Dissertations / Theses on the topic 'Cellular neural networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Cellular neural networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Viñoles, Serra Mireia. "Dynamics of Two Neuron Cellular Neural Networks." Doctoral thesis, Universitat Ramon Llull, 2011. http://hdl.handle.net/10803/9154.
Full textPrimer de tot, revisem l'estabilitat d'aquest sistema des de dos punts de vista diferents. Usant la teoria de Lyapunov, trobem el rang de paràmetres en el que hem de treballar per aconseguir la convergència de la xarxa cap a un punt fix. Aquest mètode ens obre les portes per abordar els diferents tipus de problemes que es poden resoldre usant una xarxa neuronal cel·lular de dues neurones. D'altra banda, el comportament dinàmic de la CNN està determinat per la funció lineal a trossos que defineix les sortides del sistema. Això ens permet estudiar els diferents sistemes que apareixen en cada una de les regions on el sistema és lineal, aconseguint un estudi complet de l'estabilitat de la xarxa en funció de les posicions locals dels diferents punts d'equilibri del sistema. D'aquí obtenim bàsicament dos tipus de convergència, cap a un punt fix o bé cap a un cicle límit. Aquests resultats ens permeten organitzar aquest estudi bàsicament en aquests dos tipus de convergència. Entendre el sistema d'equacions diferencials que defineixen la CNN en dimensió 1 usant només dues neurones, ens permet trobar les dificultats intrínseques de les xarxes neuronals cel·lulars així com els possibles usos que els hi podem donar. A més, ens donarà les claus per a poder entendre el cas general.
Un dels primers problemes que abordem és la dependència de les sortides del sistema respecte les condicions inicials. La funció de Lyapunov que usem en l'estudi de l'estabilitat es pot veure com una quàdrica si la pensem com a funció de les sortides. La posició i la geometria d'aquesta forma quadràtica ens permeten trobar condicions sobre els paràmetres que descriuen el sistema dinàmic. Treballant en aquestes regions aconseguim abolir el problema de la dependència. A partir d'aquí ja comencem a estudiar les diferents aplicacions de les CNN treballant en un rang de paràmetres on el sistema convergeix a un punt fix. Una primera aplicació la trobem usant aquest tipus de xarxa per a reproduir distribucions de probabilitat tipus Bernoulli usant altre cop la funció de Lyapunov emprada en l'estudi de l'estabilitat. Una altra aplicació apareix quan ens centrem a treballar dins del quadrat unitat. En aquest cas, el sistema és capaç de reproduir funcions lineals.
L'existència de la funció de Lyapunov permet també de construir unes gràfiques que depenen dels paràmetres de la CNN que ens indiquen la relació que hi ha entre les entrades de la CNN i les sortides. Aquestes gràfiques ens donen un algoritme per a dissenyar plantilles de paràmetres reproduint aquestes relacions. També ens obren la porta a un nou problema: com composar diferents plantilles per aconseguir una determinada relació entrada¬sortida. Tot aquest estudi ens porta a pensar en buscar una relació funcional entre les entrades externes a la xarxa i les sortides. Com que les possibles sortides és un conjunt discret d'elements gràcies a la funció lineal a trossos, la correspondència entrada¬sortida es pot pensar com un problema de classificació on cada una de les classes està definida per les diferent possibles sortides. Pensant¬ho d'aquesta manera, estudiem quins problemes de classificació es poden resoldre usant una CNN de dues neurones i trobem quina relació hi ha entre els paràmetres de la CNN, les entrades i les sortides. Això ens permet trobar un mètode per a dissenyar plantilles per a cada problema concret de classificació. A més, els resultats obtinguts d'aquest estudi ens porten cap al problema de reproduir funcions Booleanes usant CNNs i ens mostren alguns dels límits que tenen les xarxes neuronals cel·lulars tot intentant reproduir el capçal de la màquina universal de Turing descoberta per Marvin Minsky l'any 1962.
A partir d'aquí comencem a estudiar la xarxa neuronal cel·lular quan convergeix cap a un cicle límit. Basat en un exemple particular extret del llibre de L.O Chua, estudiem primer com trobar cicles límit en el cas que els paràmetres de la CNN que connecten les diferents neurones siguin antisimètrics. D'aquesta manera trobem en quin rang de paràmetres hem de treballar per assegurar que l'estat final de la xarxa sigui una corba tancada. A més ens dona la base per poder abordar el problema en el cas general. El comportament periòdic d'aquestes corbes ens incita primer a calcular aquest període per cada cicle i després a pensar en possibles aplicacions com ara usar les CNNs per a generar senyals de rellotge.
Finalment, un cop estudiats els diferents tipus de comportament dinàmics i les seves possibles aplicacions, fem un estudi comparatiu de la xarxa neuronal cel·lular quan la sortida està definida per la funció lineal a trossos i quan està definida per la tangent hiperbòlica ja que moltes vegades en la literatura s'usa l'una en comptes de l'altra aprofitant la seva diferenciabilitat. Aquest estudi ens indica que no sempre es pot usar la tangent hiperbòlica en comptes de la funció lineal a trossos ja que la convergència del sistema és diferent en un segons com es defineixin les sortides de la CNN.
Les redes neuronales celulares o CNNs, son un tipo de sistema dinámico que relaciona diferentes elementos llamados neuronas a partir de unas plantillas de parámetros. Este sistema queda completamente determinado conociendo las entradas de la red, las salidas y los parámetros o pesos. En este trabajo hacemos un estudio exhaustivo de estos tipos de red en el caso más sencillo donde sólo intervienen dos neuronas. Este es un sistema muy sencillo que puede llegar a tener una dinámica muy rica.
Primero, revisamos la estabilidad de este sistema desde dos puntos de vista diferentes. Usando la teoría de Lyapunov, encontramos el rango de parámetros en el que hemos de trabajar para conseguir que la red converja hacia un punto fijo. Este método nos abre las puertas parar poder abordar los diferentes tipos de problemas que se pueden resolver usando una red neuronal celular de dos neuronas. Por otro lado, el comportamiento dinámico de la CNN está determinado por la función lineal a tramos que define las salidas del sistema. Esto nos permite estudiar los diferentes sistemas que aparecen en cada una de las regiones donde el sistema es lineal, consiguiendo un estudio completo de la estabilidad de la red en función de las posiciones locales de los diferentes puntos de equilibrio del sistema. Obtenemos básicamente dos tipos de convergencia, hacia a un punto fijo o hacia un ciclo límite. Estos resultados nos permiten organizar este estudio básicamente en estos dos tipos de convergencia. Entender el sistema de ecuaciones diferenciales que definen la CNN en dimensión 1 usando solamente dos neuronas, nos permite encontrar las dificultades intrínsecas de las redes neuronales celulares así como sus posibles usos. Además, nos va a dar los puntos clave para poder entender el caso general. Uno de los primeros problemas que abordamos es la dependencia de las salidas del sistema respecto de las condiciones iniciales. La función de Lyapunov que usamos en el estudio de la estabilidad es una cuadrica si la pensamos como función de las salidas. La posición y la geometría de esta forma cuadrática nos permiten encontrar condiciones sobre los parámetros que describen el sistema dinámico. Trabajando en estas regiones logramos resolver el problema de la dependencia. A partir de aquí ya podemos empezar a estudiar las diferentes aplicaciones de las CNNs trabajando en un rango de parámetros donde el sistema converge a un punto fijo. Una primera aplicación la encontramos usando este tipo de red para reproducir distribuciones de probabilidad tipo Bernoulli usando otra vez la función de Lyapunov usada en el estudio de la estabilidad. Otra aplicación aparece cuando nos centramos en trabajar dentro del cuadrado unidad. En este caso, el sistema es capaz de reproducir funciones lineales.
La existencia de la función de Lyapuno v permite también construir unas graficas que dependen de los parámetros de la CNN que nos indican la relación que hay entre las entradas de la CNN y las salidas. Estas graficas nos dan un algoritmo para diseñar plantillas de parámetros reproduciendo estas relaciones. También nos abren la puerta hacia un nuevo problema: como componer diferentes plantillas para conseguir una determinada relación entrada¬salida. Todo este estudio nos lleva a pensar en buscar una relación funcional entre las entradas externas a la red y las salidas. Teniendo en cuenta que las posibles salidas es un conjunto discreto de elementos gracias a la función lineal a tramos, la correspondencia entrada¬salida se puede pensar como un problema de clasificación donde cada una de las clases está definida por las diferentes posibles salidas. Pensándolo de esta forma, estudiamos qué problemas de clasificación se pueden resolver usando una CNN de dos neuronas y encontramos la relación que hay entre los parámetros de la CNN, las entradas y las salidas. Esto nos permite encontrar un método de diseño de plantillas para cada problema concreto de clasificación. Además, los resultados obtenidos en este estudio nos conducen hacia el problema de reproducir funciones Booleanas usando CNNs y nos muestran algunos de los límites que tienen las redes neuronales celulares al intentar reproducir el cabezal (la cabeza) de la máquina universal de Turing descubierta por Marvin Minsky el año 1962.
A partir de aquí empezamos a estudiar la red neuronal celular cuando ésta converge hacia un ciclo límite. Basándonos en un ejemplo particular sacado del libro de L.O Chua, estudiamos primero como encontrar ciclos límite en el caso que los parámetros de la CNN que conectan las diferentes neuronas sean anti¬simétricos. De esta forma encontramos el rango de parámetros en el cuál hemos de trabajar para asegurar que el estado final de la red sea una curva cerrada. Además nos da la base para poder abordar el problema en el caso general. El comportamiento periódico de estas curvas incita primero a calcular su periodo para cada ciclo y luego a pensar en posibles aplicaciones como por ejemplo usar las CNNs para generar señales de reloj.
Finalmente, estudiados ya los diferentes tipos de comportamiento dinámico y sus posibles aplicaciones, hacemos un estudio comparativo de la red neuronal celular cuando la salida está definida por la función lineal a trozos y cuando está definida por la tangente hiperbólica ya que muchas veces en la literatura se usa una en vez de la otra intentado aprovechar su diferenciabilidad. Este estudio nos indica que no siempre se puede intercambiar dichas funciones ya que la convergencia del sistema es distinta según como se definan las salidas de la CNN.
In this dissertation we review the two neuron cellular neural network stability using the Lyapunov theory, and using the different local dynamic behavior derived from the piecewise linear function use. We study then a geometrical way to understand the system dynamics. The Lyapunov stability, gives us the key point to tackle the different convergence problems that can be studied when the CNN system converges to a fixed¬point. The geometric stability shed light on the convergence to limit cycles. This work is basically organized based on these two convergence classes.
We try to make an exhaustive study about Cellular Neural Networks in order to find the intrinsic difficulties, and the possible uses of a CNN. Understanding the CNN system in a lower dimension, give us some of the main keys in order to understand the general case. That's why we will focus our study in the one dimensional CNN case with only two neurons.
From the results obtained using the Lyapunov function, we propose some methods to avoid the dependence on initial conditions problem. Its intrinsic characteristics as a quadratic form of the output values gives us the key points to find parameters where the final outputs do not depend on initial conditions. At this point, we are able to study different CNN applications for parameter range where the system converges to a fixed¬point. We start by using CNNs to reproduce Bernoulli probability distributions, based on the Lyapunov function geometry. Secondly, we reproduce linear functions while working inside the unit square.
The existence of the Lyapunov function allows us to construct a map, called convergence map, depending on the CNN parameters, which relates the CNN inputs with the final outputs. This map gives us a recipe to design templates performing some desired input¬output associations. The results obtained drive us into the template composition problem. We study the way different templates can be applied in sequence. From the results obtained in the template design problem, we may think on finding a functional relation between the external inputs and the final outputs. Because the set of final states is discrete, thanks to the piecewise linear function, this correspondence can be thought as a classification problem. Each one of the different classes is defined by the different final states which, will depend on the CNN parameters.
Next, we study which classifications problems can be solved by a two neuron CNN, and relate them with weight parameters. In this case, we also find a recipe to design templates performing these classification problems. The results obtained allow us to tackle the problem to realize Boolean functions using CNNs, and show us some CNN limits trying to reproduce the header of a universal Turing machine.
Based on a particular limit cycle example extracted from Chua's book, we start this study with anti symmetric connections between cells. The results obtained can be generalized for CNNs with opposite sign parameters. We have seen in the stability study that limit cycles have the possibility to exist for this parameter range. Periodic behavior of these curves is computed in a particular case. The limit cycle period can be expressed as a function of the CNN parameters, and can be used to generate clock signals.
Finally, we compare the CNN dynamic behavior using different output functions, hyperbolic tangent and piecewise linear function. Many times in the literature, hyperbolic tangent is used instead of piecewise linear function because of its differentiability along the plane. Nevertheless, in some particular regions in the parameter space, they exhibit a different number of equilibrium points. Then, for theoretical results, hyperbolic tangent should not be used instead of piecewise linear function.
Devoe, Malcom, and Malcom W. Jr Devoe. "Cellular Neural Networks with Switching Connections." Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/math_theses/115.
Full textSaatci, Ertugrul. "Image processing using cellular neural networks." Thesis, London South Bank University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288173.
Full textEl-Shafei, Ahmed. "Time multiplexing of cellular neural networks." Thesis, University of Kent, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365221.
Full textMirzai, Bahram. "Robustness and applications of cellular neural networks /." Zürich, 1998. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=12483.
Full textOrovas, Christos. "Cellular associative neural networks for pattern recognition." Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310983.
Full textHänggi, Martin. "Analysis, design, and optimization of cellular neural networks /." Zürich, 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13225.
Full textJoy, Mark Patrick. "On the convergent dynamics of cellular neural networks." Thesis, London South Bank University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336372.
Full textRush, Jonathan Reginald. "Evolving cellular neural networks for autonomous robot control." Thesis, University of Salford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308293.
Full textBrewer, Grant. "Spiking cellular associative neural networks for pattern recognition." Thesis, University of York, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445470.
Full textOsuna, José A. "The recognition of acoustical alarm signals with cellular neural networks /." [S.l.] : [s.n.], 1995. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=11058.
Full textPontecorvo, Carmine. "Edge detection and enhancement using shunting inhibitory cellular neural networks /." Title page, abstract and contents only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09php814.pdf.
Full textKhouzam, Bassem. "Neural networks as cellular computing models for temporal sequence processing." Thesis, Supélec, 2014. http://www.theses.fr/2014SUPL0007/document.
Full textThe thesis proposes a sequence learning approach that uses the mechanism of fine grain self-organization. The manuscript initially starts by situating this effort in the perspective of contributing to the promotion of cellular computing paradigm in computer science. Computation within this paradigm is divided into a large number of elementary calculations carried out in parallel by computing cells, with information exchange between them.In addition to their fine grain nature, the cellular nature of such architectures lies in the spatial topology of the connections between cells that complies with to the constraints of the technological evolution of hardware in the future. In the manuscript, most of the distributed architecture known in computer science are examined following this perspective, to find that very few of them fall within the cellular paradigm.We are interested in the learning capacity of these architectures, because of the importance of this notion in the related domain of neural networks for example, without forgetting, however, that cellular systems are complex dynamical systems by construction.This inevitable dynamical component has motivated our focus on the learning of temporal sequences, for which we reviewed the different models in the domains of neural networks and self-organization maps.At the end, we proposed an architecture that contributes to the promotion of cellular computing in the sense that it exhibits self-organization properties employed in the extraction of a representation of a dynamical system states that provides the architecture with its entries, even if the latter are ambiguous such that they partially reflect the system state. We profited from an existing supercomputer to simulate complex architecture, that indeed exhibited a new emergent behavior. Based on these results we pursued a critical study that sets the perspective for future work
Li, Guanzhong Computer Science & Engineering Faculty of Engineering UNSW. "Internal symmetry networks for image processing." Awarded By:University of New South Wales. Computer Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/41482.
Full textWieslander, Håkan, and Gustav Forslid. "Deep Convolutional Neural Networks For Detecting Cellular Changes Due To Malignancy." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326160.
Full textGogineni, Murali M. "Contrast enhancement of ultrasound images using shunting inhibitory cellular neural networks." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2004. https://ro.ecu.edu.au/theses/803.
Full textHuang, Shimin. "Cross-Layer Congestion Control with Deep Neural Network in Cellular Network." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264239.
Full textEn betydande del av datatrafiken överförs via mobilnät. Vid introduktion av femte generationens (5G) radioåtkomstteknik ökar den maximala bithastigheten för radiolänken betydligt och förseningen sänks. Nätstockning uppstår när avsändaren försöker skicka data med högre hastighet än nätverkslänken eller noderna kan hantera. För att förbättra prestandan i mobilnät har många tekniker för trängselkontroll utvecklats under åren. Varierande radioförhållanden i mobilnätet gör det utmanande att indikera förekomsten av trängseln med hjälp av paketförlust som trängselindikator. Detta examensarbete utvecklar en trängselkontrollalgoritm baserad på AI-teknik (Artificial Intelligence), utvärderar och jämför den med befintliga toppmoderna trängselkontrollalgoritmer som används med TCP idag.I denna studie använder vi den rikliga läsbara informationen om fysiskt lager som utbyts mellan basstationerna och användarutrustningen för att förutsäga den tillgängliga bandbredden. Två neurala nätverksmodeller, Multi-Layer Perceptron (MLP) och Long Short-Term Memory (LSTM), introduceras som trängselkontrollalgoritmer baserade på tvärskiktsinformation för att förbättra användarens genomströmning och utnyttja den tillgängliga kapaciteten så mycket som möjligt.Utvärdering i en LTE-nätverkssystemsimulator (Long Term Evolution) bekräftar att uppskattningen av LSTM-modellen kan spåra den varierande länkkapaciteten, medan MLP är mindre exakt och inducerar högre fördröjning. Avsändaren använder den uppskattade länkkapaciteten för att justera sitt paketets sändningsbeteende. Vår utvärdering avslöjar att för stora flöden kan LSTM-modellen uppnå högre genomströmning än modernaste trängselkontrollalgoritmer, som är Google Bottleneck Bandbredd och BBR-algoritm och Data Center TCP (DCTCP) ) algoritm. Men det har högre latens än för dessa två algoritmer. Den MLP-baserade modellen ger instabil prestanda jämfört med LSTM; dess förutsägelse är inte nog noggrann och har den högsta latensen bland algoritmerna.Sammanfattningsvis underpresterar LSTM inte de senaste toppkontrollalgoritmerna. Det ger emellertid inte ytterligare prestationsvinster i de aktuella inställningarna. MLP-modellen underpresterar BBR och DCTCP med L4S och den är inte tillräckligt stabil för att användas som en överbelastningskontrollalgoritm.
MAILAVARAM, MADHURI. "A STANDARD CELL LIBRARY USING CMOS TRANSCONDUCTANCE AMPLIFIERS FOR CELLULAR NEURAL NETWORKS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1140802889.
Full textWickramasuriya, Dilranjan S. "Predictive Analytics in Cardiac Healthcare and 5G Cellular Networks." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6980.
Full textAkbari-Dilmaghani, Rahim. "Design methods for cellular neural networks with minimum number of cloning templates coefficients." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286671.
Full textZineddin, Bachar. "Microarray image processing : a novel neural network framework." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/5713.
Full textTakenga, Mbusa C. [Verfasser]. "Received Signal Strength based Fingerprint Positioning in Cellular Networks involving Neural Networks and Tracking Techniques / Mbusa C Takenga." Aachen : Shaker, 2008. http://d-nb.info/1164342010/34.
Full textZolfaghari, Saeed. "Design and planning for cellular manufacturing, application of neural networks and advanced search techniques." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ28390.pdf.
Full textDolan, Ryanne DeSouza Guilherme. "Cellular neural network virtual machine for graphics hardware with applications in image processing." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6545.
Full textGarcia, Garcia Núria 1958. "Radio Resource Management strategies based hopfield neural networks." Doctoral thesis, Universitat Pompeu Fabra, 2009. http://hdl.handle.net/10803/7556.
Full textLuo, Tao. "Pattern formation in reaction diffusion mechanism implemented with a four layer CMOS cellular neural network /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20LUO.
Full textIncludes bibliographical references (leaves 50-51). Also available in electronic version. Access restricted to campus users.
Skorheim, Steven W. "An Exploration of the Role of Cellular Neuroplasticity in Large Scale Models of Biological Neural Networks." Thesis, University of California, Riverside, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3630750.
Full textCellular level learning is vital to almost all brain function, and extensive homeostatic plasticity is required to maintain brain functionality. While much has been learned about cellular level plasticity in vivo, how these mechanisms affect higher level functionality is not readily apparent. The cellular level circuitry of most networks that process information is unknown. A variety of models were developed to better understand plasticity in both learning and homeostasis.
Spike time dependent plasticity (STDP) and reward-modulated plasticity may be the primary methods through which neurons record information. We implemented rewarded STDP to model foraging behavior in a virtual environment. When appropriate homeostatic mechanisms were in place, the network of spiking neurons developed the capability of producing highly successful decision-making.
The networks used in the foraging model used a very simple initial configuration to avoid assumptions about network organization. More realistic network configurations can help to show how plasticity interacts with genetically determined network. We developed three network models of synaptic mechanisms of FM sweep processing based on published experimental data. One of these, the 'inhibitory sideband' model, used frequency selective inputs to a network of excitatory and inhibitory cells. The strength and asymmetry of these connections resulted in neurons responsive to sweeps in a single direction and of sufficient rate. STDP was shown to be capable of causing to become selective for sweeps in the same direction as a repeatedly presented training sweep.
The experience dependent plasticity, occurs primarily during the waking state, however, sleep is essential for learning. Slow wave sleep activity may be essential for memory consolidation and homeostasis. We developed a model of slow wave sleep that included methods to calculate the electrical field in the space around the network. We show here that a network model of up and down states displays this CSD profile only if a frequency-filtering extracellular medium is assumed. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the it's termination remains poorly understood. We explored the impact of intrinsic and synaptic inhibition on the state transition. We found that synaptic inhibition controls the duration and the synchrony of active state termination.
Together these models set the stage for a model network that can learn through input driven processes in a waking state then explore the consolidation of memory in a sleeping state. This will allow us to explore in greater detail how plasticity on the level of a single cell contributes to learning and stability on the level of the whole brain.
Abidogun, Olusola Adeniyi. "Data mining, fraud detection and mobile telecommunications: call pattern analysis with unsupervised neural networks." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Full textmarketing and fraud detection. One of the strategies for fraud detection checks for signs of questionable changes in user behavior. Although the intentions of the mobile phone users cannot be observed, their intentions are reflected in the call data which define usage patterns. Over a period of time, an individual phone generates a large pattern of use. While call data are recorded for subscribers for billing purposes, we are making no prior assumptions about the data indicative of fraudulent call patterns, i.e. the calls made for billing purpose are unlabeled. Further analysis is thus, required to be able to isolate fraudulent usage. An unsupervised learning algorithm can analyse and cluster call patterns for each subscriber in order to facilitate the fraud detection process.
This research investigates the unsupervised learning potentials of two neural networks for the profiling of calls made by users over a period of time in a mobile telecommunication network. Our study provides a comparative analysis and application of Self-Organizing Maps (SOM) and Long Short-Term Memory (LSTM) recurrent neural networks algorithms to user call data records in order to conduct a descriptive data mining on users call patterns.
Our investigation shows the learning ability of both techniques to discriminate user call patterns
the LSTM recurrent neural network algorithm providing a better discrimination than the SOM algorithm in terms of long time series modelling. LSTM discriminates different types of temporal sequences and groups them according to a variety of features. The ordered features can later be interpreted and labeled according to specific requirements of the mobile service provider. Thus, suspicious call behaviours are isolated within the mobile telecommunication network and can be used to to identify fraudulent call patterns. We give results using masked call data
from a real mobile telecommunication network.
Corrêa, Leonardo Garcia. "Memória associativa em redes neurais realimentadas." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06122004-115632/.
Full textIn this dissertation we investigate biologically inspired models of pattern storage and retrieval, by means of feedback neural networks. These networks try to model some of the dynamical aspects of brain functioning. The study concentrated in Cellular Neural Networks, a local coupled version of the classical Hopfield model. The research comprised stability analysis of the referred networks, as well as performance tests of various methods for content-addressable (associative) memory design in Cellular Neural Networks.
Östlin, Erik. "On Radio Wave Propagation Measurements and Modelling for Cellular Mobile Radio Networks." Doctoral thesis, Karlskrona : Blekinge Institute of Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-00443.
Full textAlbó, Canals Jordi. "Cellular Nonlinear Networks: optimized implementation on FPGA and applications to robotics." Doctoral thesis, Universitat Ramon Llull, 2012. http://hdl.handle.net/10803/82066.
Full textEl objetivo principal de esta tesis consiste en estudiar la factibilidad de implementar un sensor cámara CNN con plena funcionalidad basado en FPGA de bajo coste adecuado para aplicaciones en robots móviles. El estudio de los fundamentos de las redes celulares no lineales (CNNs) y su aplicación eficaz en matrices de puertas programables (FPGAs) se ha complementado, por un lado con el paralelismo que se establece entre arquitectura multi -núcleo de las CNNs y los enjambres de robots móviles, y por el otro lado con la correlación dinámica de CNNs y arquitecturas memristive. Además, los memristors se consideran los sustitutos de los futuros dispositivos de memoria flash por su capacidad de integración de alta densidad y su consumo de energía cerca de cero. En nuestro caso, hemos estado interesados en el desarrollo de FPGAs que han dejado de ser simples dispositivos para la creación rápida de prototipos ASIC para convertirse en completos dispositivos reconfigurables con integración de la memoria y los elementos de procesamiento general. En particular, se han explorado como las arquitecturas implementadas CNN en FPGAs pueden ser optimizadas en términos de área ocupada en el dispositivo y su consumo de potencia. Nuestro objetivo final nos ah llevado a implementar de manera eficiente una CNN-UM con completo funcionamiento a un bajo coste y bajo consumo sobre una FPGA con tecnología flash. Por lo tanto, futuros estudios sobre la arquitectura eficiente de la CNN sobre la FPGA y la interconexión con los robots comerciales disponibles es uno de los objetivos de esta tesis que se seguirán en las líneas de futuro expuestas en este trabajo.
The main goal of this thesis consists in studying the feasibility to implement a full-functionality CNN camera sensor based on low-cost FPGA device suitable for mobile robotic applications. The study of Cellular Nonlinear Networks (CNNs) fundamentals and its efficient implementation on Field Programmable Gate Arrays (FPGAs) has been complemented, on one side with the parallelism established between multi-core CNN architecture and swarm of mobile robots, and on the other side with the dynamics correlation of CNNs and memristive architectures. Furthermore, memristors are considered the future substitutes of flash memory devices because of its capability of high density integration and its close to zero power consumption. In our case, we have been interested in the development of FPGAs that have ceased to be simple devices for ASIC fast prototyping to become complete reconfigurable devices embedding memory and processing elements. In particular, we have explored how the CNN architectures implemented on FPGAs can be optimized in terms of area occupied on the device or power consumption. Our final accomplishment has been implementing efficiently a fully functional reconfigurable CNN-UM on a low-cost low-power FPGA based on flash technology. Therefore, further studies on an efficient CNN architecture on FPGA and interfacing it with commercially-available robots is one of the objectives of this thesis that will be followed in the future directions exposed in this work.
Zerlaut, Yann. "Biophysical and circuit properties underlying population dynamics in neocortical networks." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066095/document.
Full textThe neocortex of awake animals displays an activated state in whichcortical activity manifests highly complex, seemingly noisybehavior. At the level of single neurons the activity is characterizedby strong subthreshold fluctuations and irregular firing at lowrate. At the network level, the activity is weakly synchronized andexhibits a chaotic dynamics. Yet, it is within this regime thatinformation is processed reliably through neural networks. This regimeis thus crucial to neural computation. In this thesis, we contributeto its understanding by investigating how the biophysical propertiesat the cellular level combined with the properties of the networkarchitecture shapes this asynchronous dynamics.This thesis builds up on the so-called mean-field models of networkdynamics, a theoretical formalism that describes population dynamicsvia a self-consistency approach. At the core of this formalism lie theneuronal transfer function: the input-output description of individualneurons. The first part of this thesis focuses on derivingbiologically-realistic neuronal transfer functions. We firstformulate a two step procedure to incorporate biological details (suchas an extended dendritic structure and the effect of various ionicchannels) into this transfer function based on experimentalcharacterizations.First, we investigated in vitro how layer V pyramidal neocorticalneurons respond to membrane potential fluctuations on a cell-by-cellbasis. We found that, not only individual neurons strongly differ interms of their excitability, but also, and unexpectedly, in theirsensitivities to fluctuations. In addition, using theoreticalmodeling, we attempted to reproduce these results. The model predictsthat heterogeneous levels of biophysical properties such as sodiuminactivation, sharpness of sodium activation and spike frequencyadaptation account for the observed diversity of firing rateresponses.Then, we studied theoretically how dendritic integration in branchedstructures shape the membrane potential fluctuations at the soma. Wefound that, depending on the type of presynaptic activity, variouscomodulations of the membrane potential fluctuations could beachieved. We showed that, when combining this observation with theheterogeneous firing responses found experimentally, individual neuronsdifferentially responded to the different types of presynapticactivities. We thus propose that, because this mechanism offers a wayto produce specific activation as a function of the input properties,biophysical heterogeneity might contribute to the encoding of the stimulusproperties during sensory processing in neural networks.The second part of this thesis investigates how circuit properties,such as recurrent connectivity and lateral connectivity, combine withbiophysical properties to impact sensory responses through effectsmediated by population dynamics.We first investigated what was the effect of a high level of ongoingdynamics (the Up-state compared to the Down-state) on the scaling ofpost-synaptic responses. We found that the competition between therecruitment within the active recurrent network (in favor of highresponses in the Up-state) and the increased conductance level due tobackground activity (in favor of reduced responses in the Up-state)predicted a non trivial stimulus-response relationship as a functionof the intensity of the stimulation. This prediction was shown toaccurately capture measurements of post-synaptic membrane potentialresponses in response to cortical, thalamic or auditory stimulation inrat auditory cortex in vivo.Finally, by taking advantage of the mean-field approach, weconstructed a tractable large-scale model of the layer II-III networkincluding the horizontal fiber network. We investigate thespatio-temporal properties of this large-scale model and we compareits predictions with voltage sensitive dye imaging in awake fixatingmonkey
Babatunde, Oluleye Hezekiah. "A neuro-genetic hybrid approach to automatic identification of plant leaves." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2015. https://ro.ecu.edu.au/theses/1733.
Full textPazienza, Giovanni Egidio. "Aspects of algorithms and dynamics of cellular paradigms." Doctoral thesis, Universitat Ramon Llull, 2008. http://hdl.handle.net/10803/9151.
Full textLos paradigmas celulares, como las redes neuronales celulares (CNN, en
inglés) y los autómatas celulares (CA, en inglés), son una excelente
herramienta de cálculo, al ser equivalentes a una maquina universal de
Turing. La introducción de la maquina universal CNN (CNN-UM, en
inglés) ha permitido desarrollar hardware cuyo núcleo computacional
funciona según la filosofía celular; dicho hardware ha encontrado
aplicación en varios campos a lo largo de la ultima década. Sin
embargo, hay aun muchas preguntas abiertas sobre como definir los
algoritmos de una CNN-UM y como estudiar la dinámica de los autómatas
celular. En esta tesis se tratan ambos problemas: primero se demuestra
que es posible acotar el espacio de los algoritmos para la CNN-UM y
explorarlo gracias a técnicas genéticas; segundo, se explican los
fundamentos del estudio de los CA por medio de la dinámica no lineal
(según la definición de Chua) y se ilustra como esta técnica ha
permitido encontrar resultados novedosos.
Cellular paradigms, like Cellular Neural Networks (CNNs) and Cellular Automata (CA) are an excellent tool to perform computation, since they are equivalent to a Universal Turing machine. The introduction of the Cellular Neural Network - Universal Machine (CNN-UM) allowed us to develop hardware whose computational core works according to the principles of cellular paradigms; such a hardware has found application in a number of fields throughout the last decade. Nevertheless, there are still many open questions about how to define algorithms for a CNN-UM, and how to study the dynamics of Cellular Automata. In this dissertation both problems are tackled: first, we prove that it is possible to bound the space of all algorithms of CNN-UM and explore it through genetic techniques; second, we explain the fundamentals of the nonlinear perspective of CA (according to Chua's definition), and we illustrate how this technique has allowed us to find novel results.
Martinenko, Evgeny. "Prediction of survival of early stages lung cancer patients based on ER beta cellular expressions and epidemiological data." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4796.
Full textID: 030646185; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.)--University of Central Florida, 2011.; Includes bibliographical references (p. 32-33).
M.S.
Masters
Mathematics
Sciences
Mathematical Science
Sciuto, Gregorio. "Handbook of experimental-chaotic circuits and their synchronization." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1078.
Full textEker, Erdinc. "Lattice Boltzmann Automaton Model To Simulate Fluid Flow In Synthetic Fractures." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12605838/index.pdf.
Full textBorges, Fernando da Silva. "FAIXA DINÂMICA EM REDES NEURONAIS MODELADAS POR AUTÔMATOS CELULARES." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2016. http://tede2.uepg.br/jspui/handle/prefix/865.
Full textFundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná
In this thesis, we use mathematical models to study the dynamic range of neural networks. The dynamic range is the difference between maximum and minimum levels of sensation produced by known stimuli. Using cellular automata to model neuronal dynamics and different network topologies with different types of synapses, we investigate for which conditions the dynamic range is enhanced. In a network where local connections represent the electrical synapses and nonlocal connections the chemical synapses, we analyze the dynamic range in function of the number of nonlocal connections and time delay between these connections. We find that the dynamic range is enhanced for neural networks with low time delay when the number of nonlocal connections increases. Furthermore, we propose a neural network model separated into two layers, where one layer corresponds to inhibitory and the other to excitatory neurons. We randomly distribute electrical and chemical synapses in the network in order to analyse the effects on the dynamic range. In our proposed model, the chemical synapses, that are directed, can be excitatory or inhibitory, while the electrical synapses are bidirectional. Through the mean-field approximation, we analytically calculate the dynamic range as a function of the model parameters. The values that we find are very close to the results obtained from simulations. We verify that electrical synapses have a complementary effect on the enhancement of the dynamic range. Finally, we found that electrical synapses on excitatory layer are responsible for this complementary effect, while the electrical synapses in inhibitory layer promote a small increase in the dynamic range value.
Nesta tese usamos modelos matemáticos para estudar a faixa dinâmica de redes neuronais. A faixa dinâmica é a diferença entre a resposta máxima e mínima produzida por um determinado estímulo. Utilizando autômatos celulares para modelar a dinamica neuronal e diversas topologias de redes com diferentes tipos de sinapses, investigamos para quais configurações a faixa dinamica ´e maximizada. Em uma rede onde conexões locais representam sinapses elétricas e conexões não locais as sinapses químicas, analisamos o que ocorre com a faixa dinamica quando varia-se a quantidade de conexões não locais ou um tempo de atraso entre essas conexões é considerado. Neste caso, verificamos que a faixa dinamica é maior para redes neuronais com valores baixos de atraso e aumenta com o acréscimo de conexões não locais. Além disso, propomos um modelo de rede de neurônios dispostos em duas camadas, uma excitatória e outra inibitótira, com sinapses química e elétricas distribuidas aleatoriamente. Neste modelo, as sinapses quimicas são direcionadas e podem ser excitatorias ou inibitórias, enquanto as sinapses elétricas são bidirecionais e apresentam apenas carater excitatorio. Fazendo aproximações de campo médio, calculamos analiticamente a faixa dinamica em função dos parametros do modelo. Os valores encontrados estão muito próximos dos obtidos por simulações e mostram que a faixa dinãmica é maximizada em pontos que dependem complementarmente das sinapses quimicas e elétricas. Finalmente, verificamos que as sinapses eletricas na camada excitatória sao responsaveis por esse efeito complementar, enquanto as sinapses elétricas na camada inibitoria promovem um pequeno acrescimo no valor da faixa dinamica.
BONIFAZI, MAURIZIO. "Analog circuits design for cellular neural network." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/705.
Full textThe Artificial Neural Network (ANN) paradigm consists of the application of biological “neural” models to the solution of particular problems that often are very hard to solve for the classical “Von Neumann” architectures. Different are the approaches proposed in literature for the implementation of an ANN. Some of them are software implementations only while, others are circuital solutions as full custom digital circuits or programmed FPGAs (Field Programmable Gate Array) as well as analogue circuits and the typology of the implementation certainly depends on the length of the processing time that you believe adequate for the particular application. This thesis is focused on the design of new analogue circuits well suited for Neural Network applications. In particular, the class of the Cellular Neural Networks (CNN), proposed in 1981 by Prof. L.O.Chua (University of California - Berkeley), will be exploited. In this area, the “Laboratorio Circuiti” at University of Rome “Tor Vergata” designed and manufactured several analogue chips devoted to this class of Neural Networks. These chips belong to the Digital Programmable CNN (DPCNN) chip family and present two main features: the digital programmability of the synaptic weights as well as a special architecture oriented to an interconnection structure (i.e. it is possible to carry out large network by connecting together more of these chips). In this thesis work you will find an overview about the Artificial Neural Network, the Cellular Neural Network and the Star Cellular Neural Network: what they are, how they work and why they are useful. In particular, the DP-CNN chip family will be deeply described. This thesis proposes the TD-CNN (Time Division CNN), a particular design strategy, devoted to reduce the silicon area occupation of the a elementary cell in order to improve the VLSI integrability of the network. Moreover, the same time-division strategy will be applied to TD-Star CNN. In particular, these circuits consist of the digitally programmable non-linearity circuits (i.e. the Digital Programmable Transconductance Amplifier - DPTA and Digital Programmable Transconductance Comparator – DTPC) and special circuit for to carry out the multiplexing feature (i.e. the Dynamic Mirror Sample and Hold – DM-SH and the Multiplexer – DM-MUX). Several circuital simulations will be shown in order to study the behavior of this modified architecture and the modifications on the dynamics introduced by the time division strategy.
Mathew, Anu. "VLSI library cells for Cellular Neural Network applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0009/MQ52470.pdf.
Full textMark, Rutenberg Richard. "COMPUTER IMAGE ANALYSIS BASED QUANTIFICATION OF COMPARATIVE IHC LEVELS OF P53 AND SIGNALING ASSOCIATED WITH THE DNA DAMAGE REPAIR PATHWAY DISCRIMINATES BETWEEN INFLAMMATORY AND DYSPLASTIC CELLULAR ATYPIA." Cleveland State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=csu1586182859848301.
Full textCampbell, Robert David James. "Information processing in microtubules." Thesis, Queensland University of Technology, 2002.
Find full textHung, Keng-Shen. "Study of an intelligent camera using a cellular neural network." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339711.
Full textPorter, Reid. "Evolution on FPGAs for feature extraction." Thesis, Queensland University of Technology, 2001.
Find full textLím, Drahoslav Lim Drahoslav. "Implementation of a programmable, modularly extendable cellular-neural-network signal processor /." [S.l.] : [s.n.], 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13219.
Full textLin, Nan-Chein, and 林建男. "Multi-functional Cellular Neural Networks." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/31929354238949708143.
Full text國立中正大學
電機工程所
97
The objective of this thesis is to explore three of the critical topics in implementing multi-functional cellular neural network (CNN). First of all, we developed the theoretical background underlies the methods to embed multiple functions into a single cellular neural network. The properties and the efficacies of the embedding methods were discussed. Secondly, we propose a novel paradigm for cellular neural network (CNN) to handle discrete wavelet transform (DWT) of two-dimensional (2D) images. The paradigm has two distinct features, namely, it can simultaneously calculate the four subband images in DWT and it can embed the DWT and a subsequent image processor into a single CNN. Thirdly, we proposed a configurable digital cellular neural network (DCNN) with decomposable templates to process grey-scale images. CNN is a highly parallel analog circuit suitable for real-time image processing. However, the needs of preprocessors in real-world applications usually destroy the parallel processing nature of CNN. In Chapter 3, we propose methods to embed the function of a preprocessor into a single CNN universal machine (CNN-UM) such that the novel CNN contains the functions of both the preprocessor and the original CNN. The embedding processes are divided into three categories according to the structure of the B template. Case 1 is the general case. Since the unbiased method for embedding requires special CNN-UMs that support twice the neighborhood size, we proposed three approximation methods (AMs) that require only regular CNN-UM. Among the three approximation methods, AM I and AM III are comparable, while AM III shows a slightly better performance (lower ER) than AM I in the general case. Both of them outperform AM II. In Cheater 4, a novel CNN paradigm is proposed to cope with the above problems raised when one intends to include wavelet transform in the processing of images using CNN. Two sets of experiments were designated to test the performance of the WECNN, namely feature extraction in (1) the LL subband image and (2) the combination of different subband images. In the first set of experiments, the combination of DB53 wavelet filter and the r=2 halftoning processor was determined to be most appropriate for low-resolution applications such as in a tactile/vision substitution system (TVSS) for the blind. The second set of experiments demonstrated the capacity of the paradigm in the extraction of features from multi-subband images. The proposed edge detector is capable of delineating more subtle details than using typical CNN edge detector alone, and is more robust in dealing with low-contrast images than traditional edge detectors. In Cheater 5, we propose a digital CNN emulator which provides a powerful and integrated platform for the development and testing of novel CNN applications. The configurable DCNN with decomposable templates is presented to process grey-scale images with a lower complexity of O( ). When the proposed structure is implemented on an embedded system with Virtex II XC2V2000 chip, the DCNN is realized with 48014 gates at 18-bit data format and running at an optimal working frequency of 90 MHz. The result outperforms the other approach for DCNN realization with much reduced gate counts and higher working frequency.
Ferreira, João Luís Fernandes. "Cellular Neural Networks design for sensor networks." Master's thesis, 2021. https://hdl.handle.net/10216/135338.
Full textThe concept of Cellular Neural Networks was proposed by Leon O. Chua and Lin Yang in 1988, and it has ever since seen only relatively modest but promising improvements. The goal of this work is to delve further into this subject, which we consider to be largely unexplored, and to try to make a positive contribution to it. We also consider that these advancements fill an important gap in the context of the recent breakthrough we have been witnessing in the field of artificial intelligence and data fusion.
Ferreira, João Luis Fernandes. "Cellular Neural Networks design for sensor networks." Dissertação, 2021. https://hdl.handle.net/10216/135338.
Full textThe concept of Cellular Neural Networks was proposed by Leon O. Chua and Lin Yang in 1988, and it has ever since seen only relatively modest but promising improvements. The goal of this work is to delve further into this subject, which we consider to be largely unexplored, and to try to make a positive contribution to it. We also consider that these advancements fill an important gap in the context of the recent breakthrough we have been witnessing in the field of artificial intelligence and data fusion.
Chang, Tien-Lung, and 張天龍. "Cellular Neural Networks: Adding A Quadratic Term." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/20886203975517397564.
Full text國立交通大學
應用數學系
90
In this paper, we study a cellular neural network(CNN) with a quadratic term x^2 in the integer lattice Z^2 on the plane R^2. We impose a symmetric coupling between nearest neighbors and use two parameters to describe the weight between such interacting cells. The existence and stability of mosaic patterns are been proved. We also investigate the relationship between mosaic patterns and the parameter space.
Chen, Hsuan-ying, and 陳軒盈. "Active Contour Model using Cellular Neural Networks." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/10137008080745015281.
Full text義守大學
資訊工程學系碩士班
93
Active contour model (ACM) is an important contour segmentation method for image processing especially for low contrast and high noised image such as medical and remote sensing images. Traditional methods adopt the combination of internal and external energies, which is combination of optimized so as to determine the contour. Such methods require sequential computations composed of a vest amount of convolution-wise operations with if-then optimization branchings. Therefore, it is time consuming. This project proposes a cellular neural network method to implement ACM, which provides parallel computation in the CNN universal machine (CNN-UM) architecture. The proposed CNN method can follow the local rules of the optimization in searching the contour. Moreover, it takes into account the global properties of images to introduce noise-proof mechanism, which is intrinsic done by propagation. As a consequence faster computation can be achieved and robust segmentation can be obtained against to low contrasts and high noises.