and Qi Ouyang. "Cell cycle synchronization by nutrient modulation." Integrative Biology 4, no. 3 (2012): 328. http://dx.doi.org/10.1039/c2ib00083k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cell synchronization"

1

Schlichting, Julia Katharina. "Modeling synchronization effects in the yeast cell cycle." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19835.

Full text
Abstract:
Saccharomyces cerevisiae ist ein bekanntester Modellorganismen in der Systembiologie, der häufig zur Untersuchung des mitotischen Zellzyklus eukaryotischer Zellen verwendet wird. Des Zellzyklus wird durch Cycline, Cyclin-abhängige Kinasen (CDK) und CDK-Inhibitoren (CKI) reguliert. Der wichtigste Kontrollpunkt innerhalb des Zellzyklus reguliert den Übergang von der G1 in die S Phase und wird START genannt. Im dieser Arbeit verwenden wir einen stochastischen Modellierungsansatz, um die Auswirkungen verschiedener Synchronisationsmethoden auf den Zellzyklus zu untersuchen. Um Modellparameter zu schätzen, kombinieren wir Phasen aufgelöste mRNA-Verteilungen unsynchronisierter Einzelzellen und Protein-Zeitreihen synchronisierter Zellpopulationen. Somit können wir mRNA-Dynamiken für ausgewählte Synchronisationsmethoden vorhersagen. In einem zweistufigen Optimierungsansatz unterscheiden wir zwischen mRNA- und Protein-Ebene. Die Parameterschätzung basiert auf der Maximum-Likelihood-Methode. Die Phasen aufgelösten mRNA-Verteilungen wurden mithilfe der smFISH-Technik für SIC1, CLN2 und CLB5 gemessen. Die Protein-Zeitreihen wurden mithilfe von Western Blots für entsprechenden Proteine gemessen. Die gemessenen Moleküle sind die Hauptregulatoren des G1-S Phasenübergangs, welche die Komponenten unseres Zellzyklusmodells darstellen. Durch die erfolgreiche Integration von qualitativ unterschiedlichen Datentypen in der Parameterschätzung konnten wir eine systematische Analyse von Synchronisationseffekten auf den Zellzyklus durchführen. Der zeitlicher Ablauf des Zellzyklus ist dabei maßgeblich beeinflusst. Die stärksten zeitlichen Veränderungen weist die Synchronisation mit alpha-Faktor auf. Elutrierte Zellen sind den unsynchronisierten Zellen trotz verlängerter G1 Phase am ähnlichsten. Wir zeigen in dieser Arbeit, dass synchronisierte Zellpopulationen unzureichend sind, um Rückschlüsse auf den Zellzyklus unsynchronisierter Zellen zu ziehen.
cell cycle, G1/S transition, stochastic modeling, parameter estimation, smFISH, singel cells, Western blotting, cell populations Saccharomyces cerevisiae is a famous model organism in systems biology to study the mitotic cell cycle in eukaryotic cells. The cell cycle is a highly controlled process which is regulated by cyclins, cycline-dependent kinases (CDK) and cyclin-dependent kinase inhibitors (CKI). The main kinase involved in cell cycle regulation is Cdc28. START is the most important check point and controls the G1 to S phase transition. At this point, cells decide if they enter a new cell division cycle or not. In this study, we analyze influences of different synchronization methods on the cell cycle and differences between unsynchronized and synchronized cells by using a stochastic modeling approach. We combine phase-resolved mRNA distributions of unsynchronized single cells and protein time courses of synchronized cell populations to estimate model parameters and to predict synchronization specific mRNA dynamics. Parameter estimation is based on a maximum likelihood approach and performed in a 2-step-optimization in which we differentiate between mRNA and protein level. We measured phase-resolved mRNA distributions of mRNA species SIC1, CLN2 and CLB5 by smFISH and protein time courses of protein species Sic1, Cln2 and Clb5 by Western blotting. These molecules are key regulators of the G1 to S phase transition and represent components of our cell cycle model. By integrating qualitatively different data types in parameter estimation, we come up with a systematic analysis of synchronization effects on the cell cycle. Cell cycle timing is mainly responsible for differences between unsynchronized and synchronized cells and is mostly affected in alpha-factor synchronized cells. Ignoring the prolongation of the G1 phase, elutriated cells are most similar to unsynchronized cells. We show that synchronized cell populations are insufficient to derive general cell cycle behavior of unsynchronized cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Jörgensen, Eskil. "Cell Acquisition and Synchronization for Unlicensed NB-IoT." Thesis, Linköpings universitet, Kommunikationssystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139862.

Full text
Abstract:
Narrowband Internet-of-Things (NB-IoT) is a new wireless technology designed to support cellular networks with wide coverage for a massive number of very cheap low power user devices. Studies have been initiated for deployment of NB-IoT in unlicensed frequency bands, some of which demand the use of a frequency-hopping scheme with a short channel dwell time. In order for a device to connect to a cell, it must synchronize well within the dwell time in order to decode the frequency-hopping pattern. Due to the significant path loss, the narrow bandwidth and the device characteristics, decreasing the synchronization time is a challenge. This thesis studies different methods to decrease the synchronization time for NB-IoT without increasing the demands on the user device. The study shows how artificial fast fading can be combined with denser reference signalling in order to achieve improvements to the cell acquisition and synchronization procedure sufficient for enabling unlicensed operation of NB-IoT.
Narrowband Internet-of-Things (NB-IoT) är en ny trådlös teknik som är designad för att hantera mobilnät med vidsträckt täckning för ett massivt antal mycket billiga och strömsnåla användarenheter. Studier har inletts för att operera NB-IoT i olicensierade frekvensband, varav några kräver att frekvenshoppande spridningsspektrum, med kort uppehållstid per kanal, används. För att en användarenhet ska kunna ansluta till en basstation måste den slutföra synkronisingsfasen inom uppehållstiden, så att basstationens hoppmönster kan avkodas. På grund utav den stora signalförsvagningen, den smala bandbredden och användarenhetens egenskaper är det en stor utmaning att förkorta synkroniseringstiden. Detta examensarbete studerar olika metoder för att förkorta synkroniseringstiden i NB-IoT utan att öka kraven på användarenheten. Arbetet visar att artificiell snabb-fädning kan kombineras med tätare referenssignalering för att uppnå förbättringar i synkroniseringsprocessen som är tillräckliga för att möjliggöra operation av NB-IoT i olicensierade frekvensband.
APA, Harvard, Vancouver, ISO, and other styles
3

Shyam, Sunitha. "S-phase Synchronization Promotes Chemoradiotherapy-induced Apoptosis in Prostate Cancer Cell Lines." Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1185835523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klindt, Gary. "Hydrodynamics of flagellar swimming and synchronization." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-231897.

Full text
Abstract:
What is flagellar swimming? Cilia and flagella are whip-like cell appendages that can exhibit regular bending waves. This active process emerges from the non-equilibrium dynamics of molecular motors distributed along the length of cilia and flagella. Eukaryotic cells can possess many cilia and flagella that beat in a coordinated fashion, thus transporting fluids, as in mammalian airways or the ventricular system inside the brain. Many unicellular organisms posses just one or two flagella, rendering them microswimmers that are propelled through fluids by the flagellar beat including sperm cells and the biflagellate green alga Chlamydomonas. Objectives. In this thesis in theoretical biological physics, we seek to understand the nonlinear dynamics of flagellar swimming and synchronization. We investigate the flow fields induced by beating flagella and how in turn external hydrodynamic flows change speed and shape of the flagellar beat. This flagellar load-response is a prerequisite for flagellar synchronization. We want to find the physical principals underlying stable synchronization of the two flagella of Chlamydomonas cells. Results. First, we employed realistic hydrodynamic simulations of flagellar swimming based on experimentally measured beat patterns. For this, we developed analysis tools to extract flagellar shapes from high-speed videoscopy data. Flow-signatures of flagellated swimmers are analysed and their effect on a neighboring swimmer is compared to the effect of active noise of the flagellar beat. We were able to estimate a chemomechanical energy efficiency of the flagellar beat and determine its waveform compliance by comparing findings from experiments, in which a clamped Chlamydomonas is exposed to external flow, to predictions from an effective theory that we designed. These mechanical properties have interesting consequences for the synchronization dynamics of Chlamydomonas, which are revealed by computer simulations. We propose that direct elastic coupling between the two flagella of Chlamydomonas, as suggested by recent experiments, in combination with waveform compliance is crucial to facilitate in-phase synchronization of the two flagella of Chlamydomonas.
APA, Harvard, Vancouver, ISO, and other styles
5

Ganbat, Atarsaikhan. "Reducibility of steady-state bifurcations in coupled cell systems." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yarimoglu, Fatih. "Cell Loading and Product Sequencing Subject to Manpower Restrictions in Synchronized Manufacturing Cells." Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1234899632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Zhongsheng. "Effects of electric field on the functions of cell membrane proteins." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dias, Viviane Miranda. "Micronúcleos em células tumorais: biologia e implicações para a tumorigênese." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/41/41131/tde-27032008-170929/.

Full text
Abstract:
Micronúcleos são estruturas constituídas por material cromatínico contido por um envoltório nuclear e menores que o núcleo principal. Apesar do amplo uso do teste do micronúcleo na avaliação do potencial genotóxico de diversas substâncias, os trabalhos cujas preocupações sejam elucidar o mecanismo de formação dessas estruturas, seu conteúdo e a fase do ciclo celular em que surgem, são raros. O objetivo do presente trabalho foi estudar a cinética de surgimento de micronúcleos em células A549, provenientes de carcinoma de pulmão humano, submetidas à sincronização. Após duplo bloqueio por ausência de soro fetal bovino e adição de vincristina ao meio, o surgimento de micronúcleos foi acompanhado com o auxílio de um marcador para fase S. Os resultados obtidos indicam que micronúcleos podem surgir tanto durante a mitose quanto na intérfase e possuem capacidade de replicação de DNA, independentemente do núcleo principal. A capacidade de escapar ao duplo bloqueio permite sugerir que o ponto de checagem de ligação ao fuso mitótico em A549 não é funcional. Também foram observadas seqüências amplificadas de EGFR no interior dos micronúcleos. A interpretação do significado dos micronúcleos é importante para a definição de sua relação com a expulsão de oncogenes em células tumorais ou de outras seqüências amplificadas.
Micronuclei are structures composed by chromatin material contained in the nuclear envelope and smaller than the main nucleus. Micronucleus test has been widely used in the genotoxic potential evaluation of different compounds. Although a few report concerning on the mechanism of micronucleus genesis, its DNA sequences content and the cell cycle phase when they arise. The aim of this work was to analyze the kinetic of micronuclei in A549 cells from human lung carcinoma submitted to cell cycle synchronization. After double blocking by fetal bovine serum deprivation and vincristine treatment, micronucleus formation was monitored with a S-phase marker. The results have showed that both in the mitosis and in the interphasic phase, micronuclei may arise and they were able to replicate its DNA. This process seemed to be independent of main nucleus. Cellular ability to escape from double blocking suggests that mitotic spindle checkpoint in A549 is not functional. Moreover, EGFR sequences were detected into the micronucleus. It is important to elucidate the micronucleus meaning to describe precisely its association with elimination of oncogene or other amplified sequences from the tumor cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Schlichting, Julia Katharina [Verfasser], Edda [Gutachter] Klipp, Hanspeter [Gutachter] Herzel, and Jens [Gutachter] Timmer. "Modeling synchronization effects in the yeast cell cycle / Julia Katharina Schlichting ; Gutachter: Edda Klipp, Hanspeter Herzel, Jens Timmer." Berlin : Humboldt-Universität zu Berlin, 2019. http://d-nb.info/1189069229/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Geyer, Veikko. "Characterization of the flagellar beat of the single cell green alga Chlamydomonas Reinhardtii." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-130922.

Full text
Abstract:
Subject of study: Cilia and flagella are slender appendages of eukaryotic cells. They are actively bending structures and display regular bending waves. These active flagellar bending waves drive fluid flows on cell surfaces like in the case of the ciliated trachea or propels single cell micro-swimmers like sperm or alga. Objective: The axoneme is the evolutionarily conserved mechanical apparatus within cilia and flagella. It is comprised of a cylindrical arrangement of microtubule doublets, which are the elastic elements and dyneins, which are the force generating elements in the axonemal structure. Dyneins collectively bend the axoneme and must be specifically regulated to generate symmetric and highly asymmetric waveforms. In this thesis, I address the question of the molecular origin of the asymmetric waveform and test different theoretical descriptions for motor regulation. Approach: I introduce the isolated and reactivated Chlamydomonas axoneme as an experimental model for the symmetric and asymmetric flagellar beat. This system allows to study the beat in a controlled and cell free environment. I use high-speed microscopy to record shapes with high spatial and temporal resolution. Through image analysis and shape parameterization I extract a minimal set of parameters that describe the flagellar waveform. Using Chlamydomonas, I make use of different structural and motor mutants to study their effect on the shape in different reactivation conditions. Although the isolated axoneme system has many advantages compared to the cell-bound flagellum, to my knowledge, it has not been characterized yet. Results: I present a shape parameterization of the asymmetric beat using Fourier decomposition methods and find, that the asymmetric waveform can be understood as a sinusoidal beat around a circular arc. This reveals the similarities of the two different beat types: the symmetric and the asymmetric beat. I investigate the origin of the beat-asymmetry and find evidence for a specific dynein motor to be responsible for the asymmetry. I furthermore find experimental evidence for a strong sliding restriction at the basal end of the axoneme, which is important to establish a static bend. In collaboration with P. Sartori and F. Jülicher, I compare theoretical descriptions of different motor control mechanisms and find that a curvature controlled motor-regulation mechanism describes the experimental data best. We furthermore find, that in the dynamic case an additional sliding restriction at the base is unnecessary. By comparing the waveforms of intact cells and isolated reactivated axonemes, I reveal the effect of hydrodynamic loading, and the influence of boundary conditions on the shape of the beating flagella.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cell synchronization"

1

Banfalvi, Gaspar, ed. Cell Cycle Synchronization. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-182-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Banfalvi, Gaspar, ed. Cell Cycle Synchronization. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6603-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cell cycle synchronization: Methods and protocols. New York: Humana, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

R, Jefferys John G., and Whittington Miles A, eds. Fast oscillations in cortical circuits. Cambridge, Mass: MIT Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

McDowall, Ian. Programming PC Connectivity Applications for Symbian OS: Smartphone Synchronization and Connectivity for Enterprise and Application Developers. Wiley & Sons, Incorporated, John, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

McDowall, Ian. Programming PC Connectivity Applications for Symbian OS: Smartphone Synchronization and Connectivity for Enterprise and Application Developers (Symbian Press). Wiley, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

L, Smith Darren, and United States. National Telecommunications and Information Administration., eds. Mean synchronization times for ATM cells: Derivations and computational background. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

L, Smith Darren, and United States. National Telecommunications and Information Administration., eds. Mean synchronization times for ATM cells: Derivations and computational background. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Traub, Roger D., John G. R. Jefferys, and Miles A. Whittington. Fast Oscillations in Cortical Circuits. MIT Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cell synchronization"

1

Bähler, Jürg, and Samuel Marguerat. "Cell Cycle, Synchronization." In Encyclopedia of Systems Biology, 359–60. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tomatis, Fabrizio, and Stefania Sesia. "Synchronization and Cell Search." In LTE - The UMTS Long Term Evolution, 151–64. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470978504.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Banfalvi, Gaspar. "Overview of Cell Synchronization." In Methods in Molecular Biology, 3–27. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6603-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Banfalvi, Gaspar. "Overview of Cell Synchronization." In Methods in Molecular Biology, 1–23. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-182-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

O’Connor, Patrick M., and Joany Jackman. "Synchronization of Mammalian Cells." In Cell Cycle — Materials and Methods, 63–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-57783-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dulla, Kalyan, and Anna Santamaria Margalef. "Large-Scale Mitotic Cell Synchronization." In Methods in Molecular Biology, 65–74. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6603-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dulla, Kalyan, and Anna Santamaria. "Large-Scale Mitotic Cell Synchronization." In Methods in Molecular Biology, 65–74. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-182-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ashwin, Peter, Alastair M. Rucklidge, and Rob Sturman. "Cycling Attractors of Coupled Cell Systems and Dynamics with Symmetry." In Synchronization: Theory and Application, 5–23. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0217-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tormos-Pérez, Marta, Livia Pérez-Hidalgo, and Sergio Moreno. "Fission Yeast Cell Cycle Synchronization Methods." In Methods in Molecular Biology, 293–308. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3145-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Biberstein, Marina, Yuval Harel, and Andre Heilper. "Clock Synchronization in Cell BE Traces." In Lecture Notes in Computer Science, 3–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85451-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cell synchronization"

1

Shuwei Bai, Qingguo Zhou, Rui Zhou, and Lian Li. "Barrier synchronization for CELL multi-processor architecture." In 2008 First IEEE International Conference on Ubi-media Computing (U-Media 2008). IEEE, 2008. http://dx.doi.org/10.1109/umedia.2008.4570882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wei Zhang and Xiufen Zou. "Synchronization feature of coupled cell-cycle oscillators." In 2011 IEEE International Conference on Systems Biology (ISB). IEEE, 2011. http://dx.doi.org/10.1109/isb.2011.6033154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Y. C., K. C. Lin, and Y. T. Su. "Initial Synchronization for Multi-Cell OFDMA Systems." In ICC 2009 - 2009 IEEE International Conference on Communications. IEEE, 2009. http://dx.doi.org/10.1109/icc.2009.5199084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu Yang, Lin Xiaokang, and Peng Kewu. "Cell synchronization under a special error protection mechanism." In Proceedings of APCC/OECC'99 - 5th Asia Pacific Conference on Communications/4th Optoelectronics and Communications Conference. IEEE, 1999. http://dx.doi.org/10.1109/apcc.1999.824480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morosa, Hideyuki, Hiroki Harada, Akihito Morimoto, Satoshi Nasata, Hiroyuki Ishii, and Yukihiko Okumura. "Cell identification performance based on hierarchical synchronization channels in dense small cell environment." In 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2013). IEEE, 2013. http://dx.doi.org/10.1109/spawc.2013.6612147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wegerhoff, S., T. C. Neymann, and S. Engell. "Synchronization of a budding yeast cell culture by manipulating inner cell cycle concentrations." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Hoon, Se-bin Im, Hyung-jin Choi, and Do-jun Rhee. "Robust OFDMA Frame Synchronization Algorithm on Inter-Cell Interference." In 2006 Asia-Pacific Conference on Communications. IEEE, 2006. http://dx.doi.org/10.1109/apcc.2006.255832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Korde, Mridula S., and Abhay S. Gandhi. "Improved Design for Slot Synchronization in WCDMA Cell Search." In 2012 International Conference on Advances in Mobile Network, Communication and its Applications (MNCAPPS). IEEE, 2012. http://dx.doi.org/10.1109/mncapps.2012.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, D., T. Vrind, and V. C. Joseph. "Fast cell synchronization for beyond 3G OFDMA based system." In 2006 IFIP International Conference on Wireless and Optical Communications Networks. IEEE, 2006. http://dx.doi.org/10.1109/wocn.2006.1666613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ji, Xiang, Yuantao Zhang, Zhi Zhang, Kodo Shu, Chengwen Xing, and Zesong Fei. "An Efficient Synchronization Signal Design for Neighboring Cell Search." In 2014 IEEE Vehicular Technology Conference (VTC 2014-Spring). IEEE, 2014. http://dx.doi.org/10.1109/vtcspring.2014.7022821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography