Academic literature on the topic 'Cellulose – Microbiology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellulose – Microbiology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cellulose – Microbiology"

1

Gaudin, Christian, Anne Belaich, Stéphanie Champ, and Jean-Pierre Belaich. "CelE, a Multidomain Cellulase fromClostridium cellulolyticum: a Key Enzyme in the Cellulosome?" Journal of Bacteriology 182, no. 7 (April 1, 2000): 1910–15. http://dx.doi.org/10.1128/jb.182.7.1910-1915.2000.

Full text
Abstract:
ABSTRACT CelE, one of the three major proteins of the cellulosome ofClostridium cellulolyticum, was characterized. The amino acid sequence of the protein deduced from celE DNA sequence led us to the supposition that CelE is a three-domain protein. Recombinant CelE and a truncated form deleted of the putative cellulose binding domain (CBD) were obtained. Deletion of the CBD induces a total loss of activity. Exhibiting rather low levels of activity on soluble, amorphous, and crystalline celluloses, CelE is more active onp-nitrophenyl–cellobiose than the other cellulases from this organism charac
APA, Harvard, Vancouver, ISO, and other styles
2

Krauss, Jan, Vladimir V. Zverlov, and Wolfgang H. Schwarz. "In VitroReconstitution of the Complete Clostridium thermocellum Cellulosome and Synergistic Activity on Crystalline Cellulose." Applied and Environmental Microbiology 78, no. 12 (April 20, 2012): 4301–7. http://dx.doi.org/10.1128/aem.07959-11.

Full text
Abstract:
ABSTRACTArtificial cellulase complexes active on crystalline cellulose were reconstitutedin vitrofrom a native mix of cellulosomal enzymes and CipA scaffoldin. Enzymes containing dockerin modules for binding to the corresponding cohesin modules were prepared from culture supernatants of aC. thermocellum cipAmutant. They were reassociated to cellulosomes via dockerin-cohesin interaction. Recombinantly produced mini-CipA proteins with one to three cohesins either with or without the carbohydrate-binding module (CBM) and the complete CipA protein were used as the cellulosomal backbone. The bindin
APA, Harvard, Vancouver, ISO, and other styles
3

Hetzler, Stephan, Daniel Bröker, and Alexander Steinbüchel. "Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains." Applied and Environmental Microbiology 79, no. 17 (June 21, 2013): 5159–66. http://dx.doi.org/10.1128/aem.01214-13.

Full text
Abstract:
ABSTRACTThe noncellulolytic actinomyceteRhodococcus opacusstrain PD630 is the model oleaginous prokaryote with regard to the accumulation and biosynthesis of lipids, which serve as carbon and energy storage compounds and can account for as much as 87% of the dry mass of the cell in this strain. In order to establish cellulose degradation inR. opacusPD630, we engineered strains that episomally expressed six different cellulase genes fromCellulomonas fimiATCC 484 (cenABC,cex,cbhA) andThermobifida fuscaDSM43792 (cel6A), thereby enablingR. opacusPD630 to degrade cellulosic substrates to cellobiose
APA, Harvard, Vancouver, ISO, and other styles
4

Lynd, Lee R., Paul J. Weimer, Willem H. van Zyl, and Isak S. Pretorius. "Microbial Cellulose Utilization: Fundamentals and Biotechnology." Microbiology and Molecular Biology Reviews 66, no. 3 (September 2002): 506–77. http://dx.doi.org/10.1128/mmbr.66.3.506-577.2002.

Full text
Abstract:
SUMMARY Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus a
APA, Harvard, Vancouver, ISO, and other styles
5

Caspi, Jonathan, Yoav Barak, Rachel Haimovitz, Diana Irwin, Raphael Lamed, David B. Wilson, and Edward A. Bayer. "Effect of Linker Length and Dockerin Position on Conversion of a Thermobifida fusca Endoglucanase to the Cellulosomal Mode." Applied and Environmental Microbiology 75, no. 23 (October 9, 2009): 7335–42. http://dx.doi.org/10.1128/aem.01241-09.

Full text
Abstract:
ABSTRACT We have been developing the cellulases of Thermobifida fusca as a model to explore the conversion from a free cellulase system to the cellulosomal mode. Three of the six T. fusca cellulases (endoglucanase Cel6A and exoglucanases Cel6B and Cel48A) have been converted in previous work by replacing their cellulose-binding modules (CBMs) with a dockerin, and the resultant recombinant “cellulosomized” enzymes were incorporated into chimeric scaffolding proteins that contained cohesin(s) together with a CBM. The activities of the resultant designer cellulosomes were compared with an equival
APA, Harvard, Vancouver, ISO, and other styles
6

Kudanga, T., and E. Mwenje. "Extracellular cellulase production by tropical isolates of Aureobasidium pullulans." Canadian Journal of Microbiology 51, no. 9 (September 1, 2005): 773–76. http://dx.doi.org/10.1139/w05-053.

Full text
Abstract:
Cellulase production by Aureobasidium pullulans from the temperate regions has remained speculative, with most studies reporting no activity at all. In the current study, tropical isolates from diverse sources were screened for cellulase production. Isolates were grown on a synthetic medium containing cell walls of Msasa tree (Brachystegia sp.) as the sole carbon source, and their cellulolytic activities were measured using carboxymethyl cellulose and α-cellulose as substrates. All isolates studied produced carboxymethyl cellulase (endoglucanase) and alpha-cellulase (exoglucanase) activity. En
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Hongliang, Fabio Squina, Fernando Segato, Andrew Mort, David Lee, Kirk Pappan, and Rolf Prade. "High-Temperature Enzymatic Breakdown of Cellulose." Applied and Environmental Microbiology 77, no. 15 (June 17, 2011): 5199–206. http://dx.doi.org/10.1128/aem.00199-11.

Full text
Abstract:
ABSTRACTCellulose is an abundant and renewable biopolymer that can be used for biofuel generation; however, structural entrapment with other cell wall components hinders enzyme-substrate interactions, a key bottleneck for ethanol production. Biomass is routinely subjected to treatments that facilitate cellulase-cellulose contacts. Cellulases and glucosidases act by hydrolyzing glycosidic bonds of linear glucose β-1,4-linked polymers, producing glucose. Here we describe eight high-temperature-operating cellulases (TCel enzymes) identified from a survey of thermobacterial and archaeal genomes. T
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Qingxin, Jintao Xu, Yanbo Kou, Xinxing Lv, Xi Zhang, Guolei Zhao, Weixin Zhang, Guanjun Chen та Weifeng Liu. "Differential Involvement of β-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose". Eukaryotic Cell 11, № 11 (21 вересня 2012): 1371–81. http://dx.doi.org/10.1128/ec.00170-12.

Full text
Abstract:
ABSTRACTAppropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolyticHypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist inH. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displayingin vitrotransglycosylation activity. We then found evidence that these two major intracell
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Wenjin, Xiao-Zhou Zhang, Zuoming Zhang, and Y. H. Percival Zhang. "Engineering of Clostridium phytofermentans Endoglucanase Cel5A for Improved Thermostability." Applied and Environmental Microbiology 76, no. 14 (May 28, 2010): 4914–17. http://dx.doi.org/10.1128/aem.00958-10.

Full text
Abstract:
ABSTRACT A family 5 glycoside hydrolase from Clostridium phytofermentans was cloned and engineered through a cellulase cell surface display system in Escherichia coli. The presence of cell surface anchoring, a cellulose binding module, or a His tag greatly influenced the activities of wild-type and mutant enzymes on soluble and solid cellulosic substrates, suggesting the high complexity of cellulase engineering. The best mutant had 92%, 36%, and 46% longer half-lives at 60°C on carboxymethyl cellulose, regenerated amorphous cellulose, and Avicel, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Murashima, Koichiro, Akihiko Kosugi, and Roy H. Doi. "Synergistic Effects on Crystalline Cellulose Degradation between Cellulosomal Cellulases from Clostridium cellulovorans." Journal of Bacteriology 184, no. 18 (September 15, 2002): 5088–95. http://dx.doi.org/10.1128/jb.184.18.5088-5095.2002.

Full text
Abstract:
ABSTRACT Clostridium cellulovorans produces a multienzyme cellulose-degrading complex called the cellulosome. In this study, we determined the synergistic effects on crystalline cellulose degradation by three different recombinant cellulosomes containing either endoglucanase EngE, endoglucanase EngH, or exoglucanase ExgS bound to mini-CbpA, a part of scaffolding protein CbpA. EngE, EngH, and ExgS are classified into the glycosyl hydrolase families 5, 9, and 48, respectively. The assembly of ExgS and EngH with mini-CbpA increased the activity against insoluble cellulose 1.5- to 3-fold, although
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cellulose – Microbiology"

1

Du, Plessis Lisa. "Co-expression of cellulase genes in Saccharomyces cerevisiae for cellulose degradation." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Porter, Suzanne L. "Evidence of multiple cellulase forms in Trichoderma harzianum E58 and their significance in cellulose hydrolysis." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5829.

Full text
Abstract:
The occurrence of multiple cellulase components of Trichoderma harzianum E58 and the implications of their existence on the hydrolysis of cellulose were examined. A single commercial enzyme preparation, Novo-Celluclast, showed different extents of hydrolysis of several cellulosic substrates over time. The filter paper activities of six batches of T. harzianum E58 showed poor correlation with the ability of these enzymes to hydrolyze other cellulosic substrates over extended periods of time. Hydrolysis of a single substrate by a single enzyme preparation resulted in similar slopes in reducing s
APA, Harvard, Vancouver, ISO, and other styles
3

Mokatse, Khomotso. "Production, characterization and evaluation of fungal cellulases for effective digestion of cellulose." Thesis, University of Limpopo (Turfloop Campus), 2013. http://hdl.handle.net/10386/1129.

Full text
Abstract:
Thesis (M.Sc. (Microbiology)) --University of Limpopo, 2013<br>The production of cellulase is a key factor in the hydrolysis of cellulosic materials and it is essential to make the process economically viable. Cellulases are the most studied multi- enzyme complex and comprise of endo-glucanases (EG), cellobiohydrolases (CBH) and β- glucosidases (BGL). The complete cellulase system; comprising CBH, EG and BGL components thus acts synergistically to convert crystalline cellulose to glucose. Cellulases are currently the third largest industrial enzyme worldwide. This is due to their wide applicat
APA, Harvard, Vancouver, ISO, and other styles
4

Helle, Steve. "Biosurfactants & cellulose hydrolysis." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61308.

Full text
Abstract:
The action of many antimicrobial agents is dependent on their ability to interact with biological membranes. A group of polypeptide antibiotics was found to have surface activite properties. One of them, gramicidinS, produced a minimum in the surface tension curve, which was attributed to instabilities in the intra-molecular hydrogen bonds. Biosurfactants were found to have a great effect on the two phase hydrolysis of cellulose by cellulase. Seven times as much sugar was produced by the hydrolysis of Sigmacell 100 when the biosurfactant sophorolipid was present. The surfactant affects the ads
APA, Harvard, Vancouver, ISO, and other styles
5

Van, Rooyen Ronel 1976. "Genetic engineering of the yeast Saccharomyces cerevisiae to ferment cellobiose." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19455.

Full text
Abstract:
Dissertation (PhD)--Stellenbosch University, 2007.<br>PCT patent registered: https://www.google.com/patents/WO2009034414A1?cl=en&dq=pct/ib2007/004098&hl=en&sa=X&ei=b7AxUsSZK4jB0gWi14HgCQ&ved=0CEkQ6AEwAg USA: https://www.google.com/patents/US20110129888?dq=pct/ib2007/004098&ei=b7AxUsSZK4jB0gWi14HgCQ&cl=en<br>USA patent registered: https://www.google.com/patents/US20110129888?dq=pct/ib2007/004098&ei=b7AxUsSZK4jB0gWi14HgCQ&cl=en<br>ENGLISH ABSTRACT: The conversion of cellulosic biomass into fuels and chemicals has the potential to positively impact the South African economy, but is reliant on
APA, Harvard, Vancouver, ISO, and other styles
6

Houghton, James. "Molecular diversity and functional composition of cellulose degrading communities in anoxic environments." Thesis, University of Liverpool, 2013. http://livrepository.liverpool.ac.uk/14933/.

Full text
Abstract:
The major fraction of microbial communities cannot be cultivated by artificial means in the laboratory. In order to access the full diversity of microbial life in the open environment it is necessary to employ culture independent methods. Molecular biology and now metagenomics have enabled the phylogenetic and functional investigation of microbial communities without isolation and cultivation of organisms and has led to a new appreciation of the breadth of diversity of microbes on Earth and to the discovery and characterisation of new enzymes. Here, molecular biological techniques have been ap
APA, Harvard, Vancouver, ISO, and other styles
7

Shaw, Paul B. "Studies of the alkaline degradation of cellulose and the isolation of isosaccharinic acids." Thesis, University of Huddersfield, 2013. http://eprints.hud.ac.uk/id/eprint/19266/.

Full text
Abstract:
Cellulosic materials are expected to form a significant proportion of the waste proposed for disposal in underground repositories being designed for the storage of radioactive waste. Under the alkaline conditions of these facilities, cellulose degrades by a so called „peeling‟ reaction resulting in the production of a complex mixture of products (CDPs), the major components being α- and β isosaccharinic acid (α and β-ISA). A significant amount of research has been performed on ISA as part of the safety assessment for the development of these underground repositories due to the ability of ISA t
APA, Harvard, Vancouver, ISO, and other styles
8

Sadie, Christa J. (Christiena Johanna). "Expression and characterization of an intracellular cellobiose phosphorylase in Saccharomyces cerevisiae." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/19862.

Full text
Abstract:
Thesis (MSc)--University of Stellenbosch, 2007.<br>ENGLISH ABSTRACT: Cellulose, a glucose polymer, is considered the most abundant fermentable polymer on earth. Agricultural waste is rich in cellulose and exploiting these renewable sources as a substrate for ethanol production can assist in producing enough bioethanol as a cost-effective replacement for currently used decreasing fossil fuels. Saccharomyces cerevisiae is an excellent fermentative organism of hexoses; however the inability of the yeast to utilize cellulose as a carbon source is a major obstruction to overcome for its use i
APA, Harvard, Vancouver, ISO, and other styles
9

Fugelstad, Johanna. "Functional characterization of cellulose and chitin synthase genes in Oomycetes." Doctoral thesis, KTH, Glykovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-34012.

Full text
Abstract:
Some species of Oomycetes are well studied pathogens that cause considerable economical losses in the agriculture and aquaculture industries. Currently, there are no chemicals available that are environmentally friendly and at the same time efficient Oomycete inhibitors. The cell wall of Oomycetes consists of b-(1à3) and b-(1à6)-glucans, cellulose and in some species minute amounts of chitin. The biosynthesis of cellulose and chitin in Oomycetes is poorly understood. However, cell wall synthesis represents a potential target for new Oomycete inhibitors. In this work, cellulose and chitin synth
APA, Harvard, Vancouver, ISO, and other styles
10

Ferdinand, Pierre-Henri. "Adhérence et colonisation des fibres de cellulose par la bactérie cellulolytique Clostridium cellulolyticum. : étude du rôle des protéines CipC et HycP." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4729.

Full text
Abstract:
Clostridium cellulolyticum est une bactérie anaérobie stricte et cellulolytique qui produit des complexes multienzymatiques (cellulosomes) très performants pour la dégradation des polysaccharides de la paroi végétale. C. cellulolyticum adhère à la cellulose et ce phénomène intervient dès les premiers stades de croissance. Pour de nombreuses bactéries cellulolytiques, les cellulosomes semblent impliqués dans le processus d'adhérence et alors que les mécanismes moléculaires mis en jeu pour l'adhérence à la cellulose sont connus ou proposés, celui ou ceux de C. cellulolyticum sont inconnus.Mon pr
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cellulose – Microbiology"

1

Simončič, Barbara. Biodegradation of cellulose fibers. New York: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chin-u, Yi. Sŏmyuso punhae hyoso saengsan kyunju rŭl iyong han wanggyŏ wa ssalgyŏ ŭi chaehwaryong kisul kaebal =: Development of technology for utilization of rice hull and rice bran by microorganism produced cellulase. [Seoul]: Nongnimbu, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yi, Chin-u. Sŏmyuso punhae hyoso saengsan kyunju rŭl iyong han wanggyŏ wa ssalgyŏ ŭi chaehwaryong kisul kaebal =: Development of technology for utilization of rice hull and rice bran by microorganism produced cellulase. [Seoul]: Nongnimbu, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chin-u, Yi. Sŏmyuso punhae hyoso saengsan kyunju rŭl iyong han wanggyŏ wa ssalgyŏ ŭi chaehwaryong kisul kaebal =: Development of technology for utilization of rice hull and rice bran by microorganism produced cellulase. [Seoul]: Nongnimbu, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Primrose, S. B. Modern biotechnology. Oxford [Oxfordshire]: Blackwell Scientific Publications, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Necrosis: Methods and protocols. New York: Humana Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tissue remodeling and epithelial morphogenesis. San Diego: Elsevier/Academic Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Edwards, M. J. ATCC microbes & cells at work: An index to ATCC strains with special applications. Rockville, Md: American Type Culture Collection, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bacterial growth and division: Biochemistry and regulation of prokaryotic and eukaryotic division cycles. San Diego: Academic Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Srivastava, Manish, P. K. Mishra, Neha Srivastava, Ram Lakhan Singh, and P. W. Ramteke. New and Future Developments in Microbial Biotechnology and Bioengineering: From Cellulose to Cellulase - Strategies to Improve Biofuel Production. Elsevier, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Cellulose – Microbiology"

1

Degli-Innocenti, F., G. Goglino, G. Bellia, M. Tosin, P. Monciardini, and L. Cavaletti. "Isolation and Characterization of Thermophilic Microorganisms Able to Grow on Cellulose Acetate." In Microbiology of Composting, 273–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-08724-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nozhevnikova, A. N., and M. V. Simankova. "Interspecies Transport of Hydrogen in Thermophilic Anaerobic Cellulose Decomposition." In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, 427–29. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0613-9_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Himmel, Michael E., John O. Baker, William S. Adney, and Stephen R. Decker. "Cellulases, Hemicellulases, and Pectinases." In Methods for General and Molecular Microbiology, 596–610. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817497.ch24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

El Nawawy, A. S., E. El-Rayes, R. D. Al Hussaini, and A. Tawheed. "Bioconversion of Cellulosic Wastes." In Perspectives in Biotechnology and Applied Microbiology, 223–30. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4321-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsao, G. T. "Structures of Cellulosic Materials and their Hydrolysis by Enzymes." In Perspectives in Biotechnology and Applied Microbiology, 205–12. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4321-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sukan, S. Suha. "Challenges in Bioconversion of Cellulosic and Partially Soluble Plant Materials in Submerged Culture." In Developments in Food Microbiology—3, 109–40. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1085-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bu’lock, John D. "Biodegradation of Non-Cellulosic Waste for Environmental Conservation and Fuel Production." In Perspectives in Biotechnology and Applied Microbiology, 171. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4321-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moo-Young, M., J. Lamptey, and P. Girard. "Bioconversion of Cellulosic Waste into Protein and Fuel Products: A Case Study of the Technoeconomic Potentials." In Perspectives in Biotechnology and Applied Microbiology, 183–201. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4321-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilson, D. B. "Cellulases." In Encyclopedia of Microbiology, 252–58. Elsevier, 2009. http://dx.doi.org/10.1016/b978-012373944-5.00138-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lamed, Raphael, and Edward A. Bayer. "The Cellulosome of Clostridium thermocellum." In Advances in Applied Microbiology, 1–46. Elsevier, 1988. http://dx.doi.org/10.1016/s0065-2164(08)70203-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cellulose – Microbiology"

1

Snevajsova, P., J. Vytrasova, and J. Remesova. "Effect of oxidized cellulose on probiotic bacteria." In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kvesitadze, E., L. Kutateladze, M. Jobava, N. Zakariashvili, and I. Khokhashvili. "Xylanase and cellulose free xylanase preparations from microscopic fungi isolated in the South Caucasus." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vasiliauskiene, Dovile, Andrijana Danytė, Giedrius Balčiūnas, and Jaunius Urbonavičius. "The cellulase activity of the fungi that grow on the bio-based thermal insulation composite materials." In 1st International Electronic Conference on Microbiology. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecm2020-07141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ueda, Junko, Keiko Watanabe, Shuichi Yamamoto, and Norio Kurosawa. "Isolation and characterization of cellulase producing bacteria from pruning tree compost and soil." In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pujiati, M. W. Ardhi, E. Muktiani, N. K. Dewi, N. Jadid, and E. N. Prasetyo. "The Effect of Incubation Time on Various Type of Local Agricultural Waste in Madiun, Indonesia to Produce Cellulases Using Trichoderma viride." In 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210810.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cellulose – Microbiology"

1

Peck, Jr., H. D., L. G. Ljungdahl, L. E. Mortenson, and J. K. W. Wiegel. The microbiology and physiology of anaerobic fermentations of cellulose: Progress report, November 1988--July 1989. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5961636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ljungdahl, L. G., J. Wiegel, H. D. Jr Peck, and L. E. Mortenson. Microbiology and physiology of anaerobic fermentation of cellulose. Annual report for 1990, 1992, 1993 and final report. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/90164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ljungdahl, L. G. Microbiology and physiology of anaerobic fermentation of cellulose. Progress report (4/30/91--4/30/92) and outline of work for the period 9/1/92--9/1/93. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/90165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!