Academic literature on the topic 'Cellobiosio'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellobiosio.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cellobiosio"
Best, Wayne M., Robert V. Stick, and D. Matthew G. Tilbrook. "The Synthesis of Some Epoxyalkyl Deoxyhalo-β-cellobiosides." Australian Journal of Chemistry 50, no. 1 (1997): 13. http://dx.doi.org/10.1071/c96078.
Full textRodriguez, EB, and RV Stick. "The Synthesis of Active-Site Directed Inhibitors of Some β-Glucan Hydrolases." Australian Journal of Chemistry 43, no. 4 (1990): 665. http://dx.doi.org/10.1071/ch9900665.
Full textBECKER, Dieter, Karin S. H. JOHNSON, Anu KOIVULA, Martin SCHÜLEIN, and Michael L. SINNOTT. "Hydrolyses of α- and β-cellobiosyl fluorides by Cel6A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens." Biochemical Journal 345, no. 2 (January 10, 2000): 315–19. http://dx.doi.org/10.1042/bj3450315.
Full textKonstantinidis, A. K., I. Marsden, and M. L. Sinnott. "Hydrolyses of α- and β-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei." Biochemical Journal 291, no. 3 (May 1, 1993): 883–88. http://dx.doi.org/10.1042/bj2910883.
Full textHildebrand, Amanda, J. Bennett Addison, Takao Kasuga, and Zhiliang Fan. "Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase." Biochemical Engineering Journal 109 (May 2016): 236–42. http://dx.doi.org/10.1016/j.bej.2016.01.024.
Full textReverbel-Leroy, Corinne, Goetz Parsiegla, Vincent Moreau, Michel Juy, Chantal Tardif, Hugues Driguez, Jean-Pierre Bélaich, and Richard Haser. "Crystallization of the catalytic domain of Clostridium cellulolyticum CeIF cellulase in the presence of a newly synthesized cellulase inhibitor." Acta Crystallographica Section D Biological Crystallography 54, no. 1 (January 1, 1998): 114–18. http://dx.doi.org/10.1107/s090744499700797x.
Full textOh, Yu-Ri, and Gyeong Tae Eom. "Efficient production of cellobionic acid from cellobiose by genetically modified Pseudomonas taetrolens." Biochemical Engineering Journal 178 (January 2022): 108282. http://dx.doi.org/10.1016/j.bej.2021.108282.
Full textBok, Jin-Duck, Dinesh A. Yernool, and Douglas E. Eveleigh. "Purification, Characterization, and Molecular Analysis of Thermostable Cellulases CelA and CelB fromThermotoga neapolitana." Applied and Environmental Microbiology 64, no. 12 (December 1, 1998): 4774–81. http://dx.doi.org/10.1128/aem.64.12.4774-4781.1998.
Full textZhang, Yiyi, Yi Li, Shizuo Li, Hanbo Zheng, and Jiefeng Liu. "A Molecular Dynamics Study of the Generation of Ethanol for Insulating Paper Pyrolysis." Energies 13, no. 1 (January 5, 2020): 265. http://dx.doi.org/10.3390/en13010265.
Full textZECHEL, David L., Shouming HE, Claude DUPONT, and Stephen G. WITHERS. "Identification of Glu-120 as the catalytic nucleophile in Streptomyces lividans endoglucanase CelB." Biochemical Journal 336, no. 1 (November 15, 1998): 139–45. http://dx.doi.org/10.1042/bj3360139.
Full textDissertations / Theses on the topic "Cellobiosio"
Trento, Alberto. "Selection and genetic improvement of yeasts for the conversion of lignocellulose into second generation bioethanol." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422640.
Full textIl bioetanolo di origine lignocellulosica rappresenta una delle alternative più promettenti tra i biocarburanti. Dal punto di vista industriale, la produzione di bioetanolo da biomassa vegetale non è ancora sostenibile. Una delle strategie più interessanti proposte è la costruzione di un microganismo CBP (Consolidated BioProcessing) capace di idrolizzare i polimeri complessi della biomassa cellulosica e di convertirli efficacemente in etanolo. In questa prospettiva, questo lavoro di tesi si è focalizzato sullo sviluppo di un microbo CBP di tipo industriale per la conversione di cellobiosio in alcol etilico. A tal scopo, è stato necessario mettere a punto un nuovo metodo per la selezione di un ceppo di lievito idoneo alla produzione di bioetanolo su scala industriale caratterizzato da elevate performance fermentative e da una notevole capacità di tollerare gli inibitori normalmente presenti negli idrolizzati lignocellulosici. La selezione di tale microrganismo è partita da una collezione di ceppi di lievito di origine enologica. I ceppi enologici saggiati, pur dimostrando elevate capacità fermentative, non si sono purtroppo rivelati tolleranti nei confronti di inibitori quali furfurale, acido acetico, acido formico ed acido lattico. È stato quindi necessario eseguire un programma di isolamento mirato ad ottenere ceppi di lievito altamente fermentanti e capaci di tollerare elevate concentrazioni di inibitori. L’isolamento, eseguito in condizioni selettive per la presenza di un cocktail di inibitori, ha consentito di ottenere una ampia ceppoteca di lieviti con caratteristiche promettenti per la loro futura applicazione nel campo del bioetanolo di seconda generazione. Tra di essi, alcuni lieviti S. cerevisiae si sono distinti per vigore fermentativo ad elevata temperatura e per una consistente tolleranza agli inibitori. In particolare, il ceppo S. cerevisiae T2 è stato selezionato come host strain per lo sviluppo di un ceppo ricombinante capace di secernere la betaglucosidasi BglI di Saccharomycopsis fibuligera, specie di lievito tra le più efficienti per l’idrolisi del cellobiosio. Per la prima volta in questo lavoro di tesi è stato descritto un ceppo di lievito industriale betaglucosidasico. In ogni caso, l’attività idrolitica del ceppo ricombinante dovrà essere necessariamente incrementata al fine di ottenere un efficiente microrganismo CBP cellulosolitico. In base ai risultati ottenuti, questo studio rappresenta un primo passo verso lo sviluppo di microrganismi idonei alla conversione one-step di biomassa lignocellulosica in etanolo.
Hirst, Edmund L. "Experimental proof of the constitution of cellobiose." Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/17008.
Full textWood, Jonathan David. "Characterisation of cellobiose oxidoreductases from Phanerochaete chrysosporium." Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317919.
Full textDumonceaux, Timothy J. "Molecular aspects of cellobiose dehydrogenase produced by Trametes versicolor." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0003/NQ44416.pdf.
Full textRogers, Melanie S. "Towards the structural and functional characterisation of cellobiose oxidase." Thesis, University of Essex, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333295.
Full textLiu, Bing-Lan. "Physico-chemical studies on cellobiose oxidase from Phanerochaete chrysosporium." Thesis, University of Essex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261161.
Full textLombardi, Erica. "Selective photo-oxidation of cellobiose with tio2-supported metal nanoparticles." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6017/.
Full textVan, Rooyen Ronel 1976. "Genetic engineering of the yeast Saccharomyces cerevisiae to ferment cellobiose." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19455.
Full textPCT patent registered: https://www.google.com/patents/WO2009034414A1?cl=en&dq=pct/ib2007/004098&hl=en&sa=X&ei=b7AxUsSZK4jB0gWi14HgCQ&ved=0CEkQ6AEwAg USA: https://www.google.com/patents/US20110129888?dq=pct/ib2007/004098&ei=b7AxUsSZK4jB0gWi14HgCQ&cl=en
USA patent registered: https://www.google.com/patents/US20110129888?dq=pct/ib2007/004098&ei=b7AxUsSZK4jB0gWi14HgCQ&cl=en
ENGLISH ABSTRACT: The conversion of cellulosic biomass into fuels and chemicals has the potential to positively impact the South African economy, but is reliant on the development of low-cost conversion technology. Perhaps the most important progress to be made is the development of “consolidated bioprocessing” (CBP). CBP refers to the conversion of pretreated biomass into desired product(s) in a single process step with either a single organism or consortium of organisms and without the addition of cellulase enzymes. Among the microbial hosts considered for CBP development, Saccharomyces cerevisiae has received significant interest from the biotechnology community as the yeast preferred for ethanol production. The major advantages of S. cerevisiae include high ethanol productivity and tolerance, as well as a well-developed gene expression system. Since S. cerevisiae is non-cellulolytic, the functional expression of at least three groups of enzymes, namely endoglucanases (EC 3.2.1.4); exoglucanases (EC 3.2.1.91) and β-glucosidases (EC 3.2.1.21) is a prerequisite for cellulose conversion via CBP. The endo- and exoglucanases act synergistically to efficiently degrade cellulose to soluble cellodextrins and cellobiose, whereas the β-glucosidases catalyze the conversion of the soluble cellulose hydrolysis products to glucose. This study focuses on the efficient utilization of cellobiose by recombinant S. cerevisiae strains that can either hydrolyse cellobiose extracellularly or transport and utilize cellobiose intracellularly. Since it is generally accepted that S. cerevisiae do not produce a dedicated cellobiose permease/transporter, the obvious strategy was to produce a secretable β-glucosidase that will catalyze the hydrolysis of cellobiose to glucose extracellularly. β-Glucosidase genes of various fungal origins were isolated and heterologously expressed in S. cerevisiae. The mature peptide sequence of the respective β-glucosidases were fused to the secretion signal of the Trichoderma reesei xyn2 gene and expressed constitutively from a multi-copy yeast expression vector under transcriptional control of the S. cerevisiae PGK1 promoter and terminator. The resulting recombinant enzymes were characterized with respect to pH and temperature optimum, as well as kinetic properties. The maximum specific growth rates (μmax) of the recombinant strains were compared during batch cultivation in high-performance bioreactors. S. cerevisiae secreting the recombinant Saccharomycopsis fibuligera BGL1 enzyme was identified as the best strain and grew at 0.23 h-1 on cellobiose (compared to 0.29 h-1 on glucose). More significantly, was the ability of this strain to anaerobically ferment cellobiose at 0.18 h-1 (compared to 0.25 h-1 on glucose). However, extracellular cellobiose hydrolysis has two major disadvantages, namely glucose’s inhibitory effect on the activity of cellulase enzymes as well as the increased risk of contamination associated with external glucose release. In an alternative approach, the secretion signal from the S. fibuligera β-glucosidase (BGL1) was removed and expressed constitutively from the above-mentioned multi-copy yeast expression vector. Consequently, the BGL1 enzyme was functionally produced within the intracellular space of the recombinant S. cerevisiae strain. A strategy employing continuous selection pressure was used to adapt the native S. cerevisiae disaccharide transport system(s) for cellobiose uptake and subsequent intracellular utilization. RNA Bio-Dot results revealed the induction of the native α-glucoside (AGT1) and maltose (MAL) transporters in the adapted strain, capable of transporting and utilizing cellobiose intracellularly. Aerobic batch cultivation of the strain resulted in a μmax of 0.17 h-1 and 0.30 h-1 when grown in cellobiose- and cellobiose/maltose-medium, respectively. The addition of maltose significantly improved the uptake of cellobiose, suggesting that cellobiose transport (via the combined action of the maltose permease and α-glucosidase transporter) is the rate-limiting step when the adapted strain is grown on cellobiose as sole carbon source. In agreement with the increased μmax value, the substrate consumption rate also improved significantly from 0.25 g.g DW-1.h-1 when grown on cellobiose to 0.37 g.g DW-1.h-1 upon addition of maltose to the medium. The adapted strain also displayed several interesting phenotypical characteristics, for example, flocculation, pseudohyphal growth and biofilm-formation. These features resemble some of the properties associated with the highly efficient cellulase enzyme systems of cellulosome-producing anaerobes. Recombinant S. cerevisiae strains that can either hydrolyse cellobiose extracellularly or transport and utilize cellobiose intracellularly. Both recombinant strains are of particular interest when the final goal of industrial-scale ethanol production from cellulosic waste is considered. However, the latter strain’s ability to efficiently remove cellobiose from the extracellular space together with its flocculating, pseudohyphae- and biofilm-forming properties can be an additional advantage when the recombinant S. cerevisiae strain is considered as a potential host for future CBP technology.
AFRIKAANSE OPSOMMING: Die omskakeling van sellulose-bevattende biomassa na brandstof en chemikalieë beskik oor die potensiaal om die Suid-Afrikaanse ekonomie positief te beïnvloed, indien bekostigbare tegnologie ontwikkel word. Die merkwaardigste vordering tot dusvêr kon in die ontwikkeling van “gekonsolideerde bioprosessering” (CBP) wees. CBP verwys na die eenstap-omskakeling van voorafbehandelde biomassa na gewenste produkte met behulp van ‘n enkele organisme of ‘n konsortium van organismes sonder die byvoeging van sellulase ensieme. Onder die mikrobiese gashere wat oorweeg word vir CBP-ontwikkeling, het Saccharomyces cerevisiae as die voorkeur gis vir etanolproduksie troot belangstelling by die biotegnologie-gemeenskap ontlok. Die voordele van S. cerevisiae sluit in hoë etanol-produktiwiteit en toleransie, tesame met ‘n goed ontwikkelde geen-uitdrukkingsisteem. Aangesien S. cerevisiae nie sellulose kan benut nie, is die funksionele uitdrukking van ten minste drie groepe ensieme, naamlik endoglukanases (EC 3.2.1.4); eksoglukanases (EC 3.2.1.91) en β-glukosidases (EC 3.2.1.21), ‘n voorvereiste vir die omskakeling van sellulose via CBP. Die sinergistiese werking van endo- en eksoglukanases word benodig vir die effektiewe afbraak van sellulose tot oplosbare sello-oligosakkariede en sellobiose, waarna β-glukosidases die finale omskakeling van die oplosbare sellulose-afbraak produkte na glukose kataliseer. Hierdie studie fokus op die effektiewe benutting van sellobiose m.b.v. rekombinante S. cerevisiae-rasse met die vermoeë om sellobiose ekstrasellulêr af te breek of dit op te neem en intrasellulêr te benut. Aangesien dit algemeen aanvaar word dat S. cerevisiae nie ‘n toegewyde sellobiosepermease/ transporter produseer nie, was die mees voor-die-hand-liggende strategie die produksie van ‘n β-glukosidase wat uitgeskei word om sodoende die ekstrasellulêre hidroliese van sellobiose na glukose te kataliseer. β-Glukosidase gene is vanaf verskeie fungi geïsoleer en daaropvolgend in S. cerevisiae uitgedruk. Die geprosesseerde peptiedvolgorde van die onderskeie β-glukosidases is met die sekresiesein van die Trichoderma reesei xyn2-geen verenig en konstitutief vanaf ‘n multikopie-gisuitdrukkingsvektor onder transkripsionele beheer van die S. cerevisiae PGK1 promotor en termineerder uitgedruk. Die gevolglike rekombinante ensieme is op grond van hul pH en temperatuur optima, asook kinetiese eienskappe, gekarakteriseer. Die maksimum spesifieke groeitempos (μmax) van die rekombinante rasse is gedurende aankweking in hoë-verrigting bioreaktors vergelyk. Die S. cerevisiae ras wat die rekombinante Saccharomycopsis fibuligera BGL1 ensiem uitskei, was as the beste ras geïdentifiseer en kon teen 0.23 h-1 op sellobiose (vergeleke met 0.29 h-1 op glukose) groei. Meer noemenswaardig is the ras se vermoë om sellobiose anaërobies teen 0.18 h-1 (vergeleke met 0.25 h-1 op glukose) te fermenteer. Ekstrasellulêre sellobiose-hidroliese het twee groot nadele, naamlik glukose se onderdrukkende effek op die aktiwiteit van sellulase ensieme, asook die verhoogde risiko van kontaminasie wat gepaard gaan met die glukose wat ekstern vrygestel word. ’n Alternatiewe benadering waarin die sekresiesein van die S. fibuligera β-glucosidase (BGL1) verwyder en konstitutief uitgedruk is vanaf die bogenoemde multi-kopie gisuitrukkingsvektor, is gevolg. Die funksionele BGL1 ensiem is gevolglik binne-in die intrasellulêre ruimte van die rekombinante S. cerevisiae ras geproduseer. Kontinûe selektiewe druk is gebruik om die oorspronklike S. cerevisiae disakkaried-transportsisteme vir sellobiose-opname and daaropvolgende intrasellulêre benutting aan te pas. RNA Bio-Dot resultate het gewys dat die oorspronklike α-glukosied (AGT1) en maltose (MAL) transporters in die aangepaste ras, wat in staat is om sellobiose op te neem en intrasellulêr te benut, geïnduseer is. Aërobiese kweking van die geselekteerde ras het gedui dat die ras teen 0.17 h-1 en 0.30 h-1 groei in onderskeidelik sellobiose en sellobiose/maltose-medium. Die byvoeging van maltose het die opname van sellobiose betekenisvol verbeter, waarna aangeneem is dat sellobiose transport (via die gekombineerde werking van die maltose permease en α-glukosidase transporter) die beperkende stap gedurende groei van die geselekteerde ras op sellobiose as enigste koolstofbron is. In ooreenstemming hiermee, het die substraatbenuttingstempo ook betekenisvol toegeneem van 0.25 g.g DW-1.h-1, gedurende groei op sellobiose, tot 0.37 g.g DW-1.h-1 wanneer maltose by die medium gevoeg word. Die geselekteerde ras het ook verskeie interessante fenotipiese kenmerke getoon, byvoorbeeld flokkulasie, pseudohife- en biofilm-vorming. Hierdie eienskappe kom ooreen met sommige van die kenmerke wat met die hoogs effektiewe sellulase ensiem-sisteme van sellulosomeproduserende anaerobe geassosieer word. Hierdie studie beskryf die suksesvolle konstruksie van ‘n rekombinante S. cerevisiae ras met die vermoë om sellobiose ekstrasellulêr af te breek of om dit op te neem en intrasellulêr te benut. Beide rekombinante rasse is van wesenlike belang indien die einddoel van industriële-skaal etanolproduksie vanaf selluloseafval oorweeg word. Die laasgenoemde ras se vermoë om sellobiose effektief uit die ekstrasellulêre ruimte te verwyder tesame met die flokkulasie, pseudohife- en biofilm-vormings eienskappe kan ‘n addisionele voordeel inhou, indien die rekombinante S. cerevisiae ras as ‘n potensiële gasheer vir toekomstige CBP-tegnologie oorweeg word.
Heng, Joseph O. "Model Analysis of Cellobiose Solubility in Organic Solvents and Water." Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-theses/1352.
Full textMohd, Shafie Zainun. "Mechanism and kinetics of cellobiose decomposition in hot-compressed water." Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/748.
Full textBooks on the topic "Cellobiosio"
Larsson, Ted. Direct Electron Transfer Between Cellobiose Dehydrogenase and Solid Metal or Graphite Electrodes. Uppsala Universitet, 1999.
Find full textPiyachomkwan, Kuakoon. Interactions of Trichoderma reesei exo-acting cellulases with p-aminophenyl 1-thio-Ý-D-cellobioside. 1997.
Find full textBook chapters on the topic "Cellobiosio"
Schomburg, Dietmar, and Dörte Stephan. "Cellobiose oxidase." In Enzyme Handbook 10, 461–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57756-7_121.
Full textSchomburg, Dietmar, and Dörte Stephan. "Cellobiose phosphorylase." In Enzyme Handbook 12, 199–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61117-9_33.
Full textRenganathan, V., and Wenjun Bao. "Cellobiose Dehydrogenase." In ACS Symposium Series, 179–87. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0566.ch008.
Full textSchomburg, Dietmar, and Dörte Stephan. "Cellobiose dehydrogenase (quinone)." In Enzyme Handbook 10, 496–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57756-7_130.
Full textSchomburg, Dietmar, and Dörte Stephan. "Cellobiose dehydrogenase (acceptor)." In Enzyme Handbook 10, 575–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57756-7_147.
Full textHenriksson, G., L. Hildén, P. Ljungquist, P. Ander, and B. Pettersson. "Cellobiose Dehydrogenase as a Ligninase." In ACS Symposium Series, 456–73. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0785.ch029.
Full textChippaux, M., F. Barras, C. Rouas, and J. P. Chambost. "Assimilation in Soft Rot Erwinias: Cellobiose Pathway." In Plant Pathogenic Bacteria, 182–88. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3555-6_29.
Full textCalsavara, Luiza P. V., Flávio F. De Moraes, and Gisella M. Zanin. "Modeling Cellobiose Hydrolysis with Integrated Kinetic Models." In Twentieth Symposium on Biotechnology for Fuels and Chemicals, 789–806. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-4612-1604-9_72.
Full textBrucher, Birgit, and Thomas Häßler. "Enzymatic Process for the Synthesis of Cellobiose." In Industrial Enzyme Applications, 167–78. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9783527813780.ch2_4.
Full textRossi, Marianne, Yu-Yen Linko, Pekka Linko, Timo Vaara, and Marja Turunen. "Biocatalytic Production of Cellobiose Containing Oligosaccharide Mixture." In Developments in Food Engineering, 573–75. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2674-2_184.
Full textConference papers on the topic "Cellobiosio"
Gurunarayanan, Vinithra, S. Selvasekarapandian, Sindhuja Manoharan, D. Vinoth Pandi, C. Veeramanikandan, and Arun Araichimani. "Development and Characterization of PVA: Cellobiose – NH4 NO3 Polymer Membrane." In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_027.
Full textSutarlie, Laura, Qi Chao, and Kun-Lin Yang. "Accumulation of Cellobiose and Xylobiose in the Enzymatic Hydrolysis of Lignocelluloses." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_581.
Full text"Quantitative assessment of H2 and CO2 supersaturation during thermophilic cellobiose fermentation withClostridium thermocellum." In 2015 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/aim.20152189606.
Full textLanza, Jennifer, Andreas Gombert, and Pamela Bermejo. "Improving cellobiose utilization and fermentation by Saccharomyces cerevisiae strains via metabolic and evolutionary engineering." In Congresso de Iniciação Científica UNICAMP. Universidade Estadual de Campinas, 2019. http://dx.doi.org/10.20396/revpibic2720192989.
Full textSpirk, Stefan, Karin Stana-Kleinschek, Volker Ribitsch, and Heike Ehmann. "Silylation of cellobiose as a model reaction for the synthesis of silylated cellulose. A DFT and PM3 approach." In The 15th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2011. http://dx.doi.org/10.3390/ecsoc-15-00572.
Full textLea, Michael A., and Charles desBordes. "Abstract 227: Maltose enhanced the growth of bladder and colon cancer cells unlike some other disaccharides: Cellobiose, isomaltose, lactose, and sucrose." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-227.
Full textHu, Bo, David Marks, and Xiao Sun. "Fungal bioprocessing to improve quality of pennycress meal as potential feeding ingredient for monogastric animal." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/izob6294.
Full textAbdel-Rahman, Mohamed Ali, Takeshi Zendo, Kenji Sonomoto, and Yukihiro Tashiro. "Optimization of fermentation conditions for high L-lactic acid production from cellobiose by entercoccus mundtii QU 25: Impact of pH control and temperature on cell growth and changes in metabolites." In 2010 International Conference on Environmental Engineering and Applications (ICEEA). IEEE, 2010. http://dx.doi.org/10.1109/iceea.2010.5596153.
Full textKumar, Animesh, Devesh Bhaisora, and Mikhil Dange. "Effect of Nanocellulose in Cement Systems." In Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207919-ms.
Full textReports on the topic "Cellobiosio"
Baluyut, John. Cellulose and cellobiose. Adventures of a wandering organic chemist in theoretical chemistry. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1048525.
Full text