Dissertations / Theses on the topic 'Central limit theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Central limit theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Alcântara, Daniel Tomás Vital de. "Central limit theorem variations." Master's thesis, Instituto Superior de Economia e Gestão, 2019. http://hdl.handle.net/10400.5/20409.
Full textUm dos teoremas mais importantes da Teoria da Probabilidade é o Teorema do Limite Central. Este afirma que se Xn é uma sequência de variáveis aleatórias então as somas parciais normalizadas convergem para a distribuição normal. Além disso a ausência de pré condições faz-nos perguntar-nos se generalizações são possíveis. Particularmente neste manuscrito vamos focar-nos em duas questões: Existe uma taxa de convergência (universal) para o Teorema do Limite Central? Além disso em que circunstâncias podemos aplicar o Teorema do Limite Central? O teorema de Continuidade de Lévy afirma que a convergência em distribuição é equivalente à convergência nas funções características. Além disso quando aplicamos as expansões de Taylor a funções características ficamos com um polinómios com os momentos da variável como coeficientes. Por estas razões no nosso caso fazer os cálculos com funções características é preferível. Pelo teorema de Berry Essen podemos, de facto, encontrar a taxa de convergência que procuramos. E pelo teorema de Lindeberg e condição de Lyapunov podemos descobrir que o Teorema do Limite Central pode aplicar-se a sequências que não são identicamente distribuídas. Finalmente, utilizando o teorema ergódico vamos explicar como processos estocásticos estão relacionados com a teoria ergódica. Com isto vamos mostrar como este teorema pode ser utilizado pata encontrar um resultado quando a sequencia não é independente.
One of the most important theorems of Probability Theory is the Central Limit Theorem. It states that if Xn is a sequence of random variables then the normal- ized partial sums converge to a normal distribution. This result omits any rate of convergence. Furthermore the lack of assumptions makes us wonder if some gener- alizations are possible. Particularly in this essay we will focus on two questions: Does it exist a (uni- versal) rate of convergence for the Central Limit Theorem? Furthermore in which circumstances can we apply the Central Limit Theorem? The Lévy Continuity Theorem states that convergence on distribution functions is equivalent to convergence on characteristic functions. Furthermore when we ap- ply Taylor expansions to characteristic functions we get a polynomial with the mo- ments as coefficients. For these reasons, on our case computing with characteristic functions is preferable. By the Berry Essen Theorem we can in fact find the rate of convergence we are looking for. And by the Lindeberg Theorem and Lyapunov Condition we find that the Central Limit Theorem applies to sequences that are not identically distributed. Finally, using the Ergodic Theorem we will explain how stochastic processes are related to Ergodic Theory. With this we will show how this theorem can be used to find a result when the sequence is not independent.
info:eu-repo/semantics/publishedVersion
ALVES, RODRIGO BARRETO. "MARTINGALE CENTRAL LIMIT THEOREM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32327@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE EXCELENCIA ACADEMICA
Esta dissertação é dedicada ao estudo das taxas de convergência no Teorema Central do Limite para Martingais. Começamos a primeira parte da tese apresentando a Teoria de Martingais, introduzindo o conceito de esperança condicional e suas propriedades. Desta forma poderemos descrever o que é um Martingal, mostraremos alguns exemplos, e exporemos alguns dos seus principais teoremas. Na segunda parte da tese vamos analisar o Teorema Central do Limite para variáveis aleatórias, apresentando os conceitos de função característica e convergência em distribuição, que serão utilizados nas provas de diferentes versões do Teorema Central do Limite. Demonstraremos três formas do Teorema Central do Limite, para variáveis aleatórias independentes e identicamente distribuídas, a de Lindeberg-Feller e para uma Poisson. Após, apresentaremos o Teorema Central do Limite para Martingais, demonstrando uma forma mais geral e depois enunciaremos uma forma mais específica a qual focaremos o resto da tese. Por fim iremos discutir as taxas de convergência no Teorema Central do Limite, com foco nas taxas de convergência no Teorema Central do Limite para Martingais. Em particular, exporemos o resultado de [4], o qual determina, até uma constante multiplicativa, a dependência ótima da taxa de um certo parâmetro do martingal.
This dissertation is devoted to the study of the rates of convergence in the Martingale Central Limit Theorem. We begin the first part presenting the Martingale Theory, introducing the concept of conditional expectation and its properties. In this way we can describe what a martingale is, present examples of martingales, and state some of the principal theorems and results about them. In the second part we will analyze the Central Limit Theorem for random variables, presenting the concepts of characteristic function and the convergence in distribution, which will be used in the proof of various versions of the Central Limit Theorem. We will demonstrate three different forms of the Central Limit Theorem, for independent and identically distributed random variables, Lindeberg-Feller and for a Poisson distribution. After that we can introduce the Martingale Central Limit Theorem, demonstrating a more general form and then stating a more specific form on which we shall focus. Lastly, we will discuss rates of convergence in the Central Limit Theorems, with a focus on the rates of convergence in the Martingale Central Limit Theorem. In particular, we state results of [4], which determine, up to a multiplicative constant, the optimal dependence of the rate on a certain parameter of the martingale.
Sorokin, Yegor. "Probability theory, fourier transform and central limit theorem." Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1604.
Full textJiang, Xinxin. "Central limit theorems for exchangeable random variables when limits are mixtures of normals /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2001.
Find full textAdviser: Marjorie G. Hahn. Submitted to the Dept. of Mathematics. Includes bibliographical references (leaves44-46). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Pramukkul, Pensri. "Temporal Complexity and Stochastic Central Limit Theorem." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc700093/.
Full textHumphreys, Natalia A. "A central limit theorem for complex-valued probabilities /." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488187049540163.
Full textZhang, Na. "Limit Theorems for Random Fields." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563527352284677.
Full textMok, Kit Ying. "Central limit theorem for nonparametric regression under dependent data /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MATH%202003%20MOK.
Full textRahman, Mohammad Mahbubur. "Central Limit Theorem for some classes of dynamical systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq25986.pdf.
Full textThangavelu, Karthinathan. "Quantile estimation based on the almost sure central limit theorem." Doctoral thesis, [S.l.] : [s.n.], 2006. http://webdoc.sub.gwdg.de/diss/2006/thangavelu.
Full textHolzmann, Hajo. "Some remarks on the central limit theorem for stationary Markov processes." Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972079874.
Full textNakashima, Makoto. "Almost sure central limit theorem for branching random walks in random environment." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157736.
Full textPaulsen, Michael Christoph. "Limit theorems for limit order books." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/17023.
Full textIn the first part of the thesis, we define a random state-dependent discrete model of a two-sided limit order book in terms of its key quantities best bid [ask] price and the standing buy [sell] volume density. For a simple scaling that introduces a slow time scaling, that is equivalent to the classical law of large numbers, for the bid/ask prices and a faster time scale for the limit volume placements/cancelations, that keeps the expected volume rate over the considered price interval invariant, we prove a limit theorem. The limit theorem states that, given regularity conditions on the random order flow, the key quantities converge in the sense of a strong law of large numbers to a tractable continuous limiting model. The limiting model is such that the best bid and ask price dynamics can be described in terms of two coupled ODE:s, while the dynamics of the relative buy and sell volume density functions are given as the unique solutions of two linear first-order hyperbolic PDE:s with variable coefficients, specified by the expectation of the order flow parameters. In the second part, we prove a functional central limit theorem i.e. an invariance principle for an order book model with block shaped volume densities close to the spread. The weak limit of the two-dimensional price process (best bid and ask price) is given by a semi-martingale reflecting Brownian motion in the set of admissible prices. Simultaneously, the relative buy and sell volume densities close to the spread converge weakly to the modulus of a two-parameter Brownian motion. We also demonstrate an example how to easily derive an SPDE for the relative volume densities in a simple case, when a strong stationarity assumption is made on the limit order placements and cancelations for the model suggested in the first part. In the third and final part of the thesis, we prove an averaging and an invariance principle for discrete processes taking values in Banach and Hilbert spaces, respectively.
Bender, Martin. "Limit theorems for generalizations of GUE random matrices." Doctoral thesis, KTH, Matematik (Inst.), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4799.
Full textDenna avhandling består av två vetenskapliga artiklar som handlar om gränsvärdessatser för slumpmatriser och måttvärda stokastiska processer. De modeller som studeras kan betraktas som generaliseringar av den gaussiska unitära ensembeln (GUE) av hermiteska n x n-matriser H=A+A†, där A är en matris vars element är oberoende, likafördelade, centrerade, komplexa normalfördelade stokastiska variabler. I artikel I betraktas ett system av växelverkande diffunderande partiklar på reella linjen, vissa specialfall av denna modell kan tolkas som egenvärdesdynamiken för matrisvärda Ornstein-Uhlenbeck-processer (Dysons brownska rörelse). Sedan tidigare är det känt att den empiriska måttprocessen konvergerar svagt mot en deterministisk måttvärd funktion och att fluktuationerna runt denna gräns, i lämplig skalning, konvergerer svagt mot en distributionsvärd gaussisk process. För en stor klass av analytiska testfunktioner härleds explicita formler för medelvärdes- och kovariansfunktionalerna för denna fluktuationsprocess. Artikel II behandlar en familj av slumpmatrisensembler som interpolerar mellan GUE och Ginibre-ensembeln, bestående av matriser A som ovan. För denna modell är egenvärdena komplexa och asymptotiskt likformigt fördelade i en ellips i komplexa planet. Skalningsgränsvärdessatser för egenvärdet med maximal realdel och för egenvärdespunktprocessen kring detta visas för ett allmänt val av interpolationsparametern i modellen. Då förhållandet mellan axlarna i den asymptotiska ellipsen är av storleksordning n-1/3 uppträder en övergångsfas mellan Airypunktprocess- och Poissonprocessbeteendena, typiska för GUE respektive Ginibre-ensembeln.
QC 20100705
Reed, Matthew. "The Central Limit Theorem for Linear Spectral Statistics of Submatrices of the Gaussian Wigner Random Matrices." Thesis, University of California, Davis, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3646379.
Full textThe main topic addressed here is the joint distribution of spectra of submatrices M(1) and M(2) of large Gaussian Wigner matrices M. A multidimensional central limit theorem for linear statistics of the eigenvalues of submatrices will be proved with explicit formulas for the covariance that relate the spectra to a random surface model known as the Gaussian free field. The regularity assumption is that test functions belong to the Sobolev space H s, for s > 5/2.
The organization is as follows. Chapters 1 and 2 consist of an introduction to Wigner matrices and the central limit theorem in the random matrix theory. Chapter 3 is a discussion of the results which motivated this work, in addition to an introduction to the Gaussian free field. Chapter 4 contains the new results of the author, and chapter 5 is an appendix describing some technical tools.
Ysusi, Mendoza Carla Mariana. "Estimation of the variation of prices using high-frequency financial data." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:1b520271-2a63-428d-b5a0-e7e9c4afdc66.
Full textLima, Amanda de. "Cohomologia e propriedades estocásticas de transformações expansoras e observáveis lipschitzianos." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08052007-135433/.
Full textWe prove the Central Limit Theorem for piecewise expanding interval transformations and observables with bounded variation, using the approach of J.Rousseau-Egele as described by A. Broise. This approach makes use of pertubations of the so-called Ruelle-Perron-Frobenius transfer operator. An original contribution is given in the last chapter, where we prove that for Markovian expanding interval maps all observables which are non constant, continuous and have bounded variation are not infinitely cohomologous with zero, generalizing a result by Bamón, Rivera-Letelier, Urzúa and Kiwi for Lipschitzian observables and the transformations \'z POT. n\' . Our demosntration uses the theory of Ruelle-Perron-Frobenius operators developed in the previos chapters
Koukkous, Abdellatif. "Comportement hydrodynamique de différents processus de zéro range." Rouen, 1997. http://www.theses.fr/1997ROUES051.
Full textMin, Aleksey. "Limit theorems for statistical functionals with applications to dimension estimation." Doctoral thesis, [S.l.] : [s.n.], 2004. http://webdoc.sub.gwdg.de/diss/2004/min/min.pdf.
Full textPoinas, Arnaud. "Statistiques asymptotiques des processus ponctuels déterminantaux stationnaires et non stationnaires." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S024/document.
Full textThis manuscript is devoted to the study of parametric estimation of a point process family called determinantal point processes. These point processes are used to generate and model point patterns with negative dependency, meaning that the points tend to repel each other. More precisely, we study the asymptotic properties of various classical parametric estimators of determinantal point processes, stationary and non stationary, when considering that we observe a unique realization of such a point process on a bounded window. In this case, the asymptotic is done on the size of the window and therefore, indirectly, on the number of observed points. In the first chapter, we prove a central limit theorem for a wide class of statistics on determinantal point processes. In the second chapter, we show a general beta-mixing inequality for point processes and apply our result to the determinantal case. In the third chapter, we apply the central limit theorem showed in the first chapter to a wide class of moment-based estimating functions. Finally, in the last chapter, we study the asymptotic behaviour of the maximum likelihood estimator of determinantal point processes. We give an asymptotic approximation of the log-likelihood that is computationally tractable and we study the consistency of its maximum
Aquino, Juan Carlos, and Gabriel Rodríguez. "Understanding the Functional Central Limit Theorems with Some Applications to Unit Root Testing with Structural Change." Economía, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/117824.
Full textHoy en día es una práctica estándar de trabajo empírico la aplicación de diferentes estadísticos de contraste de raíz unitaria. A pesar de ser un aspecto práctico, estos estadísticos poseen distribuciones complejas y no estándar que dependen de funcionales de ciertos procesos estocásticos y sus derivaciones representan una barrera incluso para varios econometristas teóricos. Estas derivaciones están basadas en herramientas estadísticas fundamentales y rigurosas que no son (muy) bien conocidas por econometristas estándar. El presente artículo completa esta brecha al explicar en una forma simple una de estas herramientas fundamentales la cual es el Teorema del Límite Central Funcional. Por lo tanto, este documento analiza los fundamentos y la aplicabilidad de dos versiones del Teorema del Límite Central Funcional dentro del marco de una raíz unitaria con un quiebre estructural. La atención inicial se centra en la estructura probabilística de las series de tiempo propuesta por Phillips (1987a), la cual es aplicada por Perron (1989) para estudiar los efectos de un quiebre estructural (asumido) exógeno sobre la potencia de las pruebas Dickey-Fuller aumentadas y por Zivot y Andrews (1992) para criticar el supuesto de exogeneidad y proponer un método para estimar un punto de quiebre endógeno. Un método sistemático para tratar con aspectos de eficiencia es introducido por Perron y Rodríguez (2003), el cual extiende el enfoque de Mínimos Cuadrados Generalizados para eliminar los componentes determinísticos de Elliot et al. (1996). Se presenta además una aplicación empírica.
Hurth, Tobias. "Limit theorems for a one-dimensional system with random switchings." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37201.
Full textBarrera, David. "Quenched Asymptotics for the Discrete Fourier Transforms of a Stationary Process." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1460652609.
Full textBui, Thi Thuy. "Limit theorems for branching random walks and products of random matrices." Thesis, Lorient, 2020. https://tel.archives-ouvertes.fr/tel-03261556.
Full textThe main objective of my thesis is to establish limit theorems for a branching random walk with products of random matrices by taking advantage of recent advances in products of random matrices and establishing new results as needed. The first part concerns the classic branching random walk on the real line. We establish a Berry- Esseen bound and a Cramér type moderate deviation expansion for the counting measure which counts the number of particles of nth generation situated in a given region. The second part is devoted to the study of the products $G_n = A_n \ldots A_1$ of real random matrices $A_i$ of type $ d \times d$, independent and identically distributed. In this part, with a motivation for applications to branching random walks governed by products of random matrices, we improve and extend the central limit theorem and the local limit theorem established by Le Page (1982). In the third part, we consider a branching random walk model, where the movements of individuals are governed by products of random matrices of type $ d \times d $. Using the results established in the second part for the products of random matrices, we establish a central limit theorem and a large deviation asymptotic expansion of the Bahadur-Rao type for the counting measure $ Z_n^x $ which counts the number n-th generation particles located in a given region with suitable norming. The fourth part is a continuation of the third part. In this part, we establish the Berry-Esseen bound which gives the speed of convergence in the central limit theorem and a precise Cramér- type moderate deviation asymptotic for $ Z_n^x $
Ahn, Jae Youn. "Non-parametric inference of risk measures." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/2808.
Full textBoyer, Jean-Baptiste. "Le théorème central limite pour la marche linéaire sur le tore et le théorème de renouvellement dans Rd." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0075/document.
Full textThe first part of this thesis deals with the random walk on the torus Td := Rd/Zd defined by a robability measure on SLd(Z). To study the Central Limit Theorem and the Law of the Iterated Logarithm, we apply Gordin’s method. To do so, we use a result proved by Bourgain, Furmann, Lindenstrauss and Mozes to solve Poisson’s equation at point’s having good diophantine properties.In the second part, we study the walk on Rd \ {0} defined by the action of SLd(R) and we prove a result about the rate of convergence in Guivarc’h and Le Page’s renewal theorem
Beering, Carina Verfasser], Anne [Akademischer Betreuer] Leucht, Jens-Peter [Akademischer Betreuer] [Kreiß, and Carsten [Akademischer Betreuer] Jentsch. "A Functional Central Limit Theorem and its Bootstrap Analogue for Locally Stationary Processes with Application to Independence Testing / Carina Beering ; Anne Leucht, Jens-Peter Kreiß, Carsten Jentsch." Braunschweig : Technische Universität Braunschweig, 2021. http://d-nb.info/122853375X/34.
Full textRodrigues, Chang Kuo. "O teorema central do limite: um estudo ecológico do saber e do didático." Pontifícia Universidade Católica de São Paulo, 2009. https://tede2.pucsp.br/handle/handle/11426.
Full textThis paper refers to the building of mathematical and/or statistical ideas and concepts around Central Limit Theorem for Mathematics graduates.The investigation focuses the importance of the theorem in Statistics Inference and its comprehension by the professionals to be, who will act in Basic Education. Therefore, we chose to research some books related to the teaching and learning process of the theorem and emphasised its importance on the Mathematics teacher daily practice. The theoretical approach is about Mathematics Teaching theories, particularly the Theory of Didactic Transposition ( CHEVALLARD, 1985), with an echological approach under the knowlwdge and teaching point of view ( ARTAUD, 1998). We chose methodological procedures directed to the didactic design (ARTIGUE, 2009), with qualitative nature, and whose assumptions are linked to Teaching Engineering (ARTIGUE, 1988). The subjects of this investigation are the graduates who had some knowledge about Basic Statistics and, from a previous analysis about the kind of knowledge they had about the theme, we presented some activities in a problem-situation context connected to the Mathematics teachers daily practice. The analysis of these results allowed us to relate the existing problems between the subject and the students from Basic Education, which involved statistics literacy. After these activities, there was a dialogue, with discussions about the theme, allowing us to analyse how the ideas and concepts around the Central Limit Theorem were built, being its comprehension the main aim for the graduates. Besides that, we analysed some textbooks for higher education, based on the Anthropological Theory of Didactic (CHEVALLARD, 1996, 1999), which also showed us the essential knowledge for the theorem to live , because the approach is under the knowledge and teaching echological point of view. On the other hand, we detected what kind of limitations, or restrictions, exist in the books analysed, interfering in the elaboration of the activities by the teacher. Thus, our investigation reaffirms the importance of teaching and learning Statistics in the various applications for the Mathematics teachers to be formation in a world controlled by the technological advances, which interfere directly on the understanding of the information we receive every moment
O presente trabalho refere-se à construção das ideias e dos conceitos matemáticos e/ou estatísticos em torno do Teorema Central do Limite para os Licenciandos de Matemática. O cerne da investigação limita-se à importância do teorema na Inferência Estatística e à sua compreensão pelos futuros profissionais que atuarão na Educação Básica. Nesse sentido, optamos por revisar algumas bibliografias que têm relação com o processo de ensino e de aprendizagem do teorema e enfatizamos sua importância na pratica do dia a dia do professor de Matemática. O quadro teórico incide sobre as teorias da Didática da Matemática, particularmente, a Teoria da Transposição Didática (CHEVALLARD, 1985), munido de uma abordagem ecológica sob o ponto de vista do saber e do didático (ARTAUD, 1998). Optamos por procedimentos metodológicos voltados para o design didático (ARTIGUE, 2009), de cunho qualitativo e, cujos pressupostos estão aliados à Engenharia Didática (ARTIGUE, 1988). Os sujeitos dessa investigação são os licenciandos que já predispunham de conhecimentos sobre a Estatística Básica e, a partir de uma análise prévia sobre que tipos de conhecimento eles já detinham sobre o tema, apresentamos algumas atividades no contexto de uma situação-problema pertinente ao cotidiano dos professores de Matemática. A análise desses resultados nos propiciou interrelacionar as problemáticas existentes na disciplina de Matemática com alunos da Educação Básica, envolvendo assim, a literacia estatística. Após a realização dessas atividades, ocorreu também um diálogo, com discussões acerca do tema, o que nos permitiu analisar como foram construídos as ideias e os conceitos no entorno do Teorema Central do Limite, de modo que sua compreensão fosse o principal alvo para os licenciandos. Além disso, analisamos alguns livrostexto do ensino superior, à luz da Teoria Antropológica do Didático (CHEVALLARD, 1996, 1999), o que também nos indicou que saberes são indispensáveis de modo que o teorema viva , já que a abordagem é sob o ponto de vista ecológico do saber e do didático. Por outro lado, detectamos que tipos de limitações, ou restrições, existem nas obras consultadas, interferindo assim, a elaboração das atividades por parte do professor. Portanto, a nossa investigação reitera a importância do ensino e da aprendizagem da Estatística nas diversas aplicações na formação dos futuros professores de Matemática num mundo ditado pelos avanços tecnológicos, que interferem diretamente na leitura de informações que recebemos a todo instante
Pesaresi, Emanuele. "Leptokurtic signals in random control vibration testing." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textPassos, Frederico Salgueiro. "O teorema das seções de Lévy aplicado à séries temporais correlacionadas não estacionárias: uma análise da convergência gaussiana em sistemas dinâmicos." Universidade Federal de Alagoas, 2014. http://www.repositorio.ufal.br/handle/riufal/1725.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Processos não-estacionários com interações fracas aparecem como problemas desafiadores em sistemas complexos em física. Uma questão interessante é como quantificar a taxa de convergência para o comportamento gaussiano em séries temporais heteroscedásticas, sem uma variância única em toda a série, provenientes de sistemas financeiros, reescaladas com os primeiros momentos estacionários mas com uma multifractalidade não estacionária e segundos momentos que possuem uma correlação do longo alcance e verificar o mesmo mecanismo também em séries temporais geradas a partir de um movimento Browniano Fracionado onde a correlação da série depende de um parâmetro ajustável. Aqui é usada uma extensão do teorema das seções de Lévy. Analisando as propriedades estatísticas e multifractais de uma série temporal heteroscedástica e encontrando que as seções de Lévy fornece uma convergência mais rápida para o comportamento gaussiano relativo à convergência das tradicionais somas de variáveis, o teorema do limite central. Para entender essa transição foram utilizados vários testes estatísticos que forneceram dados suficientes sobre o comportamento de convergência. Também observou-se que os sinais reescalados mantêm suas propriedades multifractais mesmo depois de atingirem um regime que parece ser um regime gaussiano.
Corker, Lloyd A. "A test for Non-Gaussian distributions on the Johannesburg stock exchange and its implications on forecasting models based on historical growth rates." University of Western Cape, 2002. http://hdl.handle.net/11394/7447.
Full textIf share price fluctuations follow a simple random walk then it implies that forecasting models based on historical growth rates have little ability to forecast acceptable share price movements over a certain period. The simple random walk description of share price dynamics is obtained when a large number of investors have equal probability to buy or sell based on their own opinion. This simple random walk description of the stock market is in essence the Efficient Market Hypothesis, EMT. EMT is the central concept around which financial modelling is based which includes the Black-Scholes model and other important theoretical underpinnings of capital market theory like mean-variance portfolio selection, arbitrage pricing theory (APT), security market line and capital asset pricing model (CAPM). These theories, which postulates that risk can be reduced to zero sets the foundation for option pricing and is a key component in financial software packages used for pricing and forecasting in the financial industry. The model used by Black and Scholes and other models mentioned above are Gaussian, i.e. they exhibit a random nature. This Gaussian property and the existence of expected returns and continuous time paths (also Gaussian properties) allow the use of stochastic calculus to solve complex Black- Scholes models. However, if the markets are not Gaussian then the idea that risk can be. (educed to zero can lead to a misleading and potentially disastrous sense of security on the financial markets. This study project test the null hypothesis - share prices on the JSE follow a random walk - by means of graphical techniques such as symmetry plots and Quantile-Quantile plots to analyse the test distributions. In both graphical techniques evidence for the rejection of normality was found. Evidenceleading to the rejection of the hypothesis was also found through nonparametric or distribution free methods at a 1% level of significance for Anderson-Darling and Runs test.
Bureaux, Julien. "Méthodes probabilistes pour l'étude asymptotique des partitions entières et de la géométrie convexe discrète." Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100160/document.
Full textThis thesis consists of several works dealing with the enumeration and the asymptotic behaviour of combinatorial structures related to integer partitions. A first work concerns partitions of large bipartite integers, which are a bidimensional generalization of integer partitions. Asymptotic formulæ are obtained in the critical regime where one of the numbers is of the order of magnitude of the square of the other number, and beyond this critical regime. This completes the results established in the fifties by Auluck, Nanda, and Wright. The second work deals with lattice convex chains in the plane. In a statistical model introduced by Sinaï, an exact integral representation of the partition function is given. This leads to an asymptotic formula for the number of chains joining two distant points, which involves the non trivial zeros of the Riemann zeta function. A detailed combinatorial analysis of convex chains is presented. It makes it possible to prove the existence of a limit shape for random convex chains with few vertices, answering an open question of Vershik. A third work focuses on lattice zonotopes in higher dimensions. An asymptotic equality is given for the logarithm of the number of zonotopes contained in a convex cone and such that the endings of the zonotope are fixed. A law of large numbers is established and the limit shape is characterized by the Laplace transform of the cone
Ranciaro, Neto Adhemar. "Estudo de séries de tempo financeiras sob a perspectiva do teorema das seções de Lévy." Universidade Federal de Alagoas, 2013. http://www.repositorio.ufal.br/handle/riufal/1656.
Full textO objetivo deste trabalho foi o de estudar séries temporais financeiras fundamentadas em uma perspectiva de alteração de medida de tempo, baseada no acúmulo de volatilidade dos retornos relativos aos preços observados. Esta escala foi utilizada por dois motivos: o primeiro está relacionado à proposta de Ludwig von Mises sobre a ideia de tempo em um sistema econômico e o segundo está associado à capacidade que tal medida tem de acelerar o processo de convergência de distribuição de uma sequência de variáveis aleatórias para a Gaussiana, de acordo com o teorema das seções de Lévy. Com base nesta nova escala temporal, foi elaborado um tipo de estratégia de negociação de ativos tendo seus retornos médios e risco sido avaliados em comparação com uma estratégia utilizando o tempo em unidades diárias. Os resultados obtidos motivaram a reflexão sobre as estatísticas utilizadas e os procedimentos para a mensuração de desempenho de cada estratégia.
Filipciuc, Cristina. "Análise da evolução das empresas por separação de observadores." Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/21083.
Full textO uso de dados de séries temporais na modelação de redes financeiras e económicas desafiam algumas suposições estatísticas tradicionais, como a aplicação do Teorema de Limite Central (TLC). No entanto, o recurso aos pressupostos provenientes da Física foi possível resolver algumas das limitações abordadas ao longo do documento. O trabalho desenvolvido baseia-se na aplicação de algoritmos de separação de observadores desenvolvidos pela Closer, cujo problema tem sido abordado desde há alguns anos, permitindo assim resolver os problemas associados à aplicação do TLC. Estes algoritmos baseiam-se na geometria diferencial e relatividade, que foram aplicados em séries de ações das empresas do mercado americano retiradas em escalas de tempo diversas, reportando no final os resultados obtidos em termos de transformação das distribuições vistas por cada um dos observadores.
The handling of time-series data in modeling financial and economic networks challenges some traditional statistical assumptions, such as application of the Central Limit Theorem. However, using the assumptions of Physics it was possible to understand some of the limitations of the model. The work developed is set up on the application of observer separation algorithms developed by Closer Consulting, whose problem has addressed for some years, which solves the infinite variation limitation. These algorithms based on differential geometry and relativity, which was applied to series of shares of companies in the American market taken at different time scales, reporting, in the end, the results obtained in terms of transforming the distributions seen by each of the observers.
info:eu-repo/semantics/publishedVersion
Kreacic, Eleonora. "Some problems related to the Karp-Sipser algorithm on random graphs." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3b2eb52a-98f5-4af8-9614-e4909b8b9ffa.
Full textFlenghi, Roberta. "Théorème de la limite centrale pour des fonctionnelles non linéaires de la mesure empirique et pour le rééchantillonnage stratifié." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2023. http://www.theses.fr/2023ENPC0051.
Full textThis thesis is dedicated to the central limit theorem which is one of the two fundamental limit theorems in probability theory with the strong law of large numbers.The central limit theorem which is well known for linear functionals of the empirical measure of independent and identically distributed random vectors, has recently been extended to non-linear functionals. The main tool permitting this extension is the linear functional derivative, one of the notions of derivation on the Wasserstein space of probability measures.We generalize this extension by first relaxing the equal distribution assumptionand then the independence property to be able to deal with the successive values of an ergodic Markov chain.In the second place, we focus on the stratified resampling mechanism.This is one of the resampling schemes commonly used in particle filters. We prove a central limit theorem for the first resampling according to this mechanism under the assumption that the initial positions are independent and identically distributed and the weights proportional to a positive function of the positions such that the image of their common distribution by this function has a non zero component absolutely continuous with respect to the Lebesgue measure. This result relies on the convergence in distribution of the fractional part of partial sums of the normalized weights to some random variable uniformly distributed on [0,1]. More generally, we prove the joint convergence in distribution of q variables modulo one obtained as partial sums of a sequence of i.i.d. square integrable random variables multiplied by a common factor given by some function of an empirical mean of the same sequence. The limit is uniformly distributed over [dollar][0,1]^q[dollar]. To deal with the coupling introduced by the common factor, we assume that the common distribution of the random variables has a non zero component absolutely continuous with respect to the Lebesgue measure, so that the convergence in the central limit theorem for this sequence holds in total variation distance.Under the conjecture that the convergence in distribution of fractional parts to some uniform random variable remains valid at the next steps of a particle filter which alternates selections according to the stratified resampling mechanism and mutations according to Markov kernels, we provide an inductive formula for the asymptotic variance of the resampled population after n steps. We perform numerical experiments which support the validity of this formula
Pillala, Lavanya. "Use Of Web-Based Lessons Of Statistical Concepts With Graphics And Animation To Enhance The Effectiveness Of Learning." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1268779325.
Full textAbdelkader, Mohamed. "Théorèmes limites dans l'analyse statistique des systèmes dynamiques." Thesis, Toulon, 2017. http://www.theses.fr/2017TOUL0010/document.
Full textIn this thesis we study the limit theorems in the statistical analysis of dynamicalsystems. The first chapter is devoted to the basic notions in dynamical systems as well asthe ergodic theory. In the second chapter we introduce an abstract functional frameworkunder which the quenched version of the central limit theorem (CLT) in dimension 1for uniformly expanding dynamic systems is satisfied under a necessary and sufficientcondition validity. The third chapter is devoted to the almost sure invariance principle(ASIP) for random piecewise expanding maps. We present some hypotheses under whichthe (ASIP) is verified using the method of approximation of the martingales of Cuny andMerlèvede. We also study the Sprindzuk theorem and its consequences. In chapter four,we define the decay of correlations for the random dynamical systems uniformly expandingby the coupling method in dimension 1. We finish this work with a presentation of thebasic concepts of the theory of measures and probabilities and a presentation of the spaceof functions with bounded variation
Liu, Chenguang. "Statistical inference for a partially observed interacting system of Hawkes processes." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS203.
Full textWe observe the actions of a K sub-sample of N individuals, during some time interval with length t>0, for some large K≤N. We model the relationships of individuals by i.i.d. Bernoulli(p) random variables, where p∈(0,1] is an unknown parameter. The rate of action of each individual depends on some unknown parameter μ>0 and on the sum of some function ϕ of the ages of the actions of the individuals which influence him. The function ϕ is unknown but we assume it rapidly decays. The aim of this thesis is to estimate the parameter p, which is the main characteristic of the interaction graph, in the asymptotic where the population size N→∞, the observed population size K→∞, and in large time t→∞. Let mt be the average number of actions per individual up to time t, which depends on all the parameters of the model. In the subcritical case, where mt increases linearly, we build an estimator of p with the rate of convergence \frac{1}{\sqrt{K}}+\frac{N} m_t\sqrt{K}}+\frac{N}{K\sqrt{m_t}}. In the supercritical case, where mt increases exponentially fast, we build an estimator of p with the rate of convergence 1K√+NmtK√. In a second time, we study the asymptotic normality of those estimators. In the subcritical case, the work is very technical but rather general, and we are led to study three possible regimes, depending on the dominating term in 1K√+NmtK√+NKmt√→0. In the supercritical case, we, unfortunately, suppose some additional conditions and consider only one of the two possible regimes
Kasparavičiūtė, Aurelija. "Paklaidos įvertis Centrinėje ribinėje teoremoje." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080619_124043-00846.
Full textThis master thesis considers independiant and identically distributed random variables, having absolute finite moments. The main task is to determine error estimate of the normal approximation. The work consists of eight chapters. In the introduction are considered problems and all subjects of research. The second chapter is designed for the theory analysis. Here are placed the main theoretical studies and methods that are used to solve the aims of the master thesis. The third chapter is intended to deal with cumulants in case of the Bernoulli’s distribution, the fourth one - is analyzing the Čebyšova’s asymptotic expansion and it convergence with the help of the mathematical package Maple. The method of characteristic’s functions is used to find the remainder term of the normal approximation, so the fifth chapter is designed to specify smoothing inequalities. Based on these results, the main task of the master thesis was obtained and specified in the sixth chapter. In the seventh one the error estimate in case of Bernoulli’s distribution, was examined with a mathematical package Maple. The short conclusions and results are placed in the eighth chapter.
Gomez, Garcia José Gregorio. "Théorèmes limites pour des fonctionnelles de clusters d'extrêmes et applications." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0916/document.
Full textThis thesis deals mainly with limit theorems for empirical processes of extreme cluster functionals of weakly dependent random fields and sequences. Limit theorems for empirical processes of extreme cluster functionals of stationnary time series are given by Drees & Rootzén [2010] under absolute regularity (or "ß-mixing") conditions. However, these dependence conditions of mixing type are very restrictive: on the one hand, they are best suited for models in finance and history, and on the other hand, they are difficult to verify. Generally, for other models common in applications, the mixing conditions are not satisfied. In contrast, weak dependence conditions, as defined by Doukhan & Louhichi [1999] and Dedecker & Prieur [2004a], are dependence conditions which generalises the notions of mixing and association. These are easier to verify and applicable to a wide list of models. More precisely, under weak conditions, all the causal or non-causal processes are weakly dependent: Gaussian, associated, linear, ARCH(∞), bilinear and Volterra processes are some included in this list. Under these conveniences, we expand some of the limit theorems of Drees & Rootzén [2010] to weakly dependent processes. These latter results are used in order to show the convergence in distribution of the extremogram estimator of Davis & Mikosch [2009] and the functional estimator of the extremal index introduced by Drees [2011] under weak dependence. We prove an extreme value theorem for weakly dependent stationary random fields and we propose, under the same conditions, a domain of attraction criteria of a law of extremes. The document ends with limit theorems for the empirical process of extreme cluster functionals of stationary weakly dependent random fields, deriving also the convergence in distribution of the estimator of an extremogram for stationary weakly dependent space-time processes
Ådahl, Markus. "Random iteration of isometries." Doctoral thesis, Umeå University, Mathematics and Mathematical Statistics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-263.
Full textThis thesis consists of four papers, all concerning random iteration of isometries. The papers are:
I. Ambroladze A, Ådahl M, Random iteration of isometries in unbounded metric spaces. Nonlinearity 16 (2003) 1107-1117.
II. Ådahl M, Random iteration of isometries controlled by a Markov chain. Manuscript.
III. Ådahl M, Melbourne I, Nicol M, Random iteration of Euclidean isometries. Nonlinearity 16 (2003) 977-987.
IV. Johansson A, Ådahl M, Recurrence of a perturbed random walk and an iterated function system depending on a parameter. Manuscript.
In the first paper we consider an iterated function system consisting of isometries on an unbounded metric space. Under suitable conditions it is proved that the random orbit {Zn} ∞n=0, of the iterations corresponding to an initial point Z0, “escapes to infinity" in the sense that P(Zn Є K) → 0, as n → ∞ for every bounded set K. As an application we prove the corresponding result in the Euclidean and hyperbolic spaces under the condition that the isometries do not have a common fixed point.
In the second paper we let a Markov chain control the random orbit of an iterated function system of isometries on an unbounded metric space. We prove under necessary conditions that the random orbit \escapes to infinity" and we also give a simple geometric description of these conditions in the Euclidean and hyperbolic spaces. The results generalises the results of Paper I.
In the third paper we consider the statistical behaviour of the reversed random orbit corresponding to an iterated function system consisting of a finite number of Euclidean isometries of Rn. We give a new proof of the central limit theorem and weak invariance principles, and we obtain the law of the iterated logarithm. Our results generalise immediately to Markov chains. Our proofs are based on dynamical systems theory rather than a purely probabilistic approach.
In the fourth paper we obtain a suficient condition for the recurrence of a perturbed (one-sided) random walk on the real line. We apply this result to the study of an iterated function system depending on a parameter and defined on the open unit disk in the complex plane.
Stewart, Kathryn Lockwood. "On Truncations of Haar Distributed Random Matrices." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1554279921382029.
Full textZeileis, Achim. "A unified approach to structural change tests based on F statistics, OLS residuals, and ML scores." Institut für Statistik und Mathematik, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/714/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Gonchigdanzan, Khurelbaatar. "ALMOST SURE CENTRAL LIMIT THEOREMS." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin990028192.
Full textLarsson-Cohn, Lars. "Gaussian structures and orthogonal polynomials." Doctoral thesis, Uppsala : Matematiska institutionen, Univ. [distributör], 2002. http://publications.uu.se/theses/91-506-1535-1/.
Full textReding, Lucas. "Contributions au théorème central limite et à l'estimation non paramétrique pour les champs de variables aléatoires dépendantes." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR049.
Full textThis thesis deals with the central limit theorem for dependent random fields and its applications to nonparametric statistics. In the first part, we establish some quenched central limit theorems for random fields satisfying a projective condition à la Hannan (1973). Functional versions of these theorems are also considered. In the second part, we prove the asymptotic normality of kernel density and regression estimators for strongly mixing random fields in the sense of Rosenblatt (1956) and for weakly dependent random fields in the sense of Wu (2005). First, we establish the result for the kernel regression estimator introduced by Elizbar Nadaraya (1964) and Geoffrey Watson (1964). Then, we extend these results to a large class of recursive estimators defined by Peter Hall and Prakash Patil (1994)
Jonsson, Fredrik. "Almost Sure Central Limit Theory." Thesis, Uppsala University, Department of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121066.
Full textLam, Hoang Chuong. "Les théorèmes limites pour des processus stationnaires." Phd thesis, Université François Rabelais - Tours, 2012. http://tel.archives-ouvertes.fr/tel-00712572.
Full textPaditz, Ludwig. "On the error-bound in the nonuniform version of Esseen's inequality in the Lp-metric." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-112888.
Full textDas Anliegen dieses Artikels besteht in der Untersuchung einer bekannten Variante der Esseen'schen Ungleichung in Form einer ungleichmäßigen Fehlerabschätzung in der Lp-Metrik mit dem Ziel, eine numerische Abschätzung für die auftretende absolute Konstante L zu erhalten. Längere Zeit erweckten die Ergebnisse, die von verschiedenen Autoren angegeben wurden, den Eindruck, dass die ungleichmäßige Fehlerabschätzung im interessantesten Fall δ=1 nicht möglich wäre, weil auf Grund der geführten Beweisschritte der Einfluss von δ auf L in der Form L=L(δ)=O(1/(1-δ)), δ->1-0, beobachtet wurde, wobei 2+δ, 0<δ<1, die Ordnung der vorausgesetzten Momente der betrachteten unabhängigen Zufallsgrößen X_k, k=1,2,...,n, angibt. Erneut wird die Methode der konjugierten Verteilungen angewendet und die gut bekannte Beweistechnik verbessert, um im interessantesten Fall δ=1 die Endlichkeit der absoluten Konstanten L nachzuweisen und um zu zeigen, dass L=L(1)=<127,74*7,31^(1/p), p>1, gilt. Im Fall 0<δ<1 wird nur die analytische Struktur von L herausgearbeitet, jedoch ohne numerische Berechnungen. Schließlich wird mit einem Beispiel zur Normalapproximation von Summen l_2-wertigen Zufallselementen die Anwendung der gewichteten Fehlerabschätzung im globalen zentralen Grenzwertsatz demonstriert