Dissertations / Theses on the topic 'Cellules solaires pérovskites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 dissertations / theses for your research on the topic 'Cellules solaires pérovskites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Diab, Hiba. "Propriétés optiques des pérovskites hybrides 3D pour le photovoltaique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN061/document.
Full textIn the last five years, hybrid organic-inorganic perovskites have emerged as a novel class of semiconductors owing to their interesting electronic and optical properties for photovoltaic and light-emitting devices. This thesis reports an experimental study using optical spectroscopy to explore the optical properties and excitonic effects of hybrid perovskites such as CH3NH3PbX3 with X = I or Br.We studied the optical properties of spin-coated thin films and solution processed single crystals. Thin films present a granular structure and a high density of defects which induce a great variability of the optical properties. The study of single crystals allows us to highlight the intrinsic properties of material: free exciton emission, electron-phonon coupling and charge carriers recombination dynamics. Besides, we have investigated the impact of the orthorhombic-tetragonal phase transition on the optical properties of CH3NH3PbI3. Finally, we have quantified the effect of reabsorption on the emission properties of hybrid perovskites. The accurate estimate of this effect is particularly important for the interpretation of the optical properties of hybrid perovskites and explains the great heterogeneity of the results in the literature
Wang, Pengjiu. "Conception de contacts oxydes et de pérovskites à cations mixtes pour des cellules solaires hautement efficaces." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEC019.
Full textPerovskite-based solar cells (PSCs) have emerged as the most promising new generation of photovoltaic technology.Organometal trihalide perovskite solar cells (PSC) have aroused widespread academic and commercial interests due to rapid increase in efficiency, which has boosted from 3.8%4 in 2009 to 20.1%5 in 2014. These great achievements are mainly attributed to the unique characteristics of perovskite materials, such as low cost, high photo-to-electric conversion efficiency, high light absorption properties, direct bandgap, high charge- carrier mobility and long electron-hole exciton transport distance (more than 1 µm). 6-8 Perovskite material is soluble, which makes it quite easy and cheap to prepare perovskite solar cells
Amelot, Dylan. "Etudes des propriétés d'interfaces pour les cellules solaires de nouvelle génération." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS321.
Full textNext-generation solar cells consist of thin-films of different materials stacked-up. The purpose of those layers is to extract and transport free charge carriers generated by the absorption of the solar spectrum. Engineering layers in a solar cell consist in maximizing the separation of the charge carriers and their extraction towards electrodes, and limiting their recombination. Surface states, energy level alignement between materials and potential at interfaces dictate the behavior of photogenerated charge carriers in solar cells, which is responsible for the performance of devices. Properties of different surfaces and interfaces in organic and perovskite solar cells are explored in my thesis work. In a first study, I present the properties of an electron transport layer extensively used in organic and perovskite solar cells, titanium dioxyde, prepared at low temperature and at the interface with organic molecules. In a second study, I present my results regarding the integration of FAPbI3 perovskite nanocrystals (PNC) in solar cells. The characterization of optoelectronic properties of PNC and their evolution at the interfaces with an electron transport layer (TiO2) and hole transport layer (MoO3) are presented. Photoemission spectroscopy techniques are used to reveal the energy levels and electronic properties of the different systems. The different results obtained in this work allow for a better understanding of the energetic and chemical landscape at the interfaces between the mentionned materials, and thus explains the behavior of charge carriers in the associated cells
Dally, Pia. "Cellules Solaires à base de Matériaux Pérovskites : De la caractérisation des matériaux à l’amélioration des rendements et de la stabilité." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI093.
Full textIn the past few years, hybrid perovskite solar cells have attracted a considerable amount of research and have undergone rapid development as next generation photovoltaics. The power conversion efficiency has then been rapidly increasing and has recently exceeded 25%. This class of materials has interesting optoelectronic properties such as a high optical absorption, a large diffusion length of the charge carriers as well as a low manufacturing cost. Nevertheless, there are several challenges that need to be addressed before commercialization will be possible, most significantly the long-term stability. In this thesis work, the main goal is to understand and improve the performance and stability under illumination of N-I-P perovskite-based solar cells. A detailed study of the reference system using CH3NH3PbI3 perovskite (MAPI) is presented by studying the formation mechanism of MAPI and its thermal behavior after annealing by XRD techniques. It showed that MAI and PbCl2 precursors initially form a MAPbCl3 layer, which transforms to MAPbI3 in an anion exchange reaction during thermal annealing, inducing a high level of strain in the MAPI layers. Solar cells were aged under continuous illumination (1 sun / 35°C) and showed severe efficiency loss. The origin of devices instability under illumination were investigated in depth thanks to the differential aging. It consists in aging the different layers under illumination before the deposition of top layers in order to determine the key parameter (layer or interface) responsible of this degradation. Results have shown that for long time scales, the upper layers (P-layer and gold electrode are responsible of solar cells degradation, while the N layer / MAPI interface causes degradation at the first hundred hours. To get further insight into the role of ETL / MAPI interface on device behavior; advanced characterization methods, combining XPS and ToFSIMS, were developed and made it possible to study the degradation of the stack glass / ITO / N layer / MAPI, aged under illumination. Improved system with double cations perovskite Cs0.05FA0.95Pb (I 0.83Br0.17)3 have also been studied and show better stability under illumination of complete cells
Sapori, Daniel. "Hybrid Perovskites : Fundamental properties and solar cell thin film technology." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0017.
Full textIn the future, the world has to face up to major challenges: increasing the energy production, reducing the environmental impact, moving towards sustainability in energy, etc. Renewable energies such as photovoltaics can meet these challenges. This thesis concerns hybrid halide perovskite materials and their use in solar cells. These materials have recently attracted a lot of attention owing to their direct bandgaps, strong light absorption, large carrier diffusion lengths, tunable optoelectronic properties, and their facile and low-cost fabrication In few years, their energy conversion efficiency has rapidly increased from 3.8 % in 2009 to 22.7 % in 2017, hence approaching efficiencies of crystalline silicon based-devices which represent 90% of commercial photovoltaic cells. In the design of perovskite cells, the perovskite photoabsorber is generally sandwiched by two interfacial layers that yield selective charge collections: the hole and electron transport layers (HTM and ETM). Good quality and adapted interfacial layers are required to obtained high efficiency cells. In this thesis, both the perovskite material and the interfacial layers are investigated
Spalla, Manon. "Stabilité intrinsèque des cellules solaires pérovskites : impact de la formulation de la couche active et des couches de transport de charges." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI092.
Full textEven though the concept of perovskite solar cells is recent, solar conversion efficiencies as high as 24% have already been reached. However the main challenge of this technology concerns its stability as the perovskite solar cells are sensitive to temperature, humidity, illumination... Therefore there is a vital need for a better understanding of the degradation mechanisms and thereby the possible mitigation strategies.This thesis has focused on optimizing the stability of the perovskite and its charge transport layers. A thorough analysis of the perovskite (such as MAPbI3) and its interfaces was performed. In this study we have made the choice to only use efficient charge transport layers which are compatible with a low temperature deposition process, such as tin dioxide, aluminum doped zinc oxide, poly (3-hexylthiophene) and poly (triaryl amine). Several aging tests have been carried out on the perovskite solar cells, combining relevant characterizations, and various mechanisms affecting their stability could thus be highlighted
Huang, Yong. "Modélisation des cellules solaires pérovskites, des dispositifs optoélectroniques III-V et de la microscopie à sonde de Kelvin." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0007/document.
Full textThis PhD work focuses on optoelectronic device simulations based on drift-diffusion models. Approaches are developed for the modelling of Kelvin Probe Force Microscopy (KPFM), perovskite-based solar cells (PSCs), perovskite/silicon tandem solar cells and lll-V/GaP quantum dots (ODs). Firstly, a new approach for the modelling of KPFM is applied to TiOx slabs and to the MAPbI3 perovskite absorber. Secondly, KPFM measurements and simulations are proposed for silicon-based diffused junctions and mesoporous TiOx based PSCs. The built-in potential is investigated, and this study paves the way toward fu rther device improvements. In addition, the influence of the surface of WO. slabs on KPFM measurements is studied theoretically. Various facto rs influencing open circuit voltage (Voe) losses in PSCs are discussed. The abnormal hysteresis effect in the PSCs is simulated as well, considering interface trap states and mobile ions. The design of two-terminal perovskite/silicon tandem solar cells is studied in detail. A siliconbased tunnel junction between the top and the bottom subcells is proposed for serial current matching. The influence of the doping profile in the tunnel junction is discussed. At the end of the manuscript, the carrier transport in III-V/GaP QDs is investigated, for the integration of III-V emitters on silicon. The electroluminescence and electrical characteristics of these III -V light emitting devices are simulated by using a cylindrical approximation
Ulfa, Maria. "Nouveaux contacts sélectifs pour des cellules à pérovskites hybrides très efficaces." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEC005.
Full textThis thesis work aimed at realizing efficient, stable, and reproducible photovoltaic perovskite solar cells, and to achieve a good understanding of the cells functioning. In Chapter 1, we present the context of the research on solar cells and PSC components as well as a description of the main techniques employed for the device characterizations. Chapter 2 provides a comparative study of two different CH3NH3PbI3 deposition techniques (1-step and 2-step). It is clear that both of them are suitable for the preparation of PSC which resulted in more than 17% PCE. In Chapter 3, we have thoroughly studied the two main kinds of organic hole transporting materials: molecular and polymeric. We have also investigated the doping effect on these HTMs. Through impedance spectroscopy measurement, we could clearly see that doping is really important to get high efficiency for Spiro-OMeTAD cells, while the improvement was less significant in the case of P3HT cells. In Chapter 4, we have investigated several new carbazole derivatives as hole transporting materials. These molecules ranged from the big dendritic core B186 to the DMs and iDMs series with lower molecular weight. B186 and iDM1 showed the highest efficiency at 14.59% and 15.04%, respectively. In Chapter 5, we have studied a simple planar structure of PSC by incorporating a wide bandgap n-type semiconductor SnO2 as the hole blocking layer. Planar cells have been prepared using this layer combined with MAPI(1)-SOF and FAMA perovskites. With FAMA absorber, the devices were highly efficient with a maximum PCE of 18.2% and were almost hysteresis-free (6.7% HI) while, with MAPI(1)-SOF, the obtained efficiency was 15.2% with higher hysteresis
Bouchard, Mathilde. "Pérovskites halogénées AMX3 : synthèse, substitution cationique et étude structurale." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV008/document.
Full textMetal halide perovskites AMX3 (A+ is an organic or inorganic cation: Cs+ methylammonium [CH3NH3]+ (MA); M2+ is a metallic cation such as Pb2+ and X a halide anion I-, Br- or Cl-) have remarkable properties as solar cell absorbers. In the perovskite structural framework the properties of the materials can be easily tailored by modifying their chemical composition. Changing for example the halide anion modulates their band gap. This thesis deals with the synthesis and the advanced characterisation of mixed halide perovskite materials – i.e. with mixed ions on the same site A, M or X – of low dimensions such as thin films and nanocrystals.A fabrication protocol was developed for reference solar cells with CH3NH3PbI3 and CH3NH3PbI3-xClx absorbers yielding a power conversion efficiency over 10%. The perovskite thin films could be fabricated with a controlled thickness and a high reproducibility on different TiO2 substrates (compact, mesoporous or monocrystalline). The study of these thin films by laboratory and synchrotron X-ray diffraction showed that the CH3NH3PbI3-xClx crystallites exhibit a preferential (001) orientation on any kind of TiO2 substrate. By using monocristalline TiO2 substrates we showed for the first time that the degree of orientation and the grain size increased considerably (the surface coverage was determined to be 80%) compared to mesoporous and compact polycrystalline TiO2 substrates. The presence of chlorine at the TiO2–perovskite interface and the low surface roughness of the substrate are key factors, which promote the growth of highly oriented crystallites.In the second part of the thesis, the influence of the partial substitution of lead with non-toxic homovalent metal cations (alcaline earth, 3d transition metals) on the structural and optical properties of hybrid and inorganic perovskite nanocrystals was studied. The morphology and the size of MAPb1-xMxBr3 hybrid nanocrystals synthesised by reprecipitation is clearly affected despite the low substitution (x: maximum 6% with Mg2+). Conversely, in CsPb1-xMxX3 inorganic nanocrystals synthesised by hot injection, up to 16% of Pb2+ could be replaced by Mg2+ or Sr2+, while keeping their size, shape, structure, absorption and photoluminescence properties. With a higher substitution ratio (up to 22% was achieved), the formation of the Cs4PbX6 structure is favoured
Nakar, Rana. "Synthèse et caractérisation de nouveaux verres moléculaires de type p dérivés de carbazole pour cellules solaires pérovskite." Electronic Thesis or Diss., Tours, 2018. http://www.theses.fr/2018TOUR4033.
Full textThe sun is the most important source of renewable energy. Over the last 10 years, perovskite solar cells have shown a tremendous interest with efficiencies above 22%. This PhD work has consisted in elaborating new molecular glasses, hole transporting materials, based on carbazole moiety to replace spiro-OMeTAD (reference material) in perovskite solar cells. First, the elaboration of p type semiconductors has been optimized by synthesizing, from a carbazole based intermediate called “synthon”, in only one step, 4 new families of molecules constituted of one, two or three synthons. Cores based on spirobifluorene derivatives, thiophenes, triaxatruxenes or fluorinated spacer have been used. The physicochemical properties have then been studied in order to confirm that they can be used in solar devices and to find a structure/properties relationship. For example, we showed that the Tg of the materials are clearly depending on the rigidity of the chemical structure of the core. Thermal, electronic and energetic measurements are showing that the whole families possess suitable properties to be used as HTM in perovskite solar cells. Finally, these materials have been integrated in solar devices and have shown promising results either in terms of efficiencies (between 13% and 15%), similar to the commercially available material, or in terms of price (the cost is at least twice cheaper than the reference)
Marronnier, Arthur. "Anharmonicity and Instabilities in Halide Perovskites for Last Generation Solar Cells." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX031/document.
Full textHybrid halide perovskites (ABX3) have emerged over the past five years as absorber layers for novel high-efficiency low-cost solar cells combining the advantages of organic (molecule A) and inorganic (metal B, halogen X) materials. Very recently, fully inorganic perovskite quantum dots also shown promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins.The aim of this PhD thesis is to study and better understand both the structural and thermodynamic instabilities of these halide perovskites, with a specific focus on purely inorganic CsPbI3 structures.We first use various ab-initio techniques, the majority of which are based on Density Functional Theory (DFT) and its linear-response approach (DFPT), to investigate the vibrational and electronic properties of the different phases of CsPbI3. While the black γ-phase, crucial for photovoltaic applications, is shown to behave harmonically around equilibrium, for the other three phases frozen phonon calculations reveal a Brillouin zone center double-well instability. We also show that avoiding the order-disorder entropy term arising from these double-well instabilities is key in order to prevent the formation of the yellow perovskitoid phase, and evidence a Rashba effect when using the symmetry breaking structures obtained through frozen phonon calculations. We then analyze the structural changes and the dynamical Rashba splitting along molecular dynamics trajectories in the light of our findings.In a second phase, we investigate the thermodynamical stability of hybrid perovskite MAPbI3. Our experimental ellipsometry-based study brings better understanding of the chemical decomposition of MAPbI3 into its two precursors, methylammonium and lead iodides, which we predicted using DFT stability diagram calculations and which we confirm by X-Ray diffraction. Last, we prove that hybrid perovskite structure MAPbI3 behaves more like inorganic compounds (high dielectric constant, low exciton binding energy) than like organic materials (low dielectric constant, high exciton binding energy)
Fournier, Olivier. "Synthèse par ALD et caractérisation de couches extractrices d'électrons pour application dans les cellules solaires à base de pérovskite." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLC025.
Full textPerovskite solar cells have sparked a large interest in the photovoltaic community in the last 10 years due to their expedient optoelectrical properties, their vast scope of applications and their economical attractiveness.They are expected to reach the market by 2023, but challenges have to be tackled first, among which upscale and stability issues.To do so, a strategy is to work on the charge transport layers.They need to ensure a high selectivity towards one charge carrier, and have a good interface.Atomic layer deposition is an industrial deposition technique which allows for the synthesis of a large variety of materials.ALD layers are dense, homogeneous, conformal, pinhole-free and their thickness and composition can be controlled at the nano-scale.ALD hence appears as an ideal candidate to deposit the charge extraction layers.This thesis focuses on the development and on the characterization of various oxides by ALD.SnO2 and TiO2 have been developed at the Institut Photovoltaïque d'Île-de-France (IPVF) with two different processes for each material.Their properties in regard of an integration in perovskite solar cells as inorganic electron transport layers have been explored, and one process for each material has been chosen.The advantageous integration of a 15 nm-thick ALD-TiO2 layer has been demonstrated as compact blocking layer in a mesoporous architecture, and compared to a blocking layer deposited by spray pyrolysis.Similar power conversion efficiencies (PCE) up to 19% have been achieved, with a higher homogeneity of the ALD layer leading to a better reproducibility of the results now used in the baseline production at IPVF.The integration of ALD-SnO2 in planar structures is also discussed.The 10 nm-thick layer alone was found to give mediocre efficiencies due to a lack of fill factor.The addition of an organic interlayer solved this issue allowing for PCE up to 16%.Finally an analysis of the interface between ALD-ZnO modified by phosphonic acid derivatives and a perovskite absorber is proposed.The organization of the molecules at the surface of ZnO and their impact on the perovskite have been determined, but the performances of full devices are poor
Zhang, Jie. "Roles of the n-type oxide layer in hybrid perovskite solar cells." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066634/document.
Full textSolar energy is one of the most important resources in our modern life. Photovoltaic is the most important technology to render the solar energy usable since photovoltaic solar cells harvest light coming from sun and convert sunlight into electrical energy. Dye sensitized solar cells have gained widespread attention due to their low cost, easy fabrication technique and tunable choice for the device. A traditional DSSC device includes a dye-sensitized photo-anode, a counter electrode and an electrolyte containing a redox couple system and additives. To improve the device stability, the liquid electrolyte replacement by a solid state hole transport material has been studied in so-called solid-state dye sensitized solar cells (ssDSSCs). Recently, an amazing light perovskite absorber was introduced into the ssDSSC system to replace the dye, opening the new field of research. Perovskite solar cells (PSCs) open a new era in photovoltaic due to the low cost of this material and the high efficiency of these cells. The power conversion efficiency has risen from 3.8% to a certified 20.1% within a few years. The components in the perovskite solar cell include: the compact metal oxide blocking layer, the electron transport layer, the lead halide perovskite layer, the hole transport layer and the back contact. In this thesis, we focused on the preparation and improving the properties of the electron transport layer and the perovskite layer
Benhattab, Safia. "Synthèse et caractérisation de matériaux organiques transporteurs de trous à base de carbazole : application aux cellules solaires DSSC solides et pérovskite." Electronic Thesis or Diss., Tours, 2018. http://www.theses.fr/2018TOUR4014.
Full textThe aim of this work was to design, synthesize and characterize new carbazole based molecular glasses for the realization of solid state DSSC or perovskite solar cells. These structures would be an alternative to the reference molecule based on spirobifluorene (Spiro-OMeTAD) mainly used in hybrid devices. We have optimized a simple way to synthetize a "synthon" as a precursor to the design of a wide variety of efficient hole transporting materials (HTM). This synthesis pathway has allowed producing a first generation of molecules based on a single carbazole synthon substituted by aryl groups (naphthalene, pyrene, triazatruxene) then a second generation incorporating two carbazole synthons separated by an alkyl spacer. In both cases, the synthesis pathways are simple and the energy conversion efficiencies generated in solid DSSCs are promising (between 2.22 % and 2.47 % with the D102 dye). A preliminary ageing study has consisted in analyzing the degradation during thermolysis or photolysis of a carbazole based thin film. It was shown that Cz-P possesses stability similar to Spiro-OMeTAD in the absence of oxygen. Finally, two carbazole molecular glasses were studied in perovskite cells to achieve conversion efficiencies of 13.08 % and 12.41 % (for Cz-P and Cz-PF respectively) almost identical to the one based on Spiro-OMeTAD (13.45 %), confirming that these carbazole based structures are good candidates for the realization of efficient perovskite cells
Benhattab, Safia. "Synthèse et caractérisation de matériaux organiques transporteurs de trous à base de carbazole : application aux cellules solaires DSSC solides et pérovskite." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4014/document.
Full textThe aim of this work was to design, synthesize and characterize new carbazole based molecular glasses for the realization of solid state DSSC or perovskite solar cells. These structures would be an alternative to the reference molecule based on spirobifluorene (Spiro-OMeTAD) mainly used in hybrid devices. We have optimized a simple way to synthetize a "synthon" as a precursor to the design of a wide variety of efficient hole transporting materials (HTM). This synthesis pathway has allowed producing a first generation of molecules based on a single carbazole synthon substituted by aryl groups (naphthalene, pyrene, triazatruxene) then a second generation incorporating two carbazole synthons separated by an alkyl spacer. In both cases, the synthesis pathways are simple and the energy conversion efficiencies generated in solid DSSCs are promising (between 2.22 % and 2.47 % with the D102 dye). A preliminary ageing study has consisted in analyzing the degradation during thermolysis or photolysis of a carbazole based thin film. It was shown that Cz-P possesses stability similar to Spiro-OMeTAD in the absence of oxygen. Finally, two carbazole molecular glasses were studied in perovskite cells to achieve conversion efficiencies of 13.08 % and 12.41 % (for Cz-P and Cz-PF respectively) almost identical to the one based on Spiro-OMeTAD (13.45 %), confirming that these carbazole based structures are good candidates for the realization of efficient perovskite cells
Yasaroglu, Unal Kubra. "Preparation of a TiO2 porous layer by molding of polymer beads for perovskite solar cells application." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE041.
Full textThe perovskite based solar cells is a new generation solar cell type, the perovskite crystals act as photo-charge-generating materials with organic and inorganic elements more commonly referred to as "halide hybrid perovskite" (ABX3 with A the organic part, B the inorganic part and X an halogen). In addition, they are low-cost materials that are easy to develop, which is a major advantage for this type of cell. There are different types of perovskite-based solar cells (PSC) with different designs. This work focuses on the so-called "monolithic" PSC configuration, which is composed of different porous layers; including TiO2 deposited from commercial pastes by "screen-printing" technique into perovskite crystals infiltrate. In this cell graphite (p type) is used as cathode while FTO (Fluorine Tin Oxide, n type) on glass is used as anode. The aim is to obtain a TiO2 layer with a higher porous volume with respect to the one done commercially, so the quantity of photo-active materials that infiltrates it can be increased and in this sense higher efficiency could be reached. Indeed, up to 9% has been obtained for the optimized cells with the new configuration of porous TiO2 layer obtained by bead molding in comparison with a 6% for reference cells (commercially produced porous layer)
Yildirim, Ceren. "Using a perovskite oxide as interfacial layer for halide perovskite optoelectronics." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0001.
Full textHalide organic-inorganic photovoltaics and light-emitting diodes require suitable charge injection/extraction layers, which are crucial for several important processes governing performance and lifetime. While intensive research has been devoted to developing innovative p-type interfacial layers, materials with highly tunable properties and high photochemical stability remain in demand. This thesis explores oxide perovskites as interlayers for optoelectronic applications due to their stable physical properties under ambient conditions. SrTi0.7Fe0.3O3-δ (STFO) oxide perovskite thin film is utilized as charge extraction/injection layers for planar halide perovskite solar cells and light-emitting diodes. Using pulsed laser deposition (PLD), highly crystalline STFO thin layers on glass/FTO substrates have been successfully processed at relatively moderate temperatures (<400 °C) as compared to traditional deposition techniques. Additional thermal treatments, either by rapid thermal processing (RTP) or conventional thermal annealing, have been applied to the oxide thin films to further improve the larger crystal of the polycrystalline layers, and to tune their optical and electronic properties. When deposited on top of the oxide perovskite, FA0.85Cs0.15Pb(I0.85Br0.15)3 halide perovskite layer (suitable for photovoltaic PV energy conversion) show larger grain sizes and better crystalline order than compared to similar films deposited on top of reference p-type interlayer such as commercial PEDOT:PSS. Furthermore, the presence of the oxide resulted in a clear reduction of the fraction of optically inactive halide perovskite phase. This observation suggests that the perovskite interlayer positively impacts the growth mechanism of the halide perovskite active layer. Finally, annealed STFO layers induce longer exciton lifetime in the halide perovskite active layer, compared PEDOT:PSS. Similarly, the crystallization of the (PEA)2(MA)PbBr4 quasi-2D perovskite (suitable for light-emitting LED applications) on STFO layers was found to be of high quality, leading to comparable properties of layers deposited on top of classical PEDOT:PSS. Moreover, quasi-2D perovskite on STFO showed quite a long exciton lifetime. Although STFO thin films integrated into both halide perovskite PV and LED devices have conducted to limited performance, this work demonstrates the high potential of oxide perovskites towards efficient and stable all-perovskite devices
Quattropani, Alessandro. "Synthesis of ferroelectric oxides for photovoltaic applications." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD053/document.
Full textIn this work, we have produced Bi2FeCrO6 oxides (BFCO) by sol-gel technique and pulsed laser deposition (PLD). By sol-gel, precursors in solution were prepared, which are then deposited by centrifugation on silicon or quartz substrates. The numerous structural (XRD) and optical images (SEM, TEM) analyses carried out on these BFCO films show that the films are fairly homogeneous but exhibit many parasitic phases, which they can be partly eliminated by rapid thermal annealing. Finally, we present the first results obtained on BFCO-SG perovskite devices. On the other hand, BFCO films were deposited on STO and Nb:STO substrates. Their structural, optical and electrical properties are presented. High-quality epitaxial growth and pure-phase films are demonstrated by X-ray diffraction. We show that the band gap of the PLD-BFCO films can be tuned from 1, 9 to 2.6 eV thanks to the variation of growth conditions. Theoretical calculations has confirmed the observed behavior and highlight the importance of the ordering phase. The ferroelectric properties of the PLD films are studied by the piezoresponse force microscopy. Illumination is shown to have a strong effect on polarization. We show that the polarization memory affects the photovoltaic response. Finally, devices based on BFCO are manufactured and their photovoltaic properties are analyzed
Geffroy, Camille. "Systèmes hybrides pour cellules solaires à pérovskite stables à haut rendement." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0370.
Full textPerovskite solar cells based on hybrid organometal perovskite recently appeared as a cost-effective and highly efficient technology for the conversion of sunlight. Efforts undertaken during this PhD thesis focused on one component of the perovskite solar cells, the hole transport material, which rules both, performance and stability of the devices. Advantages of semiconducting polymers result in their thermal and chemical stability, their good charge transport properties and their ability to form homogeneous thin films. Thereby, through synthesis of novel polyvinylcarbazole and incorporation into devices, stability of planar perovskite solar cells has been enhanced while conserving good efficiency. The potential of PEDOT-based polyelectrolytes has been investigated in inverted perovskite solar cells. Finally, a new strategy to efficiently dope hole transporting materials has been demonstrated through the introduction of N-heterocyclic imidazolium-based polyelectrolytes. Thereby, efficiency of solar cells has been promoted to over 20%
Hu, Zhelu. "Investigations towards more performing and more stable solution-processed hybrid perovskite solar cells." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS329.
Full textIn this Ph.D. thesis,I have been focused to investigate optimizations and strategies concerning the electron transportlayer (ETL),the hybrid perovskite active layer, and their interfaces in functional perovskite solar cells. On the investigatior of ETLs, I have performed two works: One is on the comparison of a simplified ETL-free planar perovskite solar cells,architecture to that with a planar TiO2 ETL (described in Chapter 2); Another work is on the comparison of perovskite,solat cells with well-oriented one-dimension TiO2 nanocolumn (NA) ETL to those with a planar TiO2 ETL (Chapter 3).On,the investigations of the perovskite active layer, mixed-cation and mixed-halide perovskite was applied into three,relevant works: (1) I optinized and maximized the grain size of the perovskite active layer (Chapter 2); (2) I studied nano-,structured hybrid perovskite fims and their light-harvesting enhancement (Chapter 6): (3) I investigated the thermal,properties of mixed-cation perovskite thin films to understand their improved thermal stability compared to,methylammonium lead iodide (MAPbi3) perovskite (Chapter 4). In addition, I studied passivation methods to alleviate the interfacial charge recombination and to improve the stability of perovskite solar cells (chapter 5)
Magaldi, lara Diego A. "Conception De Nouvelles Molécules De Transport De Trous À Base De Carbazole Pour Cellules Solaires Hybrides De La Pérovskite." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1031.
Full textAbstractDuring the last ten years, research around hybrid perovskite solar cells has achieved high photovoltaic efficiency conversion. Add to this, its solution processability and low-cost manufacture materials like ammonium lead (II) iodide, make of PSC one of the best on developing solutions to attain solar power. Organic hole transport materials (HTM) like Spiro-OMeTAD are an integral part of its architecture. The presented thesis aims to develop alternative solutions for the HTM layer, synthetizing new molecules that can match suitable carrier properties for its use on Perovskite solar cells (PSC). For this matter, the heterocycle carbazole (Cz), which is a well-known molecule used in organic electronics, is selected as a base molecule for our study. Due to its low cost production, ease modification of its structure over fixed positions and versatility over different reaction paths. For the later reasons Cz makes an ideal option to explore its use as HTM.Chapter 1 is a brief resume on photovoltaics and state of the art of PSC. The introduction describes the most common composition and function of the different layers that constitute the photovoltaic device’s layers. Followed by a review of carbazole molecules use as HTM until now, which are described and compared to lay the foundation of the present work.Chapter 2 reports the synthesis of two a two series of new hole transporting materials (HTMs). The presented molecules are composed by two diphenylamine(DPA) fragments linked to carbazole unit. From dibromo-carbazole as a starting material, synthesis is performed by a simple two-step synthetic procedure providing the target products in high yield. Two series of molecules designated as DMx and iDMx are obtained, differentiated between each other by their substitution positon 3,6-Cz (DMx) vs 2,7-Cz (iDMx) on the carbazole (Cz) core by the DPA groups. The molecules are examined along with thermal and optoelectronic characterization, film formation ability and further test on perovskite photovoltaic devices as well.Chapter 3 is detailed description of anionic and radical polymerization essays over molecule called DM1, which bears an alkene polymerizable function. The resulted polymer DM1P, is fully characterized and tested over PSC modules and compared with its origin monomer. The second part of Chapter 3, consist on the synthesis of a series of 3,6-carbazole linked conjugated copolymers, designated as PCzX series. With the present PCzX molecules, we explore the possibility of the use of conjugated polymers on PSC devices as an alternative to the actual small molecules. The synthetized polymers are fully characterized and preliminary photovoltaic results are presented.Chapter 4 describes a series of bicarbazolyl (two carbazole heterocycles connected by N- atom to a benzene ring in para position) molecules (DM1X), conceived to test its subsequent oligomerizaton/polymerization by further oxidative coupling reactions. This kind of polymerization can be potentially achievable with carbazole molecule under the right conditions. The present study pretends to compare the optoelectronic and thermal differences between a monomer and the derived oligomer/polymer. All molecules are fully characterized.Keywords: Carbazole, conjugated-polymer, non-conjugated polymer, oxidative polymerization, Hole transport material, Perovskite solar cell, photovoltaics
De, Monfreid Thybault. "Matériaux transporteurs de trou pour les cellules solaires à base de pérovskite : de l'ingénierie moléculaire à leur intégration au dispositif." Electronic Thesis or Diss., CY Cergy Paris Université, 2022. http://www.theses.fr/2022CYUN1148.
Full textThe aim of this thesis is to design organic hole transporting materials (HTM) and apply them in perovskite solar cells (PSC) in order to characterize their performance. Two families of innovative materials have been designed and studied. The selected molecules have in common that they possess planar structural elements with the aim of obtaining extended π-systems in the formed material.The first study consists of the design and synthesis of organic nanographene (or molecular graphene) molecules. Four compounds have been isolated and characterized and found to possess adequate physico-chemical properties for their use as HTMs. Without dopants, moderate performances are obtained, but, thanks to the introduction of additives and the optimization of the deposition conditions, energy yields (PCE) higher than 18% have been obtained for three of the studied HBC-DPA-R compounds. Hole mobility and photoluminescence measurements help to explain the good performance of the materials while the differences in the photovoltaic results allow to discuss the chosen functionalization of the terminal arylamines.The second study concerns the characterization of a family of new HTMs possessing a common electron accepting core unit, thieno[3,4-c]pyrrole-4,6(5H)-dione. Three molecules were synthesized and then employed as HTMs for the fabrication of perovskite solar cells. Based on the obtained performances, a further optimization and characterization based on specific compound HL38 and PSCs employing this molecule has also been performed. Thanks to the engineering of the perovskite/HTM interface by introducing a suitable passivation layer, a gain in performance is achieved. Moreover, the demonstration of a slow diffusion mechanism of Li+ ions with this HTM demonstrates the enhanced thermal stability of the resulting PSCs. A maximum PCE of 21.98% is achieved and the record PSC retains 86% of its initial efficiency after aging for more than 1000h at 85°C
Hadouchi, Warda. "Etude de l'utilisation du ZnO comme contact de type n dans des dispositifs photovoltaïques à base de pérovskite hybride." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX012/document.
Full textPerovskite solar cells have marked the photovoltaic world with a spectacular increase of efficiencies over the last four years. With efficiencies exceeding 20%, this type of solar cells attracts a particular attention in the photovoltaic field. In the standard perovskite solar cell stack, TiO2 is used as an electron-collecting layer. This oxide layer plays an important role in the cell, however, its growth process requires a high temperature annealing step. In addition to the high production costs involved, its use also exclude its application to temperatures sensitive substrates such as flexible plastic materials.This thesis focuses on the replacement of the TiO2 bilayer by a ZnO electron-collecting and hole-blocking layer. We consider ZnO as an alternative to its comparable and even superior properties. One of the interests of the choice of ZnO lies in its simplicity of implementation and the possibility to synthesize it at low temperature (<100°C) and under different structures. The ZnO is here synthesized by electrochemical way and sputtering process. Under optimized deposition conditions of perovskite and ZnO layers, record efficiencies of 14.2% and 9.7% have been obtained in planar and nanostructured architecture respectively
Marteau, Baptiste. "Intégration en dispositifs tandem des cellules PV à contactspassivés : vers une technologie d'interface multifonctionnelleet universelle." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALT096.
Full textThe photovoltaic module market is dominated by technologies based on crystalline silicon (c-Si). The use of low temperature (SHJ) or high temperature (TOPCon) passivated contacts leads to record efficiencies (26.8% and 26.2%) close to the theoretical limit of 29.4%. The option explored by the majority of institutes to overcome this limit is to combine c-Si technology with another wide bandgap (EGap) semiconductor material to enable optimum conversion of the solar spectrum over the entire energy range. The theoretical maximum efficiency of such tandem devices can then reach 42%. A two-terminal structure enables easiest module processing leading to reduced production costs. However, this places severe constraints on the interface layers between the two cells. These must provide excellent carrier lifetime in each cell, while ensuring optimal optical (minimal parasitic absorption and reflection) and electrical (efficient and highly conductive recombination junction RJ) properties.For the c-Si cell, this thesis focuses on TOPCon technology, which is expected to become market mainstream by 2030. This approach, based on poly-Si/SiOx stacks, offers great versatility for the tandem device fabrication processes (stability up to 800°C), and benefits from highly doped layers that are well suited for the formation of RJ. Among the variety of large EGap materials, perovskite (Pk) technology is the most popular solution as it benefits from both high efficiency potential and low production costs. The interface between the two cells (TOPCon and Pk) of the tandem device is usually formed by transparent conductive oxides layers such as ITO (Indium Tin Oxide), which shows excellent electrical and optical properties. However, indium is a critical material that could limit the long-term development of this technology. Therefore, the aim of this thesis is to explore indium-free approaches for the interface of Pk/c-Si tandem cells.The studies carried out in this work concern Pk/c-Si tandem cells in nip configuration, for which two alternative approaches for interface engineering are investigated. The first one uses no additional interface layer, while the second one integrates an nc-Si (n+) layer to form a silicon tunnel diode, which should provide an optimal recombination current. These two alternative approaches allowed better initial performances than the reference process, mainly by overcoming short-circuit issues in the Pk cell. Tandem devices featuring no additional interface layer show fill factors comparable to those of the world's best devices (>81%) and efficiencies close to 25%, confirming the potential of TOPCon passivated contacts to form indium-free RJ. However, these two indium-free approaches were limited by the appearance of internal series resistance over time. Advanced characterisations explain these degradations by the formation of a SiOx layer between silicon and SnO2 (the electron-selective layer - ESL- of the Pk cell).In conclusion, TOPCon passivated contacts are particularly well suited to obtain efficient recombination junctions (direct or via silicon tunnel diodes), thus eliminating the need to use indium in the interface layers. As silicon is particularly sensitive to oxidation, the choice of contacting layers (ESL in nip configuration) should be focused on a material that contains no oxygen or has a stronger affinity for oxygen than silicon
Gheno, Alexandre. "Printable and printed perovskites photovoltaic solar cells for autonomous sensors network." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0108/document.
Full textThis thesis is about the design of photovoltaic solar cells based on hybrid perovskite using inkjet printing technology. The first two chapters present the context of the thesis, namely the powering of an autonomous sensor network, and review the scientific aspects of inkjet and photovoltaic technologies. The third chapter presents the development of a state-of-the-art photovoltaic cell and its evolution towards a printable architecture at low annealing temperatures. The problem of the stability of photovoltaic cells with perovskite is also discussed. The last part presents the different aspects and problems of the inkjet printing of the three inner layers of a perovskite solar cell. At the end of this work the possibility of printing perovskite solar cells with efficiencies higher than 10% has been demonstrated, all in ambient conditions and at low temperature
Devesa, Canicoba Noelia. "Development and characterization of perovskite based devices : field effect transistors and solar cells." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S117.
Full textThe objective of this thesis was the study of electronic devices based on hybrid perovskites. In this context we have developed and produce field effect transistors (FETs) and solar cells based on hybrid perovskite material. In the case of transistors, using thin layers of highly crystallized hybrid perovskites we have made ambipolar transistors operating at room temperature and having low hysteresis, high transconductance (for this type of material) and a ratio of Ion / Ioff > 104. In the context of this thesis, the use of several dielectrics allowed us to obtain a high modulation of the channel conductance with relatively low gate voltages (4-6V). Hafnium oxide with relative permittivity er = 23.5 showed very good performances and a very good compatibility for the hybrid perovskite growth. After several polarization steps the devices exhibited stabilized operation and were measured in consecutive cycles for 14 hours with small change in their performance. We have shown that the increase of the electric field allowed the formation of a hole channel at the interface. The successive polarization of HfO2 / perovskite-based devices led to the creation of a second electron current and demonstrated a final ambipolar device. All the devices presented a hysteresis with amplitude sometimes not negligible. This demonstrated the presence of mobile ion charges at the interfaces that influence the output currents of the device. In the last part of the thesis we focused our work in hybrid perovskite growth for the production of solar cells. We have studied two growth conditions: conditions under normal air (relative humidity> 60%) and nitrogen atmosphere in glove boxes (relative humidity <0.1 ppm). By these two paths we obtained photovoltaic conversion efficiencies of 5% and 8% respectively
Perraudeau, Amélie. "Couches mésoporeuses de TiO2 déposés par PECVD à la pression atmosphérique en vue d'applications photovoltaïques." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0092.
Full textAn atmospheric pressure chemical vapor deposition process equipped with an axial injection torch was chosen for the TiO2 thin films synthesis. A dynamic deposition mode, i.e. moving the substrate holder in front of the plasma jet, was developed to cover a square centimeter surface. Towards the integration of the titania films as the active layer in DSSCs, a porous columnar structure crystallized under the anatase phase was required. The optical emission spectroscopy analysis of the discharge, without and with titanium precursor, provided information about the huge thermal flux transferred to the substrate by the plasma, thanks to gas temperature from 3000 to 4000 K, at distances between 5 and 15 mm from the nozzle. The atomic relative densities estimation, mainly of nitrogen, oxygen and titanium, combined with the process parameters influence on the film microstructure highlighted several growth mechanisms. From these results, a microstructure diagram was built to predict more easily the morphology and the crystallinity of the TiO2 films deposited on silicon substrates, as a function of microwave power and torch-substrate distance. Optimized conditions were found for the synthesis of thin films matching the DSSC active layer specifications. The process parameters were then adapted to replicate the microstructure on glass/FTO substrates, confirming the microstructure diagram, even though the thin film did not fulfill the requirements. Perovskite solar cells were finally made to investigate the interest of the layers developed on silicon substrates
Schoenauer, Mathilde. "Enhancing perovskite solar cells through upconversion nanoparticles insertion." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS369.
Full textRenewable energies represent nowadays one of the keys that can tackle at the same time energy supply needs and a sustainable environmental behavior. Photovoltaic devices convert the energy of sunlight into electricity, and solar energy remains one of the most common renewable energy sources. In the search for cost-effective solar cells, the recently discovered solution-processable hybrid organic-inorganic perovskites are considered as one of the most important candidates. They belong to the category of thin-film technologies and require much less and as abundant resource than Si. One limiting parameter of such photovoltaic devices is however the absorption of low-energy photons (wavelength over 800 nm, the near-infrared range). In order to address this specific loss of sub bandgap photons’ absorption, this PhD thesis aims to develop plasmonic-enhanced upconversion approaches to extend the spectral sensitivity of organo-metal halide perovskite solar cells to the near-IR spectrum. Near-infrared-to-visible up-conversion fluorescent materials can be used to widen the part of the spectrum used for electric current generation. Two low-energy photons are added up in order to give a higher energy photon. However, this effect has a rather small efficiency. This effect being quite inefficient, the idea is to combine those particles with metallic nanoparticles, that have the property to enhance electromagnetic field intensity at a certain wavelength (this is called plasmonic effect). By combining both types of particles, we thus enhance the activity of up-conversion materials (higher emission). Once implemented in a perovskite solar cell, this increases its efficiency