Dissertations / Theses on the topic 'Cellules eucaryotes – Résistance au stress'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'Cellules eucaryotes – Résistance au stress.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Baïdi, Feriel. "Simplicity and complexity in cell cycle control." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1B021.
Full textThe cyclin-dependent protein kinases (CDKs) are at the core of cell cycle control. In fission yeast, cell proliferation is regulated by CDK1/Cdc2 in association with the four cyclins Cdc13, Cig1, Cig2 and Puc1 at different stages of the cell cycle. However, this complex endogenous system can be replaced by a minimal module consisting of a fusion between Cdc2 and Cdc13 in the absence of G1/S cyclins. Surprisingly, this minimal CDK network drives the entire cell cycle in a wild type manner. Since a number of aspects of cell cycle control in fission yeast appear to be dispensable, we asked why similarly simplified circuits were not selected over the complex endogenous network during evolution. This led us to investigate the limits of such minimal systems, in particular when challenged by different stresses. Unexpectedly, we uncovered that simplification of the CDK network confers resistance to replication stress. We showed that this phenotype is independent from the CDK inhibitor Rum1 and the existing checkpoint pathways. It solely relies on operating the entire cell cycle with a single cyclin, Cdc13, and is associated with reduced genome instability when replication is challenged. However, it is not the consequence of changes in replication organisation along the chromosomes. Our data suggest that G1/S cyclin-associated Cdc2 activity may represent an alternative as yet unknown means of modulating cellular response to DNA stress. We also took advantage of a derivative of the minimal cell cycle network, in which Cdc2 is made sensitive to specific chemical inhibition. As a result, CDK activity can be externally modulated and cell cycle phases can be precisely controlled. Using this system, we re-visited the interplay between CDK and periodic transcription, a highly conserved process that is critical for proper cell proliferation. In contrast with previous studies in budding yeast, we demonstrate that periodic transcription in fission yeast is not independent from cell cycle progression. On the contrary, our work reveals that cell cycle transcriptional oscillations rely on quantitative changes in CDK activity levels. We therefore propose a new model, in which cell cycle progression and periodic transcription are intimately coupled through their common dependency on a unique input, namely CDK activity levels
Thabet, Sana. "Impact du traitement photocatalytique sur les cellules eucaryotes fongiques : vers la compréhension des mécanismes d'action." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10248.
Full textPhotocatalysis is an advanced oxidative process that generates reactive oxygen species (ROS) and inactivates living cells. The aim of this work was to have a better understanding of the antimicrobial mechanisms generated by photocatalytic treatment. The cellular impact was monitored using the unicellular fungal model, Saccharomyces cerevisiae yeast. Photocatalysis reduces drastically the cultivability of yeast cells. Flow cytometry analyses revealed that the decrease of cell cultivability was related to both damages in plasma membrane and loss of intracellular enzymatic activity. During exposure to photocatalysis, multiple cellular macromolecules are damaged (lipids, proteins, nucleic acids). These damages are responsible for cellular structure dysfunction leading to a release of intracellular compounds (ions, amino acids) and the formation of by-products and pollutant (carboxylic acids, malondialdéhyde). The increase of intracellular superoxide ions amounts and the higher resistance of yeast strains overexpressing ROS detoxifying enzymes suggested an intracellular oxidative status responsible for described macromolecular damages. Finally, exploring photocatalytic treatment on other environmental and health impact fungi revealed the presence of resistant cells or structures. For the first time, an interdisciplinary work focusing on cellular impacts of photocatalysis was monitored leading to a better understanding and to new perspectives
Chareyre, Sylvia. "Rôle de l'ARN non codant RyhB dans la biogénèse des centres fer-soufre et la résistance aux aminoglycosides." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0570.
Full textIron-sulfur (Fe-S) clusters are ancient cofactors involved in plethora of biological processes. Two major Fe-S biogenesis systems, Isc and Suf, present in both prokaryotes and eukaryotes, allow the synthesis of these important cofactors. The bacterium E.coli possesses both systems, making it an important model for Fe-S biogenesis. In this bacterium, Isc is considered as the housekeeping system while Suf is responsible for synthesis of Fe-S clusters in adverse conditions. Intricate regulatory pathways control the use of these machineries in function of the environmental conditions. In particular, iron starvation is detrimental to Fe-S cluster biogenesis which is why it is highly regulated by the IscR transcriptional regulator and the non-coding RNA RyhB. I have studied the role of RyhB in the resistance to gentamicin, a bactericidal antibiotic that targets the ribosome. We have found that RyhB induces resistance to gentamicin by inhibiting the activity of the respiratory complexes Nuo and Sdh. These complexes, which contain numerous Fe-S clusters, are crucial for gentamicin uptake. RyhB directly inhibits the translation of nuo and sdh and indireclty inhibits the maturation of the complexes leading to gentamicin resistance.I also participated in a study that unveiled the role of RyhB and the transcriptional factor IscR in the regulation of ErpA, an essential transporter of Fe-S clusters in E. coli. IscR and RyhB form an incoherent circuit that regulates erpA in medium with antagonist iron content. These regulations allow the fine-tuning of erpA expression in function of iron availability and coordination of Fe-S cluster transporter usage in E. coli
Cadiou, Jean-Loup. "Etude des mécanismes de fractionnement isotopique du cuivre par les cellules eucaryotes. Vers le développement d'un nouveau biomarqueur non-invasif de l'apparition d'une chimio-résistance au cisplatine des cellules cancéreuses." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN072/document.
Full textCancer development leads to Cu metabolism disregulation which were especially studied by the natural copper (Cu) isotopic composition. Hepatocellular carcinoma (hCC) are enriched in heavy Cu isotopes compared to peri-tumoral cells. The goal of this thesis is to identify the mechanism responsible for this difference. I used the yeast Saccharomyces cerevisiae where Cu reduction and Cu import mechanism are close to the human. By mutating the genes coding for Cu reductases or Cu importers, I showed that protein Cu import generate an intracellular light Cu enrichment which is modulated by Cu reductases activity. With a numerical modelisation I calculated that the Cu flux through high-affinity Cu importers is linearly and negatively correlated to the natural Cu isotopic composition. This flux is modulated by the cell reduction ability. Therefore, I have linked the heavy Cu isotopes enrichment in hCC to a lower reductases activity. Besides, for a same genetic background, I observed a correlation between a lower light Cu enrichment and an higher resistance to a anti-tumoral drug, the cisplatin. Moreover, I observed that cisplatin treatment leads to an enrichment in heavy Cu isotopes which is lower for resistant to cisplatin strains. Those results shown that the Cu isotopes measurement in tumors before and after the cisplatin treatment might be used to trace the chemoresistance apparition in patient with cancer which is characaterize by a tumoral heavy Cu isotopes enrichment. This results might pave the way to the development of a new prognosis biomarker of the cisplatin resistance apparition
Mayola, Eléonore. "Etudes des mécanismes de mort cellulaire et résistance des cellules cancéreuses pour le développement de nouvelles approches thérapeutiques : modèle du mélanome." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA11T012/document.
Full textApoptosis is a programmed cell death process necessary for tissue homeostasis duringdevelopment. Cancer cells acquire the capacity to evade apoptosis. Restoring tumor cellsability to die is a therapeutic strategy against cancer. It is therefore important to identify newtherapeutic targets within the apoptotic signaling and to test new molecules.Mitochondrion being a central integrator of cell death signals and a key player inapoptosis execution, it is a target of choice to develop new anticancer therapies. ANT(Adenine Nucleotide Translocase) is the main protein of the inner mitochondrial membrane. Itpresents a ADP/ATP transporter function in physiological conditions and acquire a lethal poreactivity upon apoptotic stimulus. It is thus interesting to inhibit the transporter function and- 6 -activate ANT pore function in order to induce apoptosis. There are four isoforms: ANT1, 2, 3and 4. We studied the role of the recently discovered ANT4 in apoptotic signaling. Our studyemphasize ANT4 anti-apoptotic role in cancer cells and ANT potential as an anticancertherapeutic target.Increase in anti-apoptotic proteins, adaptation to cellular stress and activation ofsurvival pathways are the main mechanisms responsible for chemoresistance. Using cellularmodels we studied the ability of two molecules: Withaferin A (WFA) and Plumbagin (PBG)to stimulate apoptosis and determined the molecular mechanisms involved. We showed WFAcapacity to specifically induce the mitochondrial pathway of apoptosis in melanoma cellsthrough reactive oxygen species (ROS) generation leading to mitochondrial pathwayactivation and the decrease in anti-apoptotic protein Bcl-2 expression level. However, PBG isresponsible for apoptosis and necrosis induction in melanoma cells. In both cases PBG actsthrough an increase in ROS following endoplasmic reticulum stress. WFA and PBG are thustwo pro-oxidant molecules able to induce the death of melanoma cells by taking advantage oftheir vulnerability to oxidative stress.Our work took part in the demonstration of a potential anticancer target and two agentsable to induce cell death in a context of chemoresistance
Atifi, Siham. "Synthèse de nouveaux dérivés de la pyrido[3,2-g]quinoléine-4,6-dione : étude de leurs propriétés réversantes de la résistance chez les cellules procaryotes et eucaryotes." Aix-Marseille 2, 2004. http://www.theses.fr/2004AIX22954.
Full textAzzoni, Violette. "Cellules souches cancéreuses et résistance thérapeutique du cancer du sein : ciblage des cellules souches cancéreuses mammaires par l'inhibition de la réponse au stress réplicatif." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0740.
Full textBreast tumors are known to present a major intratumoral heterogeneity that contributes to therapy failure and disease progression. The origin of this cellular heterogeneity is mainly explained by a hierarchical organization of tumor tissues where several subpopulations of self-renewing breast cancer stem cells (bCSCs) sustain the long-term oligoclonal maintenance of the neoplasm. bCSCs drive tumor growth, resist to conventional therapies and initiate metastasis development. Thus, developing bCSC-targeting therapies is becoming a major challenge requiring the understanding of the unique molecular circuitry of bCSC as compared to non-bCSC. To better understand the biology of these cells, we isolated bCSCs from different patient–derived xenografts (PDXs), derived fom breast tumors, and established their gene expression profiles. We identified a bCSC core transcriptional program that may be implicated in the reduction of the replicative stress in CSC: overexpression of genes implicated in dNTP metabolism and homologous recombination (HR). Our results show that HR plays a major role in SR regulation of bCSC and that bCSC are more resistant to RS than non-bCSC, We realized a preclinical assay in PDX and showed that HR inhibition prevent bCSC expansion Cisplatin-induced, suggesting a sensitization of the bCSC to the chemotherapy. Our results identify replication stress as the Achilles’ heel of bCSC and highlights HR as potential targets for anti-bCSC therapy
Andriollo, Maud. "Implication des mécanismes radicalaires dans la chimiothérapie et la résistance aux anthracyclines dans deux lignées de cellules tumorales." Université Joseph Fourier (Grenoble), 2001. http://www.theses.fr/2001GRE18003.
Full textOxidative stress, by overexpression of reactive oxygen species (ROS), is implicated in numerous processes such as carcinogenesis. In order to better understand the involvement of oxygen free radicals (OFR) in tumoral cytotoxicity and resistance mechanisms of antineoplastic drugs in different cell types, we characterized oxidative status of two different tumoral cell lines (GLC4 and K562) resistant or not to adriamycin (ADR), before and after a treatment with this drug. The obtained response by ADR or selenium treatment is very divergent between both GLC4 and K562 cells and sensitive or resistant phenotype. This work clearly demonstrates the interest of OFR and cellular antioxidant systems in chemotherapy. Although preventive role of selenium has been well characterized, our work showed that its effect on cancer cells is depending on cellular type and may interfere with the treatment
Coudert, Laetitia. "La formation des granules de stress : un possible mécanisme général de la réponse des cellules cancéreuses aux drogues anti-cancers." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30404/30404.pdf.
Full textThe natural reflex of a eukaryotic cell under stress (e.g.: radiation, anti-cancer drugs, thermal or oxidative stress) is to activate defense mechanisms to adapt to extreme conditions imposed, allowing them to survive. One mechanism activated under stress conditions is the inhibition of translation initiation leading to the formation of stress granules (SG). SG are dynamic cytoplasmic body containing translation initiation factors, mRNAs, RNA binding proteins and signaling molecules involved in cell death pathways. SG formation was identified as a key event inactivating cell death pathways, thus establishing a major survival mechanism, which in the case of cancer can lead to drug resistance. We previously conducted a screening of the translation initiation factors involved in the SG formation. These works (Mazroui et al, 2006; Mochas et al, 2009) have identified several factors that inactivation induces the formation of GS. For cons, the inactivation of factor eIF4E, which is responsible for the recognition of mRNAs during translation initiation, does not induce the formation of SG. My thesis has highlighted a new role for the translation initiation factors eIF4E and its partner eIF4GI in the SG formation induced by chemotherapeutic drug Bortezomib. This role is stimulated by oncogenic mTORC1 pathway, which is the key regulator of the eIF4E-eIF4GI interaction. In addition, our study demonstrated that specific inhibition of eIF4E, eIF4GI or the inactivation of mTORC1 prevents anti-apoptotic pathways associated with SG and sensitizing cancer cells to chemotherapeutic treatments. The SG formation is not restricted to Bortezomib. Indeed, our screening of chemotherapeutic drugs has identified Sorafenib (Nevaxar ®) and Lapatinib (Tykerb / Tyverb ®) as two potent inducers of SG in cancer cells. Our results indicate that the mechanism of action of these two drugs appears to be similar to Bortezomib and they induce the formation of SG by inhibiting translation initiation. In addition, the formation of SG induced by Sorafenib or Lapatinib also seems to depend on the eIF4E-eIF4GI complex formation. Therefore, my work provides a general role of eIF4E-eIF4GI interaction in the assembly of SG and the cancer cells resistance to chemotherapy.
Simiuc, Dana. "Sensibilité de cellules cancéreuses au stress oxydatif : approche systémique pour étudier le couplage entre le métabolisme et le stress oxydatif." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1R041.
Full textLiving cells, when constantly exposed to stress, are able to respond in a complex manner involving various intracellular regulation networks. Their regulation controls for instance the cellular fate outcome in response to an oxidative stress. When defensive mechanisms manage to cope against stress, a negative feedback is involved and cell survive, otherwise cell dies. One of a key defensive mechanism relies on the interplay between metabolic flux and oxidative stress exploiting the dualistic role of hydrogen peroxide, acting both as signalling and damaging molecule. Our work aims to identify key molecules involved in cellular fate and to monitor their dynamics at the single cell level, using fluorescent microscopy. In a first step, we design an experimental system inspired by chemotaxis studies to constantly control the dose applied to breast cancer cell line (MCF7). The choice of the stimulation method plays an important role in our study. Indeed, in order to deliver a constant concentration of stimulus to mammalian cells, non-consuming H2O2 cell culture medium is chosen. Using a fluidic system, the intracellular H2O2 production rate is controlled by varying the external H2O2 concentration. Stimulus delivery and removal is thus performed fast enough (faster than cellular consumption) to study the dynamical cellular responses. During constant stimulation, adaptation dynamics are notified, suggesting that negative feedbacks are involved in the cellular protection against stress. Cell-to-cell variability is observed and can be quantified using identified adaptation parameters. The fluorescent signal is processed and preliminary results of pH modulation dependence by the cellular metabolic state are discussed. The adaptation features are not depicted when the carbon sources are completely removed from external medium. This result underlines the role of glucose in the cellular defensive mechanism. Another important result is that the feedback dynamics is depending by the H2O2 dose applied to cells: stronger stimulation implies stronger response. It is a first limiting factor we identified while quantifying the cell death response to H2O2 stress. The results of cell death dose response are suggesting that the cell fate (survival or death) is also depending by both the control of the stimulus and the cellular metabolic state. In order to identify the metabolic pathways involved in the negative feedback induced by the oxidative stress, key molecules regulating the Phosphate Pentose Pathway (PPP) are modulated. We conclude that the orchestration of molecular network is more complex and PPP is the main but not the only network involved in the cellular defense. In this manuscript an experimental design is presented in order to study the adaptation responses to oxidative stress in real time. Our experiments are confirming the fast adaptation kinetics of NAD(P)H already observed in literature. We identify, for the first time, a second regulation mechanism where the glutathione system is restoring within 30 min during controlled H2O2 stimulation. The glucose metabolism is supporting the regeneration of this antioxidant system and PPP network is thus identified as the main negative feedback in the molecular adaptation here observed
Mayola, Eleonore, and Eleonore Mayola. "Etudes des mécanismes de mort cellulaire et résistance des cellules cancéreuses pour le développement de nouvelles approches thérapeutiques : modèle du mélanome." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00719317.
Full textKebouchi, Mounira. "Caractérisation des propriétés d'adhésion de Streptococcus thermophilus LMD-9 aux cellules épithéliales intestinales : 1. Rôle des protéines de surface dans la résistance aux sels biliaires et dans l’adhésion, 2. Impact de l’adhésion sur l’expression des gènes eucaryotes et bactériens." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0209.
Full textLactic acid bacteria are of great economic interest because of their use in the food industry. Among them, Streptococcus thermophilus (ST) is of major interest since it is the most used after Lactococcus lactis, for the manufacture of fermented dairy products and cheese. In addition, this bacterium is the only streptococcus to benefit from GRAS status (Generally Recognized As Safe). Beside its interest in the dairy industry, ST has beneficial effects on human intestinal health. Although these effects are widely documented, the probiotic status of ST remains to be consolidated. Therefore, studies are currently being conducted in order to select strains of ST with a high probiotic potential. Among criteria that are important to select ST strains include their ability to survive stress the drastic conditions of the digestive tract (DT) and their ability to adhere to intestinal cells. In this context, the aim of this thesis was to investigate firstly the in vitro adhesion capacity of the ST LMD-9 strain to different human intestinal cell lines and to evaluate the survival of this strain to bile salt stress. In order to highlight the potential role of some surface proteins in these two processes, three mutants derived from this strain and inactivated in the genes prtS (parietal protease), srtA (sortase A) and mucBP (Mucin Binding-protein) were also included in this study. Secondly, the impact of LMD-9 adhesion was analyzed, on one hand on the expression of some mucin-encoding genes in eukaryotic cells, and on the other hand on the expression of genes that would be specifically induced during adhesion process using the R-IVET (Recombinase-based In Vivo Expression Technology) approach. The results obtained demonstrated the ability of LMD-9 to survive up to the concentration of 3 mM of bile salts and that the PrtS, SrtA and MucBP surface proteins would be involved in the resistance to this stress. Our results also showed that the LMD-9 strain was capable of adhering to three cell lines used suggesting that this strain could interact with different mucins that may encounter in the DT. Moreover, the involvement of some surface proteins in the adhesion of LMD-9 has been found to be dependent on the surface characteristics of these cell lines, whether they are enterocytic (Caco-2) or mucus-secreting cells (HT29-MTX and HT29-CL.16E). Regarding the impact of LMD-9 adhesion on MUC2 and MUC5AC gene expression, no effect has been observed on the transcript level under our experimental conditions. Furthermore, for the first time, our results allowed us to identify genes specifically induced in the LMD-9 strain during adhesion process to epithelial cells. We have thus shown that the LMD-9 adhesion does not depend solely on surface proteins, but other functions and metabolic pathways are also involved. This thesis work contributes thus to new knowledge related to (i) the choice of the cellular model in in vitro bacterial adhesion studies, (ii) the ability of LMD-9 to survive bile salt stress by involving some surface proteins and (iii) understanding the molecular mechanisms of LMD-9 adhesion to epithelial cells
Martel, David. "Rôles et implications de la protéine HRI dans la réponse cellulaire face au stress." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29856/29856.pdf.
Full textLupieri, Adrien. "Fonctions catalytique et non-catalytique de la PI3Ky dans la réponse artérielle aux stress." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30095.
Full textCardiovascular diseases represent the first cause of death worldwide and a large part of them concerns different arterial disorders as hypertension, atherosclerosis, intimal hyperplasia and aneurism. All of these diseases are characterized by arterial remodeling resulting in a complex collaboration between environment and arterial physiology participants: Blood flow, endothelial cells (EC), smooth muscle cells (SMC) and arterial inflammation. In this context, this thesis project is interested in y-isoform of phosphoinositide 3-kinase (PI3Ky). PI3Ky is largely expressed in hematopoietic compartment where its catalytic activity drives arterial wall inflammation, but it is also lower expressed in cardiovascular system such as SMC and EC. Moreover, in addition to catalytic function implicated in chemoattraction and release of inflammatory mediators, PI3Ky has been described to activate phosphodiesterases (PDE) activity, through a non-catalytic "docking" function. At first, this work studied studied non-catalytic docking function of PI3Ky in SMC. Using hypertension-induced arterial remodeling in mice showed that SMC hyperplasia was dependent of PI3Ky protein expression but independent of its activity. Further, in vitro exploration with primary-SMC from mice aorta highlighted that PI3Ky activates PDE independently of its catalytic function, which promotes SMC proliferation by hydrolysis of an anti-mitotic second messenger: the cyclic-AMP. In the same approach, we tested original therapeutic strategy using a permeant-peptide which inhibits PI3Ky/PDE interaction. This permeant-peptide showed good efficiency to prevent both in vitro SMC proliferation and in vivo arterial SMC hyperplasia. The second part of this work how PI3Ky activity in inflammatory cells modulates endothelial healing following endovascular injury. Using in vivo and ex vivo models of arterial de-endothelialization in mouse, we observed a cellular cross talk in arterial wall between T-cells, SMC and EC. PI3Ky activity in T-cells promotes IFNy secretion following arterial injury which indirectly decreases re-endothelialization through a local secretion of CXCL10 by SMC. Indeed, CXCL10 directly inhibits endothelial healing independently of immune compartment. Our findings provide a new promising target to promote endothelial repair and therefore prevent cardiovascular events following endovascular intervention.Altogether, these works unravel an interesting dual function of PI3Ky in arterial stress response. In one hand, catalytic function of PI3Ky drives inflammatory-induced inhibition of endothelial healing, and in other hand, non-catalytic function controls SMC proliferation via inhibition of cyclic-AMP pathway
Prud'Homme, Nicolas. "L'absence des kératines 8/18 augmente la résistance des cellules hépatocytaires au stress oxydant par une modulation de l'association de l'hexokinase à la mitochondrie." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29649/29649.pdf.
Full textMentewab, Ayalew. "Androgénèse in vitro chez le blé : utilisation pour la transformation génétique et l'amélioration de la résistance au stress hydrique." Toulouse, INPT, 1998. http://www.theses.fr/1998INPT001A.
Full textLaperrousaz, Bastien. "Rôle du microenvironnement dans le maintien et la résistance des cellules souches leucémiques de la Leucémie Myéloïde Chronique. voie BMP et contraintes mécaniques." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL0986/document.
Full textOne of the main causes of treatment failure in cancers is the development of drug resistance by cancer cells. The persistence of cancer stem cells (CSCs) might explain cancer relapses as they could allow reactivation of cancer cells proliferation following therapy, leading to disease persistence and ultimately to patients’ death. Clinically, it is crucial to develop therapeutic strategies able to target resistant CSCs in order to cure the patients. CSCs are controlled by a variety of biochemical and biomechanical signals from the leukemic niche. My project aims to determine the involvement of the tumor microenvironment (BMP signaling pathway and mechanical stress) in the maintenance and resistance of Leukemic Stem Cells (LSCs) in Chronic Myelogenous Leukemia (CML). For this, we combined functional and molecular assays to the analysis of tumor microenvironment on more than 200 CML patients’ samples. We demonstrated that alterations of intracellular BMP signaling pathway in CP-CML primary samples corrupt and amplify the response to exogenous BMP2 and BMP4, which are abnormally abundant in the tumor microenvironment. These results, recently published in Blood led us to evaluate the role of the BMP pathway in LSC maintenance under TKI treatment. Atomic force microscopy allowed us to demonstrate that BCR-ABL expression alone is sufficient to increases the rigidity of immature CML cells compared to healthy ones. Finally, using a unique cell confining system, we were able to demonstrate that mechanical stress controls the proliferation of immature leukemic cells by regulating the expression of mechano-sensitive genes such as Twist-1. These results could explain how LSCs can benefit from a mechanical stress exerted by their microenvironment to acquire a proliferative advantage over normal cells. Ultimately, we hope that this transdisciplinary approach will help to identify key molecules in the transduction of mechanical signals potentially involved in maintenance and resistance of CSCs and thus offer new targets to counter these effects
Gareau, Cristina. "La surexpression de p21 WAF1/CIP1 via CUGP1 et les Granules de Stress procurent une résistance aux cellules cancéreuses face à l'apoptose médiée par le Bortézomib." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/26707.
Full textRationale: Post-transcriptional mechanisms play an important role in the regulation of gene expression. Gene expression is crucial for the proper development of the cell but also for its survival. The alteration of post-transcriptional mechanisms is now the subject of numerous studies on the cause, or on the consequence, of various human diseases such as cancer. Recently, Stress Granules (SG) have been found to act as a new post-transcriptional mechanism, which allows the cell to survive in stress conditions. Results: Our study demonstrates for the first time, the formation of SGs in cancerous cells, in response to a chemotherapeutic agent. From this we have elucidated a specific pathway of SG formation in response to Bortezomib (Bz). We demonstrate herein that this proteasome inhibitor reduces translation initiation via the phosphorylation of the initiation factor (eIF2). This phosphorylation of eIF2 is controlled through the activation of the heme-regulated kinase (HRI). The alteration of the pathway phospho-eIf2-SG, through depletion of HRI, causes massive cellular death in Bz treated cancerous cells. These data thus reveal a crucial role for HRI in the resistance of cancerous cells against Bz, in part via its capacity to regulate SG formation. Furthermore, we describe the anti-apoptotic factor p21 to be trapped inside Bz-SGs. This sheltering of the highly unstable p21 mRNA allows this one to be protected from degradation, which can be stabilized and accumulated. We also demonstrate, herein, that the RNA-binding protein CUGBP1 acts as a factor responsible for the localization of the p21 mRNA inside Bz-SGs. After prolonged treatment of Bz, SGs disassemble and release a high dose of p21 mRNA that becomes available for translation. This massive translation of anti-apoptotic p21 gives a boost to the cell that allows it to survive the stress. Perspectives and Conclusion: In sum, our studies describe a new specific pathway of cell survival that implies a potential role for SGs in cancer, which could be targeted in therapy. In perspective, xenograft tumors in mice will be used to test if (i) the inhibition of SG formation via the inactivation of HRI, and (ii) the inactivation of the CUGBP1-p21 pathway that is regulated by SGs, can both sensitize tumors to Bz treatment thus validating our model in vivo. These studies will provide us with a proof of principle for the development of new strategies targeting SG-associated pathways. Combinatorial therapies implicating the termination of such pathways could be developped in order to reduce the risk of recurrence against Bz.
Ladjimi, Mohamed Tahar. "Modélisation biophysique de la mort cellulaire en réponse au stress thermique." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R029/document.
Full textThe living cell is constantly exposed to various types of stress that can damage its components. When the induced damages are detected, defense mechanisms are activated to repair them while optimally managing the energy resources available and necessary for cell function. If the stress is too severe and the system can not defend itself, death will be inevitable. The cellular response to stress is orchestrated by intracellular signaling networks that are extraordinarily complex. The molecular species constituting these networks perform various tasks through biochemical reactions, forming synchronized biological process machineries. Our approach in this thesis for the study of these networks is to model them mathematically to reproduce an observed phenomenon and identify its key players, analyze their reactions in response to different signals, and possibly make precise enough and experimentally verifiable predictions that can be of an extreme utility for therapeutic applications. In our studies, we focus on thermal stress and on the resulting cellular response in terms of the dynamics of the molecular species involved, but also of cell fate (death or survival) at the end of the exposure, we adress those questions by dynamic models describing the biochemical kinetics of system variables as a consequence of temperature variation. In a first step, we demonstrate through simulations, followed by experimental validation, that the temporal form of heat stress significantly impacts cell survival. This first result highlights a mechanism of saturation of the repair species as a consequence of exposure to high temperatures. In a second step, we study the potential correlation between a variability introduced on the levels of two proteins in the heat shock response network and the phenomenon of fractional killing. According to our model predictions, experimentally measured chaperone proteins (repair species) variability alone is not sufficient to explain fractional killing, which must involve other sources of variability. Finally, an analysis of the isoeffect curves generated by a generic model of the cellular response to transient stress shows the existence of four sensitivity regimes depending on the duration-intensity parameters of the stress as well as on the parameters of the response network and its time scales. Our work highlights the potential and utility of dynamic network models in the characterization of dose-response curves
Le, Mercier Marie. "La galectine-1 influence fortement les caractéristiques biologiques des cellules gliales tumorales humaines." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210330.
Full textNous avons tout d’abord montré que la galectine-1 est impliquée dans la chimiorésistance des gliomes. En effet, nous avons démontré que la diminution du taux d’expression de la galectine-1, au moyen d’un siRNA au sein d’un modèle de gliome expérimental, permet d’augmenter le bénéfice thérapeutique du témozolomide in vivo sans toutefois induire d’apoptose, d’autophagie ou de perméabilisation de la membrane des lysosomes. Nous avons également montré que la diminution du taux d’expression de la galectine-1 au sein de ce modèle de gliome expérimental affecte les processus d’angiogenèse in vivo et de « vasculogenic mimicry » in vitro. Nous avons identifié la protéine ORP150 comme l’une des principales cibles de l’effet pro-angiogénique de la galectine-1, sachant que la protéine ORP150 contrôle la maturation du facteur VEGF. Nous avons ensuite montré que le rôle de la galectine-1 dans la chimiorésistance des gliomes et dans l’angiogenèse est directement lié à l’implication de la galectine-1 dans le processus de réponse au stress du réticulum endoplasmique. Via ce processus, la galectine-1 modulerait l’expression d’un certain nombre de gènes tels que ATF3, DUSP5 et HERP, qui sont impliqués dans la chimiorésistance et des gènes tels que ORP150 et MDG1 qui sont impliqués dans l’angiogenèse.
Enfin, nous avons également montré que la galectine-1 régule l’expression du gène BEX2 et que celui-ci joue un rôle important dans la biologie des gliomes, notamment dans les processus d’angiogenèse et de migration cellulaire.
En conclusion, notre travail suggère que l’étiquette « biomarqueur » pourrait être attribuée à la galectine-1 pour qualifier l’agressivité biologique des gliomes malins et que la galectine-1 pourrait représenter une nouvelle cible thérapeutique dans le combat contre les gliomes malins en général, et le glioblastome en particulier.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Ta, Thi Minh Ngoc. "Mécanismes physiologiques et biologiques induits chez yarrowia lipolytyica en réponse à des modifications de l'environnement physico-chimique des cellules." Phd thesis, Université de Bourgogne, 2010. http://tel.archives-ouvertes.fr/tel-00575589.
Full textCayron, Julien. "Caractérisation de la réponse cellulaire associée à différents stress chez la bactérie Escherichia coli." Thesis, Lyon, 2019. https://n2t.net/ark:/47881/m6qv3kv7.
Full textBacterial growth requires coordination between the main cell cycle processes that are DNA replication and segregation, elongation and cell division. During their life, bacteria are exposed to different endogenous or exogenous stresses (antibiotics, pH, nutrients starvation…) that can disturb the bacteria cell cycle. Those hostile life conditions trigger a cellular response aiming at improving survival in stress conditions. In E. coli, DNA breaks induce the SOS response that inhibits cell division while the bacteria continue to elongate, resulting in the formation of a filamentous cell. Filamentation has long been considered as a symptom of cell death, however recent studies suggest that this phenotype could instead be a transient morphology change improving the survival in hostile environments. The main objective of this thesis is to characterize the filamentation process, especially the restart of the filament division allowing to resume normal bacterial growth. To do so, I developped an approach combining live-cell microscopy in microfluidic chamber, flow cytometry, traditional microbiology technics and bacterial genetics. Association of those techniques constitutes a global approach allowing characterization of the stress effect on bacterial viability, morphology and DNA content, from the single cell to the population level. This experimental framework allowed to describe how filamentous cells quickly divide into viable cells, thus understanding how this transient and reversible cellular differentiation state constitute an efficient stress-survival strategy. Furthermore, the expertise I developed during this ph.D. project allowed me to be involved into the study of drug-resistance acquisition by gene transfer through bacterial DNA conjugation. Besides, I contributed to the characterization of the effects of biocides inducing envelop stress response and to the characterize the impact on E. coli of the production of Acinetobacter baumannii toxins predicted to be involved in contact-dependant growth inhibition
Oliveira, Junior Raimundo Gonçalves de. "Sensibilisation de cellules de mélanome à la chimiothérapie par des flavonoïdes et caroténoïdes extraits de plantes du Brésil, de Nouvelle-Calédonie et de microalgues marines." Thesis, La Rochelle, 2020. http://www.theses.fr/2020LAROS007.
Full textMetastatic melanoma is an aggressive form of cancer that progresses rapidly due to resistance to anti-cancer drugs. This thesis studies the hypothesis that molecules purified from plants or marine microalgae can improve the efficacy of anti-melanoma drugs by sensitizing cancer cells to chemotherapy. After a review of studies devoted to chemosensitization by natural molecules, we selected plants from Brazil and New Caledonia (Bixa orellana and Gardenia oudiepe) as well as marine microalgae (Rhodomonas salina and Tisochrysis lutea) to purify original flavonoids and carotenoids and evaluate their chemosensitization potential in a melanoma cell model treated with dacarbazine and vemurafenib. Our work on B. orellana seeds allowed us to detail their phytochemical composition, to identify two novel apocarotenoids and to demonstrate the chemosensitizing potential of Z-bixin by ROS generation. We also show that 5,7-dihydroxy-3,6,4'-trimethoxyflavone, purified from G. oudiepe, sensitizes melanoma cells to dacarbazine by inducing cytoskeleton disruption. After redefining the pigment profile of R. salina and T. lutea, we developed a process for the purification of fucoxanthin by CPC and demonstrated its chemosensitizing potential as well as that of alloxanthin. These results validate in vitro the concept of sensitization to chemotherapy by cytostatic carotenoids and flavonoids and contribute to the understanding of the cellular and molecular mechanisms involved in this chemosensitization
Khemissi, Wahid. "Etude de la dérégulation de l'axe HPA dans la création d'une résistance aux antidépresseurs et son implication dans la prolifération cellulaire et la neurogénèse hippocampique." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4030.
Full textOne-third of depressed patients included in clinical trials do not respond to antidepressant treatment. Dysregulation of the HPA axis and reduced hippocampal neurogenesis are the main factors of resistance to antidepressants. The objective of this work is to develop a model of resistance to antidepressant related to the HPA axis and to use this model to understand the underlying mechanisms. Our results suggest that dysregulation of negative feedback of the HPA axis at the beginning of the protocol can be a predictor of antidepressant treatment failure in depression. Our protocol shows that the failure of fluoxetine to induce antidepressant effects was associated with poor ability of compounds to stimulate cell proliferation in the dentate gyrus of the hippocampus. Further studies are needed to investigate the causal relationship between these phenomena
Muschitz, Aurélie. "Réponses physiologiques des végétaux supérieurs aux stress métalliques. Caractérisation du rôle des parois cellulaires dans les statégies défensives des cellules de tomate (Solanum lycopersicum Mill.) face aux éléments traces métalliques )." Thesis, Artois, 2009. http://www.theses.fr/2009ARTO0408/document.
Full textThe aim of this work was to evaluate the effects of heavy metals (Zn, Cd, Pb) on tomato(Solanum lycopersicum, L.) suspension-cultured cells. The main objective was to demonstrate thattomato cells subjected to metal stress react by modifying their cell walls as they can do in responseof a pathogen attack.In the first chapter, cell parameters were characterized with both quantitative(growth, water content) and qualitative (viability, enzymatic activities) aspects to highlightdeleterious effects of heavy metal (HM) when added in the culture medium during exponential cellgrowth. In addition to growth reducing (growth break, turgor pressure loss and cell death), tomatocells have showed higher tolerance capacity to Zn compared to Cd and Pb.The second chapter demonstrated that tomato cells were able to protect themselvesagainst HM stress by increasing their cell wall biomass and also the HM amount retained by cellwall polymers. Cell walls appeared to assume important roles in HM accumulation (Cd>Zn>Pb)and could therefore limit their influx into the cells. Our results also suggested that HM fixation bycell walls was not only due to an increase in cell wall biomass but also to an improvement of itsbinding capacity.The last chapter, devoted to study the osidic composition of tomato primary cell walls forthe lowest Zn doses, has provided original data particularly about pectins. Results have beendiscussed in order to understand the binding capacity of cell walls in function of Zn treatments.Then, an hypothetical structure of tomato cell wall of cultured cells has been proposed.Finally, this work has answered to the initial question and has constituted a preparativestudy for next phytoremediation projects
Marin, Matthieu. "Xénobiotique et détoxication cellulaire : couplage d'un mécanisme de détoxication cellulaire de type MDR/MXR à des courants chlorures osmorégulés." Le Havre, 2005. http://www.theses.fr/2005LEHA0055.
Full textAmong the molecular actors of cellular detoxification, P-glycoproteins (P-gp) represent a first line of defense against various toxic compounds. These proteins were first identified in neoplastic tumors (MDR phenotype, Multi Drug Resistance). This concept was the enlarged to MXR phenotype (Multi Xenobiotic Resistance), a set of defense mechanisms against toxins in aquatic organisms. In 90's, studies proposed that MXR was coupled to volume regulation. The aim of the study was to highlight cross regulations between osmoregulated chloride channels and MXR-MDR mechanisms in terms of enzymatic activity, regulation, cell viability and modulation of osmoregulated chloride currents, in MCF-7 cell line, expressing or not P-gp, and in primary-cultured cells of the blue mussel
Rouaud, Florian. "Implication du facteur de transcription E2F1 dans le mélanome." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4130.
Full textMelanoma is the most deadly form of skin cancer. It originates from malignant transformation of melanocytes and quickly disseminates as metastasis through the body. At this stage, this cancer is refractory to almost all therapies. Thus, new therapeutic target identification is needed for setting up specific biotherapies against melanoma. In this context, we focused on E2F1 transcription factor which plays a critical role in cell cycle. Recently, it was also implicated in several cell functions. So we aimed at characterizing its implication in melanoma. We observed that E2F1 is weakly expressed in normal skin cells. On the contrary, it is strongly expressed in melanoma and its expression correlates with a bad clinical prognosis. We also showed that E2F1 inhibition decreased melanoma cell viability in vitro and in vivo, as a result of cell cycle arrest, senescence and apoptosis. These processes seem to depend on p53 pathway. With this work we characterized E2F1 as a potential therapeutic target in non-mutated p53 melanoma. In parallel, we initiated a collaboration with Dr Slama-Schwok for studying NS1 compound, a NO-synthase inhibitor. This compound presents an in vitro anti-melanoma activity. Indeed, it induces endoplasmic reticulum stress, which leads to partial autophagy and cell death by apoptosis. This work opens new perspectives for metastatic melanoma treatment
Deynoux, Margaux. "Incidence de l'hypoxie sur le métabolisme oxydatif des leucémies aiguës myéloïdes : établissement et caractérisation d'un modèle in vitro de niche leucémique." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR3303.
Full textIn acute myeloid leukemia, a high level of ROS is known to favor blasts proliferation, whereas a low level promotes stem cells quiescence. The low oxygenation, or hypoxia, of the bone marrow niche could contribute to chemoresistance of AML cells by reducing the oxidative stress. Hypoxia-inducible factors (HIF) are involved in the control of the cell metabolism and antioxidant enzymes. HIFs inhibition leads to AML cells stress and death. The purpose of this work was to study a link between hypoxia, oxidative metabolism and chemoresistance in an in vitro model of leukemic cell culture. The acquisition of a hypoxic profile by hematopoietic stem cells (HSC) cultured with medullary mesenchymal stromal cells (MSC), has been shown. We hypothesized that AML cells may also acquire such profile in a coculture with human MSCs. To demonstrate that, we cultivated primary AML cells or the MV4-11 cell line on primary human MSCs or the HS-27a cell line. Like HSCs, we identified three leukemic populations according to their adhesion capacity to MSCs: in suspension, adherent to MSCs and embedded in MSCs. Embedded cells, the most adherent, have stronger CXCR4 expression compared to the others. They are also 2- to 7-fold more resistance to cytarabine. However, no change in the stem cell phenotype profile and in the clonogenic, repopulation or xenograft capacities, could be associated with the embedded cells compared to other populations. In contrast, embedded cells present a hypoxic profile, a weak proliferation with increased G0 phase, and lower ROS level that may rely on lower mitochondrial mass. This suggests that chemoresistance mainly relies on hypoxia or cell metabolism rather than a higher stem cell capacity. Furthermore, we have shown that acriflavine, a non-specific HIF inhibitor, could synergize with the cytarabine to eliminate embedded chemoresistant cells. Our results show that the MSC supernatant or a simple contact are not sufficient to induce metabolic change and resistance to cytarabine. We assume that hypoxia in the niche may modulate the oxidative metabolism and the chemoresistance by direct mechanisms and/or indirect ones through CXCR4 expression, a chemokine receptor shown to be involved in the regulation of the oxidative stress in HSC
Megalizzi, Véronique. "Involvement of sigma receptors and thri ligands in the biology of cancers." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209906.
Full text- de réduire le taux d’activation des voies de signalisation contrôlées par PI3K /Akt /mTOR et NFkappaB, qui diminuerait le taux de croissance des gliomes malins, ainsi que le taux de migration des cellules tumorales isolées dans le parenchyme cérébral;
- de réduire le taux de migration des cellules tumorales gliales afin de restaurer un certain degré de sensibilité à des agents chimiothérapiques pro-apoptotiques;
- d’endiguer l’export des agents chimiothérapiques par les pompes à efflux surexprimées dans les gliomes
- d'induire d’autres processus de mort cellulaire que l’apoptose, car les cellules tumorales gliales migrantes sont plus sensibles à d’autres formes de mort cellulaire.
Ces besoins de nouvelles stratégies thérapeutiques ont motivé ce travail qui se focalisera sur le potentiel antitumoral des ligands du R-sigma1 dans les glioblastomes. Ainsi, nous montrerons que les ligands des Rs-sigma sont capables de produire certains des effets visés dans les stratégies ci-dessus, dont la réduction de la prolifération et de la migration des cellules cancéreuses avec une certaine potentialisation des chimiothérapies. Ces propriétés ouvrent de nouvelles perspectives en thérapie anticancéreuse pour cette famille de ligands, dont plusieurs membres sont déjà utilisés depuis de nombreuses années comme antipsychotique.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Mugabo, Yves. "Régulation de protéine C-réactive vasculaire dans le diabète de type 2." Thèse, 2010. http://hdl.handle.net/1866/4378.
Full textAtherosclerotic cardiovascular disease is the leading cause of death in western countries and the major complication of metabolic syndrome. It is now widely accepted that atherosclerosis is a chronic inflammatory disease and that inflammation plays a major pathogenic role in the initiation and progression of atherosclerotic disease. It has been demonstrated that increased serum levels of C-reactive protein (CRP), a protein of the acute phase and a major constituent of the innate immune response, is associated with increased cardiovascular risk and that, in both healthy subjects and diabetic patients, high CRP enhances the risk of cardiovascular morbidity and mortality. Several evidences suggest that CRP may not only be a cardiovascular risk marker but may also represent a direct pro-atherogenic factor. Endothelial dysfunction is a characteristic feature of early-state atherosclerosis and a role of CRP in the pathogenesis of endothelial dysfunction has been proposed. In addition to its systemic origin, CRP is produced in atherosclerotic lesions and by various vascular cells, including endothelial cells. To elucidate the role of CRP in endothelial dysfunction associated with the metabolic syndrome, we studied the regulation of endothelial CRP expression by free fatty acids (FFA) and the role of endothelial CRP as mediator of the inhibitory effect of FFA on nitric oxide (NO) production. Our results demonstrated that: 1) Palmitic acid (PA) induced CRP gene expression in cultured human arterial endothelial cells (HAECs) and increased CRP protein expression in a dose-dependent manner; 2) Pretreatment of HAECs with antioxidants and inhibitors of i) protein kinase C (PKC), ii) nuclear factor-kappa B, iii) Janus kinase and signal transducer and activator of transcription and iv) mitogen-activated protein kinases prevented the stimulatory effect of PA on CRP protein and gene expression; 3) Treatment of HAECs by PA led to an increased production of reactive oxygen species, an effect prevented by PKC inhibitors and by AICAR (5-amino-4-imidazole carboxamide 1-β-D-ribofuranoside), an AMP- activated protein kinase activator; 4) Decreased production of NO was finally observed in PA-treated HAECs, an effect prevented by preincubating endothelial cells with an anti-CRP. Overall, these data indicate a stimulatory effect of PA on endothelial CRP expression through the activation of oxidative stress-sensitive kinases and transcription factors. They further suggest a role of CRP in FFA-induced endothelial dysfunction.