Contents
Academic literature on the topic 'Cellules eucaryotes – Résistance au stress'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellules eucaryotes – Résistance au stress.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cellules eucaryotes – Résistance au stress"
Donné, Romain, Maëva Saroul, Vanessa Maillet, Séverine Celton-Morizur, and Chantal Desdouets. "La polyploïdie hépatique." médecine/sciences 35, no. 6-7 (June 2019): 519–26. http://dx.doi.org/10.1051/medsci/2019094.
Full textLacraz, G., N. Kassis, A. Galinier, L. Corinne, D. Bailbé, and B. Portha. "P61 Chez le rat diabétique GK, les cellules β pancréatiques présentent une résistance inattendue au stress oxydant." Diabetes & Metabolism 34 (March 2008): H60. http://dx.doi.org/10.1016/s1262-3636(08)72973-2.
Full textBenhamou, N., and K. Picard. "La résistance induite : une nouvelle stratégie de défense des plantes contre les agents pathogènes." Article de synthèse 80, no. 3 (April 12, 2005): 137–68. http://dx.doi.org/10.7202/706189ar.
Full textMERLOT, E. "Conséquences du stress sur la fonction immunitaire chez les animaux d’élevage." INRAE Productions Animales 17, no. 4 (October 5, 2004): 255–64. http://dx.doi.org/10.20870/productions-animales.2004.17.4.3601.
Full textChen, Yu, and R. William Currie. "ANTI-INFLAMMATION: FINDING A NEW ROLE FOR HEAT SHOCK PROTEINS IN HUMAN HEALTH." Proceedings of the Nova Scotian Institute of Science (NSIS) 43, no. 1 (April 1, 2005). http://dx.doi.org/10.15273/pnsis.v43i1.3626.
Full textDissertations / Theses on the topic "Cellules eucaryotes – Résistance au stress"
Baïdi, Feriel. "Simplicity and complexity in cell cycle control." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1B021.
Full textThe cyclin-dependent protein kinases (CDKs) are at the core of cell cycle control. In fission yeast, cell proliferation is regulated by CDK1/Cdc2 in association with the four cyclins Cdc13, Cig1, Cig2 and Puc1 at different stages of the cell cycle. However, this complex endogenous system can be replaced by a minimal module consisting of a fusion between Cdc2 and Cdc13 in the absence of G1/S cyclins. Surprisingly, this minimal CDK network drives the entire cell cycle in a wild type manner. Since a number of aspects of cell cycle control in fission yeast appear to be dispensable, we asked why similarly simplified circuits were not selected over the complex endogenous network during evolution. This led us to investigate the limits of such minimal systems, in particular when challenged by different stresses. Unexpectedly, we uncovered that simplification of the CDK network confers resistance to replication stress. We showed that this phenotype is independent from the CDK inhibitor Rum1 and the existing checkpoint pathways. It solely relies on operating the entire cell cycle with a single cyclin, Cdc13, and is associated with reduced genome instability when replication is challenged. However, it is not the consequence of changes in replication organisation along the chromosomes. Our data suggest that G1/S cyclin-associated Cdc2 activity may represent an alternative as yet unknown means of modulating cellular response to DNA stress. We also took advantage of a derivative of the minimal cell cycle network, in which Cdc2 is made sensitive to specific chemical inhibition. As a result, CDK activity can be externally modulated and cell cycle phases can be precisely controlled. Using this system, we re-visited the interplay between CDK and periodic transcription, a highly conserved process that is critical for proper cell proliferation. In contrast with previous studies in budding yeast, we demonstrate that periodic transcription in fission yeast is not independent from cell cycle progression. On the contrary, our work reveals that cell cycle transcriptional oscillations rely on quantitative changes in CDK activity levels. We therefore propose a new model, in which cell cycle progression and periodic transcription are intimately coupled through their common dependency on a unique input, namely CDK activity levels
Thabet, Sana. "Impact du traitement photocatalytique sur les cellules eucaryotes fongiques : vers la compréhension des mécanismes d'action." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10248.
Full textPhotocatalysis is an advanced oxidative process that generates reactive oxygen species (ROS) and inactivates living cells. The aim of this work was to have a better understanding of the antimicrobial mechanisms generated by photocatalytic treatment. The cellular impact was monitored using the unicellular fungal model, Saccharomyces cerevisiae yeast. Photocatalysis reduces drastically the cultivability of yeast cells. Flow cytometry analyses revealed that the decrease of cell cultivability was related to both damages in plasma membrane and loss of intracellular enzymatic activity. During exposure to photocatalysis, multiple cellular macromolecules are damaged (lipids, proteins, nucleic acids). These damages are responsible for cellular structure dysfunction leading to a release of intracellular compounds (ions, amino acids) and the formation of by-products and pollutant (carboxylic acids, malondialdéhyde). The increase of intracellular superoxide ions amounts and the higher resistance of yeast strains overexpressing ROS detoxifying enzymes suggested an intracellular oxidative status responsible for described macromolecular damages. Finally, exploring photocatalytic treatment on other environmental and health impact fungi revealed the presence of resistant cells or structures. For the first time, an interdisciplinary work focusing on cellular impacts of photocatalysis was monitored leading to a better understanding and to new perspectives
Chareyre, Sylvia. "Rôle de l'ARN non codant RyhB dans la biogénèse des centres fer-soufre et la résistance aux aminoglycosides." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0570.
Full textIron-sulfur (Fe-S) clusters are ancient cofactors involved in plethora of biological processes. Two major Fe-S biogenesis systems, Isc and Suf, present in both prokaryotes and eukaryotes, allow the synthesis of these important cofactors. The bacterium E.coli possesses both systems, making it an important model for Fe-S biogenesis. In this bacterium, Isc is considered as the housekeeping system while Suf is responsible for synthesis of Fe-S clusters in adverse conditions. Intricate regulatory pathways control the use of these machineries in function of the environmental conditions. In particular, iron starvation is detrimental to Fe-S cluster biogenesis which is why it is highly regulated by the IscR transcriptional regulator and the non-coding RNA RyhB. I have studied the role of RyhB in the resistance to gentamicin, a bactericidal antibiotic that targets the ribosome. We have found that RyhB induces resistance to gentamicin by inhibiting the activity of the respiratory complexes Nuo and Sdh. These complexes, which contain numerous Fe-S clusters, are crucial for gentamicin uptake. RyhB directly inhibits the translation of nuo and sdh and indireclty inhibits the maturation of the complexes leading to gentamicin resistance.I also participated in a study that unveiled the role of RyhB and the transcriptional factor IscR in the regulation of ErpA, an essential transporter of Fe-S clusters in E. coli. IscR and RyhB form an incoherent circuit that regulates erpA in medium with antagonist iron content. These regulations allow the fine-tuning of erpA expression in function of iron availability and coordination of Fe-S cluster transporter usage in E. coli
Cadiou, Jean-Loup. "Etude des mécanismes de fractionnement isotopique du cuivre par les cellules eucaryotes. Vers le développement d'un nouveau biomarqueur non-invasif de l'apparition d'une chimio-résistance au cisplatine des cellules cancéreuses." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN072/document.
Full textCancer development leads to Cu metabolism disregulation which were especially studied by the natural copper (Cu) isotopic composition. Hepatocellular carcinoma (hCC) are enriched in heavy Cu isotopes compared to peri-tumoral cells. The goal of this thesis is to identify the mechanism responsible for this difference. I used the yeast Saccharomyces cerevisiae where Cu reduction and Cu import mechanism are close to the human. By mutating the genes coding for Cu reductases or Cu importers, I showed that protein Cu import generate an intracellular light Cu enrichment which is modulated by Cu reductases activity. With a numerical modelisation I calculated that the Cu flux through high-affinity Cu importers is linearly and negatively correlated to the natural Cu isotopic composition. This flux is modulated by the cell reduction ability. Therefore, I have linked the heavy Cu isotopes enrichment in hCC to a lower reductases activity. Besides, for a same genetic background, I observed a correlation between a lower light Cu enrichment and an higher resistance to a anti-tumoral drug, the cisplatin. Moreover, I observed that cisplatin treatment leads to an enrichment in heavy Cu isotopes which is lower for resistant to cisplatin strains. Those results shown that the Cu isotopes measurement in tumors before and after the cisplatin treatment might be used to trace the chemoresistance apparition in patient with cancer which is characaterize by a tumoral heavy Cu isotopes enrichment. This results might pave the way to the development of a new prognosis biomarker of the cisplatin resistance apparition
Mayola, Eléonore. "Etudes des mécanismes de mort cellulaire et résistance des cellules cancéreuses pour le développement de nouvelles approches thérapeutiques : modèle du mélanome." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA11T012/document.
Full textApoptosis is a programmed cell death process necessary for tissue homeostasis duringdevelopment. Cancer cells acquire the capacity to evade apoptosis. Restoring tumor cellsability to die is a therapeutic strategy against cancer. It is therefore important to identify newtherapeutic targets within the apoptotic signaling and to test new molecules.Mitochondrion being a central integrator of cell death signals and a key player inapoptosis execution, it is a target of choice to develop new anticancer therapies. ANT(Adenine Nucleotide Translocase) is the main protein of the inner mitochondrial membrane. Itpresents a ADP/ATP transporter function in physiological conditions and acquire a lethal poreactivity upon apoptotic stimulus. It is thus interesting to inhibit the transporter function and- 6 -activate ANT pore function in order to induce apoptosis. There are four isoforms: ANT1, 2, 3and 4. We studied the role of the recently discovered ANT4 in apoptotic signaling. Our studyemphasize ANT4 anti-apoptotic role in cancer cells and ANT potential as an anticancertherapeutic target.Increase in anti-apoptotic proteins, adaptation to cellular stress and activation ofsurvival pathways are the main mechanisms responsible for chemoresistance. Using cellularmodels we studied the ability of two molecules: Withaferin A (WFA) and Plumbagin (PBG)to stimulate apoptosis and determined the molecular mechanisms involved. We showed WFAcapacity to specifically induce the mitochondrial pathway of apoptosis in melanoma cellsthrough reactive oxygen species (ROS) generation leading to mitochondrial pathwayactivation and the decrease in anti-apoptotic protein Bcl-2 expression level. However, PBG isresponsible for apoptosis and necrosis induction in melanoma cells. In both cases PBG actsthrough an increase in ROS following endoplasmic reticulum stress. WFA and PBG are thustwo pro-oxidant molecules able to induce the death of melanoma cells by taking advantage oftheir vulnerability to oxidative stress.Our work took part in the demonstration of a potential anticancer target and two agentsable to induce cell death in a context of chemoresistance
Atifi, Siham. "Synthèse de nouveaux dérivés de la pyrido[3,2-g]quinoléine-4,6-dione : étude de leurs propriétés réversantes de la résistance chez les cellules procaryotes et eucaryotes." Aix-Marseille 2, 2004. http://www.theses.fr/2004AIX22954.
Full textAzzoni, Violette. "Cellules souches cancéreuses et résistance thérapeutique du cancer du sein : ciblage des cellules souches cancéreuses mammaires par l'inhibition de la réponse au stress réplicatif." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0740.
Full textBreast tumors are known to present a major intratumoral heterogeneity that contributes to therapy failure and disease progression. The origin of this cellular heterogeneity is mainly explained by a hierarchical organization of tumor tissues where several subpopulations of self-renewing breast cancer stem cells (bCSCs) sustain the long-term oligoclonal maintenance of the neoplasm. bCSCs drive tumor growth, resist to conventional therapies and initiate metastasis development. Thus, developing bCSC-targeting therapies is becoming a major challenge requiring the understanding of the unique molecular circuitry of bCSC as compared to non-bCSC. To better understand the biology of these cells, we isolated bCSCs from different patient–derived xenografts (PDXs), derived fom breast tumors, and established their gene expression profiles. We identified a bCSC core transcriptional program that may be implicated in the reduction of the replicative stress in CSC: overexpression of genes implicated in dNTP metabolism and homologous recombination (HR). Our results show that HR plays a major role in SR regulation of bCSC and that bCSC are more resistant to RS than non-bCSC, We realized a preclinical assay in PDX and showed that HR inhibition prevent bCSC expansion Cisplatin-induced, suggesting a sensitization of the bCSC to the chemotherapy. Our results identify replication stress as the Achilles’ heel of bCSC and highlights HR as potential targets for anti-bCSC therapy
Andriollo, Maud. "Implication des mécanismes radicalaires dans la chimiothérapie et la résistance aux anthracyclines dans deux lignées de cellules tumorales." Université Joseph Fourier (Grenoble), 2001. http://www.theses.fr/2001GRE18003.
Full textOxidative stress, by overexpression of reactive oxygen species (ROS), is implicated in numerous processes such as carcinogenesis. In order to better understand the involvement of oxygen free radicals (OFR) in tumoral cytotoxicity and resistance mechanisms of antineoplastic drugs in different cell types, we characterized oxidative status of two different tumoral cell lines (GLC4 and K562) resistant or not to adriamycin (ADR), before and after a treatment with this drug. The obtained response by ADR or selenium treatment is very divergent between both GLC4 and K562 cells and sensitive or resistant phenotype. This work clearly demonstrates the interest of OFR and cellular antioxidant systems in chemotherapy. Although preventive role of selenium has been well characterized, our work showed that its effect on cancer cells is depending on cellular type and may interfere with the treatment
Coudert, Laetitia. "La formation des granules de stress : un possible mécanisme général de la réponse des cellules cancéreuses aux drogues anti-cancers." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30404/30404.pdf.
Full textThe natural reflex of a eukaryotic cell under stress (e.g.: radiation, anti-cancer drugs, thermal or oxidative stress) is to activate defense mechanisms to adapt to extreme conditions imposed, allowing them to survive. One mechanism activated under stress conditions is the inhibition of translation initiation leading to the formation of stress granules (SG). SG are dynamic cytoplasmic body containing translation initiation factors, mRNAs, RNA binding proteins and signaling molecules involved in cell death pathways. SG formation was identified as a key event inactivating cell death pathways, thus establishing a major survival mechanism, which in the case of cancer can lead to drug resistance. We previously conducted a screening of the translation initiation factors involved in the SG formation. These works (Mazroui et al, 2006; Mochas et al, 2009) have identified several factors that inactivation induces the formation of GS. For cons, the inactivation of factor eIF4E, which is responsible for the recognition of mRNAs during translation initiation, does not induce the formation of SG. My thesis has highlighted a new role for the translation initiation factors eIF4E and its partner eIF4GI in the SG formation induced by chemotherapeutic drug Bortezomib. This role is stimulated by oncogenic mTORC1 pathway, which is the key regulator of the eIF4E-eIF4GI interaction. In addition, our study demonstrated that specific inhibition of eIF4E, eIF4GI or the inactivation of mTORC1 prevents anti-apoptotic pathways associated with SG and sensitizing cancer cells to chemotherapeutic treatments. The SG formation is not restricted to Bortezomib. Indeed, our screening of chemotherapeutic drugs has identified Sorafenib (Nevaxar ®) and Lapatinib (Tykerb / Tyverb ®) as two potent inducers of SG in cancer cells. Our results indicate that the mechanism of action of these two drugs appears to be similar to Bortezomib and they induce the formation of SG by inhibiting translation initiation. In addition, the formation of SG induced by Sorafenib or Lapatinib also seems to depend on the eIF4E-eIF4GI complex formation. Therefore, my work provides a general role of eIF4E-eIF4GI interaction in the assembly of SG and the cancer cells resistance to chemotherapy.
Simiuc, Dana. "Sensibilité de cellules cancéreuses au stress oxydatif : approche systémique pour étudier le couplage entre le métabolisme et le stress oxydatif." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1R041.
Full textLiving cells, when constantly exposed to stress, are able to respond in a complex manner involving various intracellular regulation networks. Their regulation controls for instance the cellular fate outcome in response to an oxidative stress. When defensive mechanisms manage to cope against stress, a negative feedback is involved and cell survive, otherwise cell dies. One of a key defensive mechanism relies on the interplay between metabolic flux and oxidative stress exploiting the dualistic role of hydrogen peroxide, acting both as signalling and damaging molecule. Our work aims to identify key molecules involved in cellular fate and to monitor their dynamics at the single cell level, using fluorescent microscopy. In a first step, we design an experimental system inspired by chemotaxis studies to constantly control the dose applied to breast cancer cell line (MCF7). The choice of the stimulation method plays an important role in our study. Indeed, in order to deliver a constant concentration of stimulus to mammalian cells, non-consuming H2O2 cell culture medium is chosen. Using a fluidic system, the intracellular H2O2 production rate is controlled by varying the external H2O2 concentration. Stimulus delivery and removal is thus performed fast enough (faster than cellular consumption) to study the dynamical cellular responses. During constant stimulation, adaptation dynamics are notified, suggesting that negative feedbacks are involved in the cellular protection against stress. Cell-to-cell variability is observed and can be quantified using identified adaptation parameters. The fluorescent signal is processed and preliminary results of pH modulation dependence by the cellular metabolic state are discussed. The adaptation features are not depicted when the carbon sources are completely removed from external medium. This result underlines the role of glucose in the cellular defensive mechanism. Another important result is that the feedback dynamics is depending by the H2O2 dose applied to cells: stronger stimulation implies stronger response. It is a first limiting factor we identified while quantifying the cell death response to H2O2 stress. The results of cell death dose response are suggesting that the cell fate (survival or death) is also depending by both the control of the stimulus and the cellular metabolic state. In order to identify the metabolic pathways involved in the negative feedback induced by the oxidative stress, key molecules regulating the Phosphate Pentose Pathway (PPP) are modulated. We conclude that the orchestration of molecular network is more complex and PPP is the main but not the only network involved in the cellular defense. In this manuscript an experimental design is presented in order to study the adaptation responses to oxidative stress in real time. Our experiments are confirming the fast adaptation kinetics of NAD(P)H already observed in literature. We identify, for the first time, a second regulation mechanism where the glutathione system is restoring within 30 min during controlled H2O2 stimulation. The glucose metabolism is supporting the regeneration of this antioxidant system and PPP network is thus identified as the main negative feedback in the molecular adaptation here observed