Journal articles on the topic 'Cell type deconvolution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cell type deconvolution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hunt, Gregory J., Saskia Freytag, Melanie Bahlo, and Johann A. Gagnon-Bartsch. "dtangle: accurate and robust cell type deconvolution." Bioinformatics 35, no. 12 (2018): 2093–99. http://dx.doi.org/10.1093/bioinformatics/bty926.
Full textAguirre-Gamboa, Raúl, Klein Niek de, Tommaso Jennifer di, et al. "Deconvolution of bulk blood eQTL effects into immune cell subpopulations." BMC Bioinformatics 21, no. 1 (2020): 243. https://doi.org/10.1186/s12859-020-03576-5.
Full textDiaz, Michael, Jasmine Tran, Nicole Natarelli, Akash Sureshkumar, and Mahtab Forouzandeh. "Cellular Deconvolution Reveals Unique Findings in Several Cell Type Fractions Within the Basal Cell Carcinoma Tumor Microenvironment." SKIN The Journal of Cutaneous Medicine 7, no. 6 (2023): 1170–73. http://dx.doi.org/10.25251/skin.7.6.15.
Full textQi, Zongtai, Yating Liu, Michael Mints, et al. "Single-Cell Deconvolution of Head and Neck Squamous Cell Carcinoma." Cancers 13, no. 6 (2021): 1230. http://dx.doi.org/10.3390/cancers13061230.
Full textErdogan, Nuray Sogunmez, and Deniz Eroglu. "Sparse deconvolution of cell type medleys in spatial transcriptomics." PLOS Computational Biology 21, no. 6 (2025): e1013169. https://doi.org/10.1371/journal.pcbi.1013169.
Full textGloudemans, Michael, Elena Zotenko, Tam Banh, et al. "Abstract 1951: Inferring immune and tissue cell type contributions to cell-free DNA (cfDNA) with a DNA methylation assay." Cancer Research 85, no. 8_Supplement_1 (2025): 1951. https://doi.org/10.1158/1538-7445.am2025-1951.
Full textAn, Lingling. "Comparing Microbial Source Tracking Methods for Precision and Reliability." International Journal of Forensic Sciences 9, no. 1 (2024): 1–8. http://dx.doi.org/10.23880/ijfsc-16000369.
Full textXue, Yuanqing (Bianca), and Verena Friedl. "135. Tumor deconvolution using comprehensive single-cell RNA sequencing cell type signatures." Cancer Genetics 268-269 (November 2022): 43. http://dx.doi.org/10.1016/j.cancergen.2022.10.138.
Full textSturm, Gregor, Francesca Finotello, Florent Petitprez, et al. "Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology." Bioinformatics 35, no. 14 (2019): i436—i445. http://dx.doi.org/10.1093/bioinformatics/btz363.
Full textShen-Orr, Shai S., and Renaud Gaujoux. "Computational deconvolution: extracting cell type-specific information from heterogeneous samples." Current Opinion in Immunology 25, no. 5 (2013): 571–78. http://dx.doi.org/10.1016/j.coi.2013.09.015.
Full textRowland, Bryce, Ruth Huh, Zoey Hou, et al. "THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data." PLOS Genetics 18, no. 3 (2022): e1010102. http://dx.doi.org/10.1371/journal.pgen.1010102.
Full textGuo, Shuai, Xuesen Cheng, Andrew Koval, et al. "Abstract 4273: Integration with benchmark data of paired bulk and single-cell RNA sequencing data substantially improves the accuracy of bulk tissue deconvolution." Cancer Research 83, no. 7_Supplement (2023): 4273. http://dx.doi.org/10.1158/1538-7445.am2023-4273.
Full textDu, Rose, Vince Carey, and Scott T. Weiss. "deconvSeq: deconvolution of cell mixture distribution in sequencing data." Bioinformatics 35, no. 24 (2019): 5095–102. http://dx.doi.org/10.1093/bioinformatics/btz444.
Full textLin, Wei-Yu, Melissa Kartawinata, Bethany R. Jebson, et al. "Penalised regression improves imputation of cell-type specific expression using RNA-seq data from mixed cell populations compared to domain-specific methods." PLOS Computational Biology 21, no. 3 (2025): e1012859. https://doi.org/10.1371/journal.pcbi.1012859.
Full textTang, Fanying, Dean Lee, Lexiang Ji, and Jincheng Wu. "Abstract 6283: Performance evaluation of tumor microenvironment deconvolution and gene prediction methods in lung cancer." Cancer Research 85, no. 8_Supplement_1 (2025): 6283. https://doi.org/10.1158/1538-7445.am2025-6283.
Full textSosina, Olukayode A., Matthew N. Tran, Kristen R. Maynard, et al. "Strategies for cellular deconvolution in human brain RNA sequencing data." F1000Research 10 (August 4, 2021): 750. http://dx.doi.org/10.12688/f1000research.50858.1.
Full textLarsen, Jannik Hjortshøj, Iben Skov Jensen, and Per Svenningsen. "Benchmarking transcriptome deconvolution methods for estimating tissue‐ and cell‐type‐specific extracellular vesicle abundances." Journal of Extracellular Vesicles 13, no. 9 (2024). http://dx.doi.org/10.1002/jev2.12511.
Full textDeng, Wenxuan, Bolun Li, Jiawei Wang, et al. "A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy." Briefings in Bioinformatics, January 11, 2023. http://dx.doi.org/10.1093/bib/bbac616.
Full textSong, Junyan, and Pei-Fen Kuan. "A systematic assessment of cell type deconvolution algorithms for DNA methylation data." Briefings in Bioinformatics, October 14, 2022. http://dx.doi.org/10.1093/bib/bbac449.
Full textTu, Jia-Juan, Hui-Sheng Li, Hong Yan, and Xiao-Fei Zhang. "EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning." Bioinformatics, December 22, 2022. http://dx.doi.org/10.1093/bioinformatics/btac825.
Full textKhatri, Robin, Pierre Machart, and Stefan Bonn. "DISSECT: deep semi-supervised consistency regularization for accurate cell type fraction and gene expression estimation." Genome Biology 25, no. 1 (2024). http://dx.doi.org/10.1186/s13059-024-03251-5.
Full textChen, Yunlu, Feng Ruan, and Ji-Ping Wang. "NLSDeconv: an efficient cell-type deconvolution method for spatial transcriptomics data." Bioinformatics, December 20, 2024. https://doi.org/10.1093/bioinformatics/btae747.
Full textO’Neill, Nicholas K., Thor D. Stein, Junming Hu, et al. "Bulk brain tissue cell-type deconvolution with bias correction for single-nuclei RNA sequencing data using DeTREM." BMC Bioinformatics 24, no. 1 (2023). http://dx.doi.org/10.1186/s12859-023-05476-w.
Full textGaspard-Boulinc, Lucie C., Luca Gortana, Thomas Walter, Emmanuel Barillot, and Florence M. G. Cavalli. "Cell-type deconvolution methods for spatial transcriptomics." Nature Reviews Genetics, May 14, 2025. https://doi.org/10.1038/s41576-025-00845-y.
Full textZhang, Ze, John K. Wiencke, Karl T. Kelsey, Devin C. Koestler, Brock C. Christensen, and Lucas A. Salas. "HiTIMED: hierarchical tumor immune microenvironment epigenetic deconvolution for accurate cell type resolution in the tumor microenvironment using tumor-type-specific DNA methylation data." Journal of Translational Medicine 20, no. 1 (2022). http://dx.doi.org/10.1186/s12967-022-03736-6.
Full textXu, Xintian, Rui Li, Ouyang Mo, Kai Liu, Justin Li, and Pei Hao. "Cell-type deconvolution for bulk RNA-seq data using single-cell reference: a comparative analysis and recommendation guideline." Briefings in Bioinformatics 26, no. 1 (2024). https://doi.org/10.1093/bib/bbaf031.
Full textDong, Qishi, Yi Yang, Ziye Luo, Haipeng Shen, Xingjie Shi, and Jin Liu. "Robust Spatial Cell‐Type Deconvolution with Qualitative Reference for Spatial Transcriptomics." Small Methods, March 9, 2025. https://doi.org/10.1002/smtd.202401145.
Full textCai, Manqi, Jingtian Zhou, Chris McKennan, and Jiebiao Wang. "scMD facilitates cell type deconvolution using single-cell DNA methylation references." Communications Biology 7, no. 1 (2024). http://dx.doi.org/10.1038/s42003-023-05690-5.
Full textFan, Jiaxin, Yafei Lyu, Qihuang Zhang, Xuran Wang, Mingyao Li, and Rui Xiao. "MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data." Briefings in Bioinformatics, October 7, 2022. http://dx.doi.org/10.1093/bib/bbac430.
Full textSwapna, Lakshmipuram Seshadri, Michael Huang, and Yue Li. "Source package and associated scripts for GTM-decon: Guided-topic modelling of single-cell transcriptomes enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes." August 2, 2023. https://doi.org/10.5281/zenodo.8200316.
Full textAvila Cobos, Francisco, José Alquicira-Hernandez, Joseph E. Powell, Pieter Mestdagh, and Katleen De Preter. "Benchmarking of cell type deconvolution pipelines for transcriptomics data." Nature Communications 11, no. 1 (2020). http://dx.doi.org/10.1038/s41467-020-19015-1.
Full textCobos, F., J. Alquicira-Hernandez, J. Powell, P. Mestdagh, and K. Peter. "Benchmarking of cell type deconvolution pipelines for transcriptomics data." Nature Communications Article number: 5650 (2020), no. 11 (2020). https://doi.org/10.1038/s41467-020-20288-9.
Full textSutton, Gavin J., Daniel Poppe, Rebecca K. Simmons, et al. "Comprehensive evaluation of deconvolution methods for human brain gene expression." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-28655-4.
Full textChen, Chixiang, Yuk Yee Leung, Matei Ionita, Li-San Wang, and Mingyao Li. "Omnibus and Robust Deconvolution Scheme for Bulk RNA Sequencing Data Integrating Multiple Single-Cell Reference Sets and Prior Biological Knowledge." Bioinformatics, August 18, 2022. http://dx.doi.org/10.1093/bioinformatics/btac563.
Full textIvich, Adriana, Natalie R. Davidson, Laurie Grieshober, et al. "Missing cell types in single-cell references impact deconvolution of bulk data but are detectable." Genome Biology 26, no. 1 (2025). https://doi.org/10.1186/s13059-025-03506-9.
Full textKim, Jeff J. H., and Yang Dai. "Cell‐Type Deconvolution Reveals Dynamic Changes in MASLD." Liver International Communications 6, no. 2 (2025). https://doi.org/10.1002/lci2.70012.
Full textSang-aram, Chananchida, Robin Browaeys, Ruth Seurinck, and Yvan Saeys. "Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics." eLife 12 (May 24, 2024). http://dx.doi.org/10.7554/elife.88431.3.
Full textChiu, Yen-Jung, Chung-En Ni, and Yen-Hua Huang. "HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD)." BMC Medical Genomics 16, S2 (2023). http://dx.doi.org/10.1186/s12920-023-01674-w.
Full textMa, Ying, and Xiang Zhou. "Spatially informed cell-type deconvolution for spatial transcriptomics." Nature Biotechnology, May 2, 2022. http://dx.doi.org/10.1038/s41587-022-01273-7.
Full textLivne, Dani, Tom Snir, and Sol Efroni. "YADA - Reference Free Deconvolution of RNA Sequencing Data." Current Bioinformatics 19 (June 5, 2024). http://dx.doi.org/10.2174/0115748936304034240405034414.
Full textJeong, Yunhee, Lisa Barros de Andrade e Sousa, Dominik Thalmeier, et al. "Systematic evaluation of cell-type deconvolution pipelines for sequencing-based bulk DNA methylomes." Briefings in Bioinformatics, July 6, 2022. http://dx.doi.org/10.1093/bib/bbac248.
Full textGalvão, Isabella C., Ludmyla Kandratavicius, Lauana A. Messias, et al. "Identifying cellular markers of focal cortical dysplasia type II with cell-type deconvolution and single-cell signatures." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-40240-3.
Full textGuo, Shuai, Xiaoqian Liu, Xuesen Cheng, et al. "A deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for accurate analysis of cell type ratios in complex tissue samples." Genome Research, November 25, 2024, gr.278822.123. http://dx.doi.org/10.1101/gr.278822.123.
Full textHu, Mengying, and Maria Chikina. "Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods." Genome Biology 25, no. 1 (2024). http://dx.doi.org/10.1186/s13059-024-03292-w.
Full textYu, Shilin, Guanqun Meng, Wen Tang, et al. "cypress: an R/Bioconductor package for cell-type-specific differential expression analysis power assessment." Bioinformatics, August 17, 2024. http://dx.doi.org/10.1093/bioinformatics/btae511.
Full textKarkar, Slim, Ashwini Sharma, Carl Herrmann, Yuna Blum, and Magali Richard. "DECOMICS, a shiny application for unsupervised cell type deconvolution and biological interpretation of bulk omic data." Bioinformatics Advances, September 20, 2024. http://dx.doi.org/10.1093/bioadv/vbae136.
Full textZhang, Wei, Xianglin Zhang, Qiao Liu, et al. "Deconer: An Evaluation Toolkit for Reference-based Deconvolution Methods Using Gene Expression Data." Genomics, Proteomics & Bioinformatics, February 18, 2025. https://doi.org/10.1093/gpbjnl/qzaf009.
Full textMaié, Tiago, Marco Schmidt, Myriam Erz, Wolfgang Wagner, and Ivan G. Costa. "CimpleG: finding simple CpG methylation signatures." Genome Biology 24, no. 1 (2023). http://dx.doi.org/10.1186/s13059-023-03000-0.
Full textMaden, Sean K., Louise A. Huuki-Myers, Sang Ho Kwon, Leonardo Collado-Torres, Kristen R. Maynard, and Stephanie C. Hicks. "lute: estimating the cell composition of heterogeneous tissue with varying cell sizes using gene expression." BMC Genomics 26, no. 1 (2025). https://doi.org/10.1186/s12864-025-11508-x.
Full textLu, Yingying, Qin M. Chen, and Lingling An. "SPADE: spatial deconvolution for domain specific cell-type estimation." Communications Biology 7, no. 1 (2024). http://dx.doi.org/10.1038/s42003-024-06172-y.
Full text