Dissertations / Theses on the topic 'Cells Microscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Cells Microscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kuhn, Jeffrey Russell. "Modulated polarization microscopy : a new instrument for visualizing cytoskeletal dynamics in living cells /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Full textCacovich, Stefania. "Electron microscopy studies of hybrid perovskite solar cells." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276753.
Full textWong, Tsz-wai Terence, and 黃子維. "Optical time-stretch microscopy: a new tool for ultrafast and high-throughput cell imaging." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B5066234X.
Full textpublished_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
Wätjen, Jörn Timo. "Microscopic Characterisation of Solar Cells : An Electron Microscopy Study of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 Solar Cells." Doctoral thesis, Uppsala universitet, Fasta tillståndets elektronik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-199432.
Full textBarnes, Clifford Alexander. "Supra-vital atomic force microscopy of living cultured cells." Thesis, University of Ulster, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494333.
Full textZeskind, Benjamin J. "Quantitative imaging of living cells by deep ultraviolet microscopy." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38693.
Full textIncludes bibliographical references (p. 139-145).
Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy received attention in the 1950s as a way to generate image contrast from the strong absorbance of proteins and nucleic acids at wavelengths shorter than 300 nm. However, the lethal effects of these wavelengths limited their usefulness in studies of cell function, separating the contributions of protein and nucleic acid proved difficult, and scattering artifacts were a significant concern. We have used short exposures of deep-ultraviolet light synchronized with an ultraviolet-sensitive camera to observe mitosis and motility in living cells without causing necrosis, and quantified absorbance at 280 nm and 260 nm together with tryptophan native fluorescence in order to calculate maps of nucleic acid mass, protein mass, and quantum yield in unlabeled cells. We have also developed a method using images acquired at 320nm and 340nm, and an equation for Mie scattering, to determine a scattering correction factor for each pixel at 260nm and 280nm. These developments overcome the three main obstacles to previous deep UV microscopy efforts, creating a new approach to imaging unlabeled living cells that acquires quantitative information about protein and nucleic acid as a function of position and time.
by Benjamin J. Zeskind.
Ph.D.
Joensuu, Jenny. "Online Image Analysis of Jurkat T Cells using in situ Microscopy." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153313.
Full textAl-Rekabi, Zeinab. "Investigating Mechanotransduction and Mechanosensitivity in Mammalian Cells." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30256.
Full textMuys, James Johan. "Cellular Analysis by Atomic Force Microscopy." Thesis, University of Canterbury. Electrical and Computer Engineering, 2006. http://hdl.handle.net/10092/1158.
Full textChhun, Bryant B. "Super-resolution video microscopy of live cells by structured illumination." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1473623.
Full textOwen, Rachel Jane. "Dynamic Scanning probe microscopy of cells and chromosomes in liquid." Thesis, University of Bristol, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409431.
Full textWassie, Asmamaw T. "Nanoscale biomolecular mapping in cells and tissues with expansion microscopy." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123069.
Full textCataloged from PDF version of thesis. "June 2019."
Includes bibliographical references.
The ability to map the molecular organization of cells and tissues with nanoscale precision would open the door to understanding their biological functions as well as the mechanisms that lead to pathologies. Though recent technological advances have expanded the repertoire of biological tools, this crucial ability remains an unmet need. Expansion Microscopy (ExM) enables the 3D, nanoscale imaging of biological structures by physically magnifying cells and tissues. Specimens, embedded in a swellable hydrogel, undergo uniform expansion as covalently anchored labels and tags are isotropically separated. ExM thereby allows for the inexpensive nanoscale imaging of biological samples on conventional light microscopes. In this thesis, I describe the development of a method called Expansion FISH (ExFISH) that uses ExM to enable the nanoscale imaging of RNA throughout cells and tissues. A novel chemical approach covalently retains endogenous RNA molecules in the ExM hydrogel. After expansion, RNA molecules can be interrogated with in situ hybridization. ExFISH opens the door for the investigation of the nanoscale organization of RNA molecules in various contexts. Applied to the brain, ExFISH allows for the precise localization of RNA in nanoscale neuronal compartments such as dendrites and spines. Furthermore, the optical homogeneity of expanded samples enables the imaging of RNA in thick tissue-sections. ExFISH also supports multiplexed imaging of RNA as well as signal amplification techniques. Finally, this thesis describes strategies for the multiplexed characterization of biological specimens. Taken together, these approaches will find applications in developing an integrative understanding of cellular and tissue biology.
by Asmamaw T. Wassie.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biological Engineering
Naidoo, Thegaran. "Digital holographic microscopy with automated detection of red blood cells." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/61032.
Full textDissertation (MSc)--University of Pretoria, 2017.
CSIR
Computer Science
MSc
Unrestricted
Narchi, Paul. "Investigation of crystalline silicon solar cells at the nano-scale using scanning probe microscopy techniques." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX085/document.
Full textThis thesis focuses on the investigation of crystalline silicon solar cells at the nano-scale using scanning probe microscopy (SPM) techniques. In particular, we chose to investigate electrical properties at the nano-scale using two SPM techniques: Kelvin Probe Force Microscopy (KPFM) and Conducting Probe Atomic Force Microscopy (CP-AFM).First, we highlight the strengths and weaknesses of both these techniques compared to electron microscopy techniques, which can also help investigate electrical properties at the nano-scale. This comprehensive comparison enables to identify measurements where KPFM and CP-AFM are particularly adequate. These measurements are divided in two categories: material investigation and devices investigation.Then, we focus on materials investigation at the nano-scale using SPM techniques. We first present doping measurements at the nano-scale using an advanced CP-AFM technique called Resiscope. We prove that this technique could detect doping changes in the range 1015 and 1020 atoms.cm-3 with a nano-scale resolution and a high signal/noise ratio. Then, we highlight decay time measurements on passivated crystalline silicon wafers using KPFM. Measurements are performed on the unpassivated cross-section. We show that, even though the cross-section is not passivated, decay times measurements obtained with KPFM are in good agreement with lifetimes measured by microwave photoconductivity decay.Subsequently, we focus on device measurements. Using KPFM, we investigate two different crystalline silicon solar cell architectures: epitaxial silicon (epi-Si) solar cells and interdigitated back contact (IBC) heterojunction solar cells. In particular, we focus on measurements on devices under operating conditions. We first study the influence of the applied electrical bias. We study the sensitivity of surface potential to electrical bias and we show that diode and resistance effects can be detected at the nano-scale. KPFM measurements are compared to scanning electron microscopy (SEM) measurements in the same conditions since SEM is also sensitive to surface potential. We show that KPFM measurements on the cross-section of epi-Si solar cells can help detect electric field changes with electrical bias. Besides, if the electrical bias is frequency modulated, we show that lifetime measurements can be performed on the cross-section of epi-Si solar cells and can help detect limiting interfaces and layers. Then, we study the influence of illumination on KPFM and CP-AFM measurements. We perform photovoltage and photocurrent measurements on the cross-section of epi-Si solar under different values of illumination intensity and illumination wavelength. We show a good sensitivity of KPFM measurements to illumination. However, we show that measurements for different wavelengths at a given open circuit voltage, are not correlated with the internal quantum efficiency, as we could have expected.Finally, we summarize our work in a table showing the impact of strengths and weaknesses of the techniques for the different measurements highlighted. From this table, we imagine an “ideal” microscopy setup to investigate crystalline silicon solar cells in a reliable, versatile and accurate way. We propose investigations of interest that could be carried out using this “ideal” setup
Kosmacek, Elizabeth Anne Ianzini Fiorenza Mackey Michael A. "Live cell imaging technology development for cancer research." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/388.
Full textNeils, Christopher Martin. "Laser scanning microscopy of broad freezing interfaces with applications to biological cells /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004349.
Full textDonno, Roberto. "Nanomechanical characterisation of cells and biocompatible substrates." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/nanomechanical-characterisation-of-cells-and-biocompatible-substrates(f4d8bf94-035f-4798-ad64-02d319756974).html.
Full textParshall, Daniel. "Phase imaging digital holography for biological microscopy." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000285.
Full textFriedrichs, Jens. "Analyzing Interactions Between Cells And Extracellular Matrix By Atomic Force Microscopy." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-25093.
Full textMichiels, Rebecca [Verfasser], and Alexander [Akademischer Betreuer] Rohrbach. "Investigation of filopodia dynamics in macrophage cells by photonic force microscopy." Freiburg : Universität, 2019. http://d-nb.info/1185977295/34.
Full textOh, Seung-eun. "Quantitative phase microscopy for the study of electromotility in living cells." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62650.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 118-123).
The electric activity of living cells is accompanied with changes in their optical and mechanical properties, which arise from the intrinsic biophysics of the cell membrane. These intrinsic changes can be used as an indicator for cell electric activity, but, to our knowledge, the intrinsic signal of electric activity has never been detected in single vertebrate cells. We describe here our development of a quantitative phase microscopy technique that is capable of detecting the intrinsic changes induced by electric activity in a human cell line. Chapter 1 provides introductory material regarding cellular electrophysiology and a review of the literature on the intrinsic signal of cell electric activity. This chapter also briefly introduces the quantitative phase microscope. In Chapter 2, we discuss our pilot studies and introduce the electromotility of prestinexpressing HEK293 cells as a test system. We describe our design of an effective optical detection scheme based on quantitative phase imaging and frequency domain detection which provides full-field, high resolution, high sensitivity, quantitative detection of electrically induced optical signals in cells. In Chapter 3, we demonstrate an improved quantitative phase microscope based on low-coherence interferometry with enhanced sensitivity and lower noise. We successfully acquired images of the intrinsic optical signal from electrically stimulated single HEK293 cells. In Chapter 4, we characterized the electrochemical properties and dynamic properties of the intrinsic optical signal. We argue that the signal is generated through the electromechanical coupling mechanism called membrane electromotility (MEM). Using the MEM signal as an indicator of membrane electric activity, we imaged the propagation of an applied potential in a network of cells in Chapter 5. Our research shows that high resolution quantitative phase imaging is a powerful tool that can provide significant insight into the underlying mechanism of cellular intrinsic optical signal of electric activity. Membrane electromotility imaging provides a novel opportunity for the visualization of the electrical connectivity of cultured cells.
by Seungeun Oh.
Ph.D.
Magnusson, Klas E. G. "Segmentation and tracking of cells and particles in time-lapse microscopy." Doctoral thesis, KTH, Signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196911.
Full textInom biologi används många olika typer av mikroskopi för att studera celler. Det finns många typer av genomlysningsmikroskopi, där ljus passerar genom cellerna, som kan användas utan färgning eller andra åtgärder som riskerar att skada cellerna. Det finns också fluorescensmikroskopi där fluorescerande proteiner eller färger förs in i cellerna eller i delar av cellerna, så att de emitterar ljus av en viss våglängd då de belyses med ljus av en annan våglängd. Många fluorescensmikroskop kan ta bilder på flera olika djup i ett prov och på så sätt bygga upp en tre-dimensionell bild av provet. Fluorescensmikroskopi kan även användas för att studera partiklar, som exempelvis virus, inuti celler. Moderna mikroskop har ofta digitala kameror eller liknande utrustning för att ta bilder och spela in bildsekvenser. När biologer gör experiment på celler spelar de ofta in bildsekvenser eller sekvenser av tre-dimensionella volymer för att se hur cellerna beter sig när de utsätts för olika läkemedel, odlingssubstrat, eller andra yttre faktorer. Tidigare har analysen av inspelad data ofta gjorts manuellt, men detta är mycket tidskrävande och resultaten blir ofta subjektiva och svåra att reproducera. Därför finns det ett stort behov av teknik för automatiserad analys av bildsekvenser med celler och partiklar inuti celler. Sådan teknik behövs framförallt inom biologisk forskning och utveckling av läkemedel. Men tekniken skulle också kunna användas kliniskt, exempelvis för att skräddarsy en cancerbehandling till en enskild patient genom att utvärdera olika behandlingar på celler från en biopsi. I denna avhandling presenteras algoritmer för att hitta celler och partiklar i bilder, och för att beräkna trajektorier som visar hur de har förflyttat sig under ett experiment. Vi har utvecklat ett komplett system som kan hitta och följa celler i alla vanligt förekommande typer av mikroskopi. Vi valde ut och vidareutvecklade ett antal existerande segmenteringsalgoritmer, och skapade på så sätt ett heltäckande verktyg för att hitta cellkonturer. För att länka ihop de segmenterade objekten till trajektorier utvecklade vi en ny länkningsalgoritm. Algoritmen lägger till trajektorier en och en med hjälp av dynamisk programmering, och har många fördelar jämfört med tidigare algoritmer. Bland annat är den snabb, den beräknar trajektorier som är optimala över hela bildsekvensen, och den kan hantera fall då flera celler felaktigt segmenterats som ett objekt. För att kunna använda information om objektens hastighet vid länkningen utvecklade vi en metod där objektens positioner förbehandlas med hjälp av ett filter innan länkningen utförs. Detta är betydelsefullt för följning av vissa partiklar inuti celler och för följning av cellkärnor i vissa embryon. Vi har utvecklat en mjukvara med öppen källkod, som innehåller alla verktyg som krävs för att analysera bildsekvenser med celler eller partiklar. Den har verktyg för segmentering och följning av objekt, optimering av inställningar, manuell korrektion, och analys av konturer och trajektorier. Vi utvecklade mjukvaran i samarbete med biologer som använde den i sin forskning. Mjukvaran har redan använts för dataanalys i ett antal biologiska publikationer. Vårt system har även uppnått enastående resultat i tre internationella objektiva jämförelser av system för följning av celler.
QC 20161125
Taleb. "Raman Microscopy and ComputationalTechniques for the Chemometric Analysis of Tumor Cells." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501411.
Full textYu, Xiao. "Study of the Motility of Biological Cells by Digital Holographic Microscopy." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5159.
Full textStreetley, J. W. A. "Cryo-electron microscopy of Weibel-Palade Bodies in human endothelial cells." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1458642/.
Full textZheng, Tao. "Investigation of plant tissue by environmental scanning electron microscopy." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609068.
Full textPérez, Rodríguez Ana. "Nanoscale interpretation of performances in organic solar cells and field effect transistors." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/565824.
Full textTwo of the main challenges in organic electronic devices are the semiconducting layer morphology and the interface properties. Particularly, the interfaces formed by the semiconducting organic layer and the metallic electrodes strongly influence the performance of the devices. Thus, a strong effort has been devoted to improve these interfaces by different approaches such as self assembled monolayers (SAMs), layer of metalic oxides or contact doping. Concerning the morphology, it has been proven that it plays a fundamental role in exciton dissociation, charge collection and recombination in organic solar cells (OSC), as well as in the transport properties in organic field effect transistors (OFETs). In this work we make use of atomic force microscopy (AFM) and, in a lesser extent, of other surface characterization techniques for the study of surfaces and interfaces that conform organic electronic devices. In particular, we focus on the use of friction force microscopy (FFM), conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM) operating modes on OSC and OFETs devices with the goal of correlating the nanoscale characterization with the macroscopic performance of the devices. This thesis is organized in the following way: the motivations of this work are presented in Chapter 1. In Chapter 2 a brief theoretical introduction on organic semiconductors and the concept of self assembly and nanostructuration is given, while in Chapter 3 the techniques employed during this thesis as well as the used methodologies are described. The results are presented in the Chapters 4, 5, 6 and 7. In Chapter 4 we study in detail the physical origin behind Transverse Shear Microscopy (TSM). By combining experimental data with simulations, we prove that the TSM signal has a dissipative origin and we use the technique to obtain the crystalline orientation of tip-induced grown PTCDI-C8 islands. In Chapter 5 we focus on the effect of hole transport layers (HTLs) for both organic and perovskites solar cells. For bulk-heterojunction solar cells (BHJ) we prove that the use of phosphonic acid self assembled monolayers (SAMs) changes the workfunction of the ITO cathode in a favourable way, but also induces a charge accumulation density at the interface with detrimental effects for the cell performance. In perovskite solar cells, despite using newly synthesized HTL with more favourable HOMO position, the energy level alignment at the interface with the TiO2 results less favourable leading to worse photovoltaic device properties. Chapter 6 is devoted to the solvent vapor annealing (SVA) effect on the crystallinity and vertical phase separation on oligothiophene bulkheterojunction solar cells. We prove that, upon SVA, the oligomer domains present better crystallinity while the fullerene domains increase in size, enhancing the photovoltaic performance of the devices. In Chapter 7, a nanoscale characterization by means of FFM was correlated with the device performance for C8-BTBT:PS OFETs, providing with a picture at the nanoscale of the organic films vertical phase separation. By means of KPFM, maps of the surface potential of the OFETs were obtained, allowing us to extract contact resistance and charge mobility values for different electrodes, concluding that the contact resistance is the critical factor limiting the devices performance. Finally, in Chapter 8, the main conclusions of this thesis will be collected.
Andersson, Schönn Mikael. "Promoter regulation : designing cells for biotechnological applications." Thesis, Uppsala universitet, Molekylär biomimetik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297502.
Full textKroeger, Benjamin Robert. "The genetic regulation and subcellular dynamics of secretory and endolysosomal organelles of Drosophila secondary cells." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:dce9ae14-b03d-4fca-8429-de839cc40d6a.
Full textLähdesmäki, Ilkka Johannes. "Flow injection methods for drug-receptor interaction studies, based on probing cell metabolism /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/8590.
Full textAl-Roubaie, Sarah. "Time-lapse microscopy of endothelial cells and macrophages during embryonic vascular development." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107779.
Full textTraditionnellement, l'imagerie à lapse de temps en biologie s'appuie sur des animaux transgéniques dans lesquels une protéine fluorescente est exprimée par une population spécifique de cellules. Un collaborateur a récemment produit une caille transgénique qui exprime du YFP, pour « Yellow Fluorescent Protein », sous le contrôle d'un promoteur pour les cellules endothéliales (TIE1). Dans cet animal, non seulement est-il possible de visualiser les cellules endothéliales de la paroi des vaisseaux sanguins, mais le gène fluorescent est aussi exprimé dans des cellules endothéliales en circulation. Le rôle des cellules endothéliales en circulation au cours du développement vasculaire est inconnu. Nous avons imagé en temps réel les embryons transgéniques et nous avons observé que les cellules endothéliales TIE1+ roulent et interagissent avec l'endothélium des vaisseaux sanguins mais ne s'intègre jamais. Dans l'adulte, deux sortes de cellules endothéliales circulantes sont connues. La première population consiste de cellules matures, dépouillées après des lésions vasculaires. Celle-ci sont nommé des CECs (« Circulating Endothelial Cells ») et sont signe de pathologies. La deuxième population de cellules endothéliales circulantes représente des cellules progénitrices, qui retienne la capacité d'induire de la néovascularisation. Elle sont nommée EPCs (« Endothelial Progenitor Cells »). Nous croyons que les cellules en circulation dans l'embryon sont des cellules endothéliales circulantes (CECs) et que le remodelage vasculaire embryonnaire représente une insulte sur la paroi vasculaire qui est produit par l'initiation des flux sanguins lors du développement. Bien que les animaux transgéniques soient un outil puissant, ils sont coûteux et long à produire. Nous avons développé une technique pour marquer les cellules endothéliales et les macrophages en même temps pour l'imagerie à lapse de temps. La méthode consiste d'une injection intravasculaire de lipoprotéines acétylée conjuguées à un colorant fluorescent (AcLDL). Les lipoprotéines acétylée sont absorbées par les cellules endothéliales et les macrophages. Nous avons ensuite injecté un deuxième colorant, PKH26-PCL, qui est spécifique pour les phagocytes. La présence de macrophage avant l'apparition du flux sanguin était connue, mais leur fonction dans le développement vasculaire est très peu étudiée. Nous avons trouvé de nombreuses cellules doublement marquées en circulation, qui roulent le long de l'endothélium, ainsi qu'un sous-ensemble qui s'extravaser. Nous avons quantifié l'expression des gènes lier au recrutement de macrophage lors du développement vasculaire et avons vu augmentation. Nous avons examiné l'expression de vcam1 par hybridation in situ. Nous trouvons que les régions qui sont en train de remodeler expriment vcam1 de manière ponctuée, toutefois des régions dans lesquelles les artères et les veines sont visibles (ce qui représentent des régions qui ont déjà remodelé) avait peu d'expression de vcam1.
Rodríguez, Fajardo Valeria. "Novel methods for plasmonic nanoparticles imaging inside cells using dark-field microscopy." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/462174.
Full textEl impacto potencial de las nanopartículas (NPs) de metales nobles en diversos campos, en particular medicina,es inmenso. Sin embargo, antes de que puedan ser usadas rutinariamente en procedimientos clínicos es fundamental estudiar concienzudamente su interacción con las células, estudio que no es trivial porque es un proceso extremadamente complicado que depende de muchos factores. A fin de usar las NPs plasmónicas como sonda para biosensado o investigar su interacci ón con especímenes biológicos es necesario detectarlas. Los métodos más usados son la microscopia de electrones (SEM/TEM), luminiscencia de dos fotones (TPL) y campo oscuro (DF). Aunque la resoluci ón de la primera sobresale, requiere preparaci ón de muestras compleja y es altamente invasiva. Si bien TPL es capaz de identificar NPs con buena precisi ón y contraste, las mediciones pueden ser afectadas por las altas potencias pico de la iluminaci ón pulsada. Más aún, estas requieren equipos especializados y su resolución temporal es insuficiente para seguir la dinámica de la interacción entre las NPs y las células o rastrear células en flujo. En este contexto, DF sobresale como una excelente opci ón, sin embargo, dado que el esparcimiento de la célula misma puede ser bastante alto, no es confiable. En esta tesis presentamos dos métodos basados en microscopia DF para detectar NPs plasmónicas embebidas en células. El esparcimiento es bastante atractivo por varias razones: el tiempo de adquisici ón no está fundamentalmente limitado; no es dañino para las células o NPs; no sufre de parpadeo o fotoblanqueado; y su implementaci ón es simple y no requiere elementos especializados. La idea clave es remover la contribuci ón de la célula al esparcimiento total, y con ello superar el problema de confiabilidad del DF convencional. La microscopia de campo oscuro de diferencia de polarizaci ón (PDDF) explota el hecho que mientras que la intensidad del esparcimiento producido por nanocilindros de oro (GNRs) depende de la orientaci ón de la polarización de la luz, la de las células no lo hace. De esta manera, al substraer dos imágenes, una por cada dirección, el esparcimiento de la célula es eliminado. Validamos el concepto usando una muestra substituta y probamos que la habilidad de PDDF para discriminar células con GNRs de células sin ellos es mayor que la de DF. Sin embargo, dos factores limitan su aplicabilidad: solo es útil para NPs asimétricas y no es posible realizar medidas cuantitativas.La microscopia de campo oscuro de dos colores (TCDF) toma ventaja de que el esparcimiento producido por las NPs cambia drásticamente con la longitud de onda, mientras que el de las células no lo hace. Así, la substracción de dos imágenes, una por cada color, cancelará el esparcimiento de las células. Usando una muestra substituta probamos que el DF convencional no es fiable para detectar NPs plasmónicas en medios con esparcimiento no despreciable, mientras que TCDF sí lo es. Realizamos experimentos en células que demostraron que TCDF se desempeña mejor que DF en términos especificidad y sensibilidad. Mostramos tambi én el potencial de TCDF para el rastreo a largo plazo de NPs en células y la identificación de células en poblaciones mixtas en condiciones estáticas y en flujo. El uso de TCDF es más conveniente que el de PDDF gracias a su robustez, menos limitaciones y mejor desempe ño. TCDF es eficiente y vers átil: funciona para células adherentes y en suspensi ón, diversas aplicaciones, y en condiciones estáticas y de flujo. Además, su desempeño podría ser mejorado optimizando el montaje óptico y usando métodos de calibración más sofisticados. TCDF se presenta como un complemento a técnicas ya existentes (TPL and SEM/TEM), dado que es más adecuado para estudios con células vivas y se desempeña mejor en términos de velocidad, aunque no sea tan sensible. TCDF podría ser aplicado a otros sistemas y otras NPs con resonancia, siempre que sus propiedades de esparcimiento difieran lo suficiente.
Agustin, Ramses Martinez. "Automated detection and classification of circulating cancer cells via high-throughput microscopy." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3258983.
Full textTitle from first page of PDF file (viewed June 13, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 156-164).
Byrne, Gerard. "Total internal reflection microscopy studies on colloidal particle endocytosis by living cells." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10979/.
Full textLindqvist, Eliza. "An investigation of performing the proteinretention expansion microscopy protocol on neuronal cells." Thesis, KTH, Tillämpad fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233225.
Full textTsikritsis, Dimitrios. "Vibrational spectroscopy and microscopy in colorectal cancer." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33049.
Full textStayton, Isaac Alexander. "Investigation of the interactions between selected nanoparticles and human lung carcinoma cells at the single cell and single particle level." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Stayton_09007dcc8065344d.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 29, 2009) Includes bibliographical references.
Msallam, Rasha. "Intravital imaging and immuno-regulatory functions of mast cells in cutaneous immune responses." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T019.
Full textThe skin is a fascinating outpost of the immune system. It performs a barrier function between the outside environment and the inner body and is also a port of entry for pathogens against which the immune system mounts adapted responses. The skin innate immune defenses control pathogen invasion and perceive also direct physical and chemical environmental changes. Several component of the immune system such as dendritic cells (DC), macrophages (MΦ) and mast cells (MC) participate in initial pathogen clearance and in initiating adaptive memory responses, allowing rapid mobilization of effector T cells and secretion of B cellderived antibodies after secondary pathogen challenge. MCs residing in the dermis exert a determinant alert function through the liberation of various factors and are classically considered as effector cells in the IgE-mediated cutaneous allergic reaction. As emerging now, MC are also involved in immunoregulatory processes during the initiation of adaptive immune responses, the maintenance of peripheral tolerance to skin components and skin regeneration during wound healing. Yet, the crosstalks between MCs and other innate and adaptive immune cells recruited during cutaneous inflammatory conditions have not been elucidated in detail. Here, we report the use of a novel Mast cell fluorescent reporter mouse (RMB), in which we tagged FcεRI+ MCs, with red fluorescence marker tomato (Tdt) and with a conditional ablation system based on concurrent diphtheria toxin receptor (DTR) expression. Using these RMB mice, we visualized MC dynamics and monitored MC interactions with regulatory T lymphocytes (Tregs) after IgE-mediated activation of MCs, in a typical passive cutaneous anaphylaxis (PCA) inflammatory reaction. Using another setting, we further assessed the role of MC during experimental ear skin grafting to reveal their potential influence in skin grafting and rejection. We found that 1) the activation and degranulation of MCs induced by FcεRI crosslinking by multivalent IgE is solely responsible for the PCA reaction and induces the recruitment of highly motile regulatory T cells (Tregs) to the site of inflammation. In these conditions, we found that MC remain sessile and Tregs establish dynamic contacts with MC in the dermis. 2) Further we set up a model system to reveal the molecular requirement for MC-Treg interaction and found that antigen complexed with IgE were able to be presented to Treg in association with major histocompatibility complex class II molecules allowing the formation of stable MC-Treg contacts. 3) Using in vivo skin transplantation model, we showed that conditional ablation of MCs leads to an acceleration of skin transplant rejection in sex-mismatched model (male skin transplant to female). We also found an unexpected impact of MC conditional ablation in sex-matched skin graft (female skin transplant to female) leading to rapid rejection, implying that MCs are essential for the wound healing reaction and the regeneration of tissue continuity after grafting. The aforementioned results point out to an important immunoregulatory role of MC beyond their classically described activator functions in inflamed tissues. The fact that MC constantly interact with Treg during inflammatory processes suggest that MCs could participate in skin homeostasis by exerting tolerogenic functions. These functions remain to be elucidated at the molecular level as presented in the discussion
Orth, Antony G. "Imaging Pressure, Cells and Light Fields." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11349.
Full textEngineering and Applied Sciences
Van, Der Hofstadt Serrano Marc. "Hygroscopic properties of single bacterial cells and endospores studied by Electrostatic Force Microscopy." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400567.
Full textEl microscopi de forces atòmiques (AFM) s'està convertint en una eina prometedora per a la caracterització de bacteris individuals, ja que presenten un ampli ventall de característiques. (Nanomicrobiologia). En particular, alguns bacteris són capaç de produir endòspores que resisteixen condicions ambientals extremes. S'ha observat que aquesta resistència està lligada al contingut de l'aigua, i en particular en la capacitat de mantenir el nucli sec. L'objectiu d'aquest treball de tesis és l'estudi de les seves propietats higroscòpiques en diferents condicions ambientals. En primer lloc es van obtenir imatges de bacteris individuals dividint-se amb resolució nanomètrica. L'ús de gelatina i un mètode d'imatge poc agressiu (dynamic jumping mode) va permetre imitar condicions naturals. A causa de la gran morfologia de les mostres bacterianes, es va utilitzar un mètode d'imatge elèctrica que emmascarava la contribució intrínseca de la mostra. La quantificació del sistema va permetre revelar homogeneïtat elèctrica de cèl·lules bacterianes individuals seques. L'ús d'una mostra subsuperficial va revelar el potencial del EFM per detectar la distribució de l'aigua dins de les cèl·lules bacterianes. La caracterització elèctrica de les cèl·lules vegetatives bacterianes i les endòspores bacterianes va revelar una major hidratació de les cèl·lules vegetatives bacterianes en contraposició a les endòspores bacterianes. A elevada humitat relativa, les cèl·lules vegetatives s'hidraten dràsticament i causen la hidratació de la regió citoplasmàtica, mentre que les endòspores tenen la capacitat de deixar el nucli en nivells baixos d'hidratació. Aquesta discrepància en el comportament d'hidratació sembla clau per a la persistència de la latència de les endòspores en condicions atmosfèriques. Finalment, mesures elèctriques realitzades en líquid van revelar un estat d'alta hidratació de les cèl·lules bacterianes vives en contraposició a les endòspores bacterianes. Aquesta hidratació inferior de les endòspores en condicions de líquid podria ser atribuïble a la diferència en l'estructura. Tot junt, aquests resultats obtinguts en aquest treball de tesi han demostrat una menor propietat d'hidratació en les endòspores bacterianes en contraposició a la seva cèl·lula vegetativa en totes les condicions ambients, des de condicions seques fins a líquides.
Coffey, David C. "Characterizing the local optoelectronic performance of organic solar cells with scanning-probe microscopy /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9688.
Full textEmilson, Axel. "Analysis of human epidermal Langerhans' cells and allergens with confocal laser scanning microscopy /." Stockholm, 1997. http://diss.kib.ki.se/1997/91-628-2734-0.
Full textRandall, Catherine Marie. "Investigating the Mechanical and Structural Properties of Human Cells by Atomic Force Microscopy." Thesis, Liverpool John Moores University, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515351.
Full textBasu, Srinjan. "Study of Chromatin Structure Using Stimulated Raman Scattering Microscopy in Living Mammalian Cells." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10416.
Full textXu, Yang. "Multimodal Spectral Microscopy and Imaging Mass Spectrometry of Biomolecules in Cells and Tissues." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1333769758.
Full textHaase, Kristina M. "Mechanics and Mechanotransduction of Adherent Cells: A Compendium of Atomic Force Microscopy Studies." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31850.
Full textScherer, K. M. "Two-Photon Microscopy of E-Combretastatin uptake and activation in live mammalian cells." Thesis, University of Salford, 2012. http://usir.salford.ac.uk/38101/.
Full textTomalik, Edyta. "Image-based Microscale Particle Velocimetry in Live Cell Microscopy." Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2564.
Full textColom, diego Adai. "From eye lens cells to lens membrane proteins : Development and application of a hybrid high-speed atomic force microscopy/optical microscopy setup." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4033.
Full textI used the AFM and HS-AFM for characterise the eye lens and the eye lens membrane protein, AQP0 and connexon.A QP0-AQP0 interaction energy is -2.7kBT, it is important for the formation of junctional microdomains, which keep the distance between the cells lens and lens transparency. this is the first report which is present time the visualization of unlabelled membrane proteins on living cells under physiological conditions. AQP1 can not maintain the lens transparency because it does not form junctional microdomains
Curry, Nathan. "Development and application of correlative STED and AFM to investigate neuronal cells." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274579.
Full text