Dissertations / Theses on the topic 'Centromer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Centromer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Haupt, Wolfgang E. "Genetische und molekulare Charakterisierung der Centromer-1-Region von Arabidopsis thaliana." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963027107.
Full textSchmidt, Joachim. "Das Kinetochorprotein Slk19 Funktion und Interaktion mit der proteasomalen Untereinheit Pre4 /." [S.l. : s.n.], 2005. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-25022.
Full textWeber, Beatrice. "Molekulare Charakterisierung von Ty3-gypsy-Retrotransposons als abundante Sequenzklasse des Centromers eines Minichromosoms in Beta vulgaris L." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1202422376474-41371.
Full textWeber, Beatrice. "Molekulare Charakterisierung von Ty3-gypsy-Retrotransposons als abundante Sequenzklasse des Centromers eines Minichromosoms in Beta vulgaris L." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A24052.
Full textMartínez, Láinez Joan Marc. "Regulación del ciclo celular por ploidía en Saccharomyces cerevisiae." Doctoral thesis, Universitat Internacional de Catalunya, 2017. http://hdl.handle.net/10803/461358.
Full textUna de las características celulares con más impacto sobre su fisiología celular es el tamaño, regulada por multitud de factores extrínseco e intrínsecos, y una característica de vital relevancia ya que afecta el volumen de diferentes orgánulos y su proporción, la arquitectura interna de la célula y tiene capacidad de adaptarse al contenido de DNA. Respecto a este último, y gracias a estudios que se remontan desde hace un siglo hasta la actualidad, se postula que existe un mecanismo por el cual la célula es capaz de regular su tamaño celular mediante ploidía. Esto ocurre a lo largo de todo el árbol de la vida, existiendo evidencias de una correlación lineal entre el tamaño y el número de cromosomas que contienen las células. No obstante, este mecanismo permanece esquivo y se desconoce que elementos participan. Este estudio, basado en un modelo eucariota como es S. cerevisiae, se inició gracias a la observación previa que vectores lanzadera centroméricos, YCp, producen un incremento de tamaño. En este trabajo hemos determinado que el centrómero es el principal elemento inductor de este fenotipo, descartando otras opciones como la cantidad de DNA o la recuperación de vías metabólicas aportada por estos vectores, lo que se confirmó mediante cromosomas artificiales, YAK, y la integración de nuevos centrómeros condicionales en los cromosomas de levadura. Además, se ha desarrollado un sistema para cuantificar el número de centrómeros aportado a la célula mediante fluorescencia, protocolo que ha permitido relacionar de forma muy precisa la dosis centromérica al tamaño celular. Por lo que se refiere al mecanismo molecular implicado, hemos observado que un número elevado de centrómeros aumenta la degradación de la ciclina Cln3 a través de elementos del SCF presentes en el núcleo, lo que produce un claro retraso en la fase G1 y, en consecuencia, un incremento en el tamaño celular. En este mecanismo hemos desvelado la participación de proteinas señalizadoras del centrómero, como son Mad3, Mad2, y Bub3, así como las interacciones in vivo entre Mad3 y Cln3 o Cdc4. Estos datos apuntan a la existencia de un nuevo mecanismo molecular para la regulación del tamaño celular por ploidía.
Schau, Katharina [Verfasser]. "Molekularzytogenetische Analyse strahleninduzierter Chromosomenveränderungen mittels Fluoreszenz-in-situ-Hybridisierung mit einer All-Human-Centromer-Probe bei Trägerinnen einer pathogenen BRCA1-Mutation / Katharina Schau." Kiel : Universitätsbibliothek Kiel, 2016. http://d-nb.info/1118500059/34.
Full textCosta, Lionel. "Etude de la régulation de la structure de la chromatine par la RiboNucléase Latente (RNase L) chez les mammifères." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20225/document.
Full textThe endoribonuclease Latente (RNase L) is mostly known as a critical factor in the innate immunity during the cell's defence against a viral infection. The antiviral activity of RNase L which is characterize by it capacity of cleavage of viral RNA, is regulated by several factors like it activator the oligoadénylates 2-5A and his inhibitor RLI. In this manuscript, we have studied the role of the activity of RNase L in the regulation of the structure of centromeric domains. Our results show a general destructuration of chromosomes observed in cells over-expressing RNase L or RLI. These major aberrations are demonstrated by a delocalization of essentials proteins for the structure of chromatin: HP1-alpha and CENP-C. The mislocalization of these proteins could be provoked by a default in the maturation of major transcripts due to a modulation of the activity of RNase L. moreover, in this study, we have identified a mechanism regulating the cyto-nuclear shuttling of RNase L. therefore, we propose that a new nuclear function of RNase L: it's implication in the regulation of pericentromeric transcripts needed to stabilize the integrity of the structure of chromatin
Ferri, Frederica. "Role of non-coding murine centromeric RNA in the assembly and function of centromere." Paris 7, 2009. http://www.theses.fr/2009PA077129.
Full textThe centromeres of eukaryotic chromosomes are genomic regions featuring a unique, specific chromatin architecture that is necessary for proper chromosome segregation during mitosis. While there is evidence that the assembly and highly specialized fonction of centromeric chromatin domains require the dynamic association of a large variety of proteins during various stages of the cell-cycle, it is now becoming clear that non-coding RNA are integral components of chromatin and contribute to its structural organization. We recently described new RNA, transcribed from murine centromeric minor satellite repeats, which localize on chromocenters. We now considered the implication of these RNA in recruiting and/or stabilizing rfconucleoprotein complexes located at centromeric regions and their functional dynamics during cell cycle. We reported that levels of minor satellite RNA vary during cell cycle progression, accumulating in G2/M phase, concomitantly with the localization of the chromosomal passenger complex to the centromere. We showed that minor satellite RNA are components of CENP-A chromatin and interact with proteins of the chromosomal passenger complex at the onset of mitosis. Both interactions between endogenous passenger proteins Aurora B and Survivin within centromeric chromatin and Aurora B kinase activity are sensitive to RNaseA. More importantly, this Aurora B kinase activity can be specifically rescued by restitution of minor satellite RNA. Together, our data provide new insights into thé implication of minor satellite RNA in the establishment of a functional centromere, by regulating Aurora B association with CENP-A-associated domains and enzymatic function
Barinova-Melenkova, Natalja. "Anaphase bridges generated by dicentric chromosomes break predominantly at pericentromeric regions and internal telomeric sequences." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112101.
Full textIn most eukaryotes, there is one defined centromeric region per chromosome that links it to the spindle apparatus via the kinetochore complex. In this context, the presence of two centromeres is a challenge for an accurate segregation. During mitosis, the capture of the two centromeres of the same chromatid to opposite poles generates anaphase bridges that results in breakage between the centromeres. The released ends can be fused end-to-end thus recreating dicentric. It enters breakage-fusion-bridge cycles that, in multiple rounds, can result in large gene copy number alterations that can contribute to oncogenesis and chemotherapy resistance. Despite of its significance, the mechanism of breakage remains for a large part unexplored. This project adresses the dicentric breakage using a budding yeast, Saccharomyces cerevisiae. We use conditional dicentric strains, where a chromosome, bearing a conditional centromere under the control of two galactose-inducible promoters, is fused to another native chromosome by homologous recombination. We observed that dicentric chromosomes tend to break in the vicinity of the two centromeres. The breakage region spreads over ~30 kb towards the other centromere. An insertion of a 1-kb ectopic centromere in a chromosome with a conditional centromere establishes a ~30 kb hot spot indistinguishable from the hot spots at native centromeres. Furthermore, the size of breakage region is unrelated to an intercentromeric distance (30-600 kb intervals were tested). This indicates that the higher propensity to break is a consequence of centromere structure or function and is unrelated to the native surrounding sequences. It is yet unclear whether breakage at centromeres has a physiological function but we can speculate that this hot spot may favour local DNA rearrangements that result in centromere inactivation and thus the return to a stable karyotype. Overall in budding yeast, dicentrics break at pericentromeric regions or at the telomere fusions when they are present. Interestingly, internal telomeric sequences, i.e. TG₁₋₃ repeats, establish several breakage hot spots with a similar frequency. In perspective, it would be interesting to address the following questions: 1) What are features that make a region more prone to breakage? 2) What are the positions of breakage at nucleotide level? 3) Is there a coordination of dicentric chromatid breakage? 4) What can be the biological function of dicentric breakage hot spots?
Filipescu, Dan. "The role of the histone variant cenp-a and its chaperone hjurp in mouse centromere propagation and tumorigenesis." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066170.
Full textCentromeres are genomic loci ensuring equal distribution of the two sets of chromosomes in mitosis. Their identity is not encoded in the underlying DNA sequence but specified epigenetically by the histone H3 variant CENP-A. In transformed human cell lines, CENP A is deposited at centromeres by the histone chaperone HJURP in a distinct window of the cell cycle. During my PhD I have taken advantage of the mouse model to address cell cycle and developmental features of centromeric chromatin, as well as its dysfunction in cancer.Using an organism-level approach, I could observe that contrary to most histones, CENP-A is retained on the paternal genome during spermatogenesis, acting as a transgenerational mark of the centromere. To study the role of HJURP in vivo, we generated a knockout mouse and discovered that its genomic locus underwent amplification in several mouse subspecies.In parallel, we addressed the crosstalk between histone variant dynamics and higher-order chromatin structure at the centromere, and revealed that the dynamic reorganization of pericentric heterochromatin during the cell cycle controls the distinct incorporation of H2A variants and CENP-A stoichiometry.Finally, to explore the connection between tumorigenesis and CENP-A/HJURP overexpression, recorded in a number of human cancers, we used a mouse embryonic fibroblast model of transformation. We determined that whereas their overexpression did not confer a measurable proliferative advantage in a p53-deficient background, CENP-A/HJURP upregulation was a consequence of transformation. Whether their accumulation has a functional role to enhance tumorigenesis in this system was further investigated
Seitz, Stefanie. "Connecting the histone acetyltransferase complex SAS-I to the centromere in S. cerevisiae." Doctoral thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973040629.
Full textBehrens, Fauke. "Analysis of the human centromere : an investigation into the use of a centromeric microdissection library for isolating and mapping of centromeric DNA sequences." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264957.
Full textMorency, Eric. "The protein of herpes simplex virus Type 1 : from centromeres to the interphase centromere damage response." Lyon 1, 2007. http://www.theses.fr/2007LYO10317.
Full textDu, Hang [Verfasser]. "ZBTB24, a gene associated with human immunodeficiency-centromere instability-facial anomalies (ICF) syndrome, regulates centromeric and pericentromeric heterochromatin formation / Hang Du." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1098185366/34.
Full textSamereier, Matthias. "Functional analyses of microtubule and centrosome-associated proteins in Dictyostelium discoideum." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5283/.
Full textDie Kenntnis der Funktion von Mikrotubuli-assoziierenden Proteinen (MAPs) ist von grundlegender Bedeutung für das Verständnis der Mikrotubuli-Dynamik und deren Regulation. Im Rahmen dieser Arbeit wurde die Rolle des Mikrotubuli-assoziierenden Proteins TACC (Transforming acidic coiled-coil), welches in vielen Organismen an der Stabilisierung und dem Wachstum von Mikrotubuli beteiligt ist, im Modellorganismus Dictyostelium discoideum untersucht. Das Dictyostelium TACC Protein konnte während des gesamten Zellzyklus am Centrosom nachgewiesen werden. Darüber hinaus wurde es an den Mikrotubuli-Plus-Enden vorgefunden, überraschenderweise jedoch ausschließlich während der Interphase. Die gleiche Zellzyklusabhängige Lokalisation wurde für CP224 beobachtet, einem Homologen der XMAP215 Proteine in Dictyostelium. Diese ubiquitären MAPs sind konservierte, direkte Interaktionspartner der TACC Proteine und spielen eine zentrale Rolle bei der Nukleation und der Polymerisation von Mikrotubuli. Durch diese Arbeit konnte erstmals in vivo gezeigt werden, dass TACC und XMAP215 Proteine während der Interphase und Mitose unterschiedlich stark mit Mikrotubuli-Plus-Enden assoziiert sein können. Durch Untersuchungen an Knockdown-Mutanten wurde ersichtlich, dass Dictyostelium TACC eine Rolle beim Mikrotubuli-Wachstum während der Interphase spielt und über weite Strecken der Mitose essentiell für die Ausbildung von astralen Mikrotubuli ist. In anderen Organismen konnte als Ursache instabiler Mikrotubuli in TACC Mutanten häufig unzureichendes Rekrutieren des jeweiligen XMAP215 Proteins an das Centrosom ausgemacht werden. Um entsprechende Auswirkungen auf die Lokalisation von CP224 durch den Knockdown von TACC in Dictyostelium zu untersuchen, wurden Fluorescence Recovery after Photobleaching (FRAP) Experimente durchgeführt. Diese ergaben, dass CP224 auch in Abwesenheit von TACC in vollem Umfang an die Centrosomen und Spindelpole rekrutiert wird. Anders als im Wildtyp, konnte in TACC Mutanten allerdings kein CP224 an den Mikrotubuli-Plus-Enden nachgewiesen werden. Somit konnte erstmals in vivo gezeigt werden, dass ein TACC Protein essentiell für die Assoziation eines XMAP215 Proteins mit den Mikrotubuli-Plus-Enden ist. Im Laufe der genannten Experimente stellte sich heraus, dass sich die GFP-TACC Stämme aufgrund ihrer markierten Plus-Enden sehr gut für Untersuchungen zur ungewöhnlichen Mikrotubuli-Dynamik in Dictyostelium eignen. Zwar weisen Mikrotubuli hier über die gesamte Länge ausgeprägte Krümmungs- und Seitwärtsbewegungen auf, es können jedoch im Vergleich zu anderen Organismen während der Interphase kaum Wachstums- oder Verkürzungsvorgänge beobachtet werden. Dennoch können Dictyostelium Mikrotubuli unter Verwendung von Agenzien wie Thiabendazol oder Nocodazol, welche ausschließlich auf dynamische Mikrotubuli wirken, signifikant verkürzt werden. Durch FRAP Experimente und Einsatz von 5D Fluoreszenz-Mikroskopie an lebenden Zellen konnte in dieser Arbeit erstmalig nachgewiesen werden, dass Dictyostelium Mikrotubuli nur in der Zellperipherie, nicht aber im pericentrosomalen Bereich dynamisch sind. Die Identifikation bislang unbekannter Bestandteile des Dictyostelium Centrosoms erfuhr in den vergangenen Jahren große Fortschritte. Ein von unserer Gruppe durchgeführter Proteomics-Ansatz brachte eine Vielzahl potentiell centrosomaler Proteine zu Tage, von welchen bereits viele am Centrosom nachgewiesen werden konnten. Der zweite Teil dieser Arbeit befasst sich mit der Charakterisierung dreier noch unbekannter Proteine aus dem Proteomics-Ansatz, Cenp68, CP103 und dem Dictyostelium Homologen des Spindle Assembly Checkpunkt Proteins Mad1. Hierbei zeigte sich, dass lediglich CP103 Bestandteil isolierter, Mikrotubuli-freier Centrosomen ist, während Cenp68 an die Centromere und Mad1 an die Kinetochoren lokalisieren. Die Charakterisierung von Cenp68 umfasste außerdem die Herstellung eines polyklonalen anti-Cenp68 Antikörpers, das Suchen nach Interaktionspartnern und die Erzeugung eines Cenp68 Knockout-Stammes. Letzterer wies jedoch keinen offensichtlichen Phänotyp auf. Das Verhalten des Dictyostelium Mad1 Proteins während der Mitose stimmte in großen Teilen mit dem anderer Mad1 Proteine überein, was auf die Existenz eines bislang unerforschten Spindle Assembly Chekpunkts in Dictyostelium hinweisen könnte.
Bernard, Pascal. "Structure et fonctions des centromères chez la levure Schizosaccharomyces pombe." Bordeaux 2, 2000. http://www.theses.fr/2000BOR28725.
Full textPutkey, Frances Rosanne. "Identifying mechanisms of centromere-dependent chromosome movement and centromere identity /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2001. http://wwwlib.umi.com/cr/ucsd/fullcit?p9993985.
Full textGross, Sylvain. "Etude de la déstabilisation des structures protéique et chromatinienne des centromères par la protéine ICP0 du virus Herpes Simplex de Type 1." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00838586.
Full textDalkara, Defne. "Etude des fonctions du domaine amino-terminal de CENP-A pendant la mitose." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV001.
Full textThe histone variant CENP-A epigenetically marks the centromere. The presence of CENP-A at the centromeres allows the recruitment of centromeric proteins that constitute the platform for functional kinetochores.In human cells, the NH2-terminus of CENP-A and its phosphorylation at serine 7 in mitosis has been reported to be crucial for the progression of mitosis. However, no phosphorylation of CENP-A in other metazoan species has been described. Here, we show that the NH2-terminus of CENP-A, but not its primary sequence, is required for mitosis in mouse embryonic cells (MEFs). Our data show that the mitotic defects resulting from the depletion of the endogenous CENP-A can be rescued when MEFs expressing a GFP- CENP-A mutant where the NH2-terminus of CENP-A was swapped with the phosphorylatable tail of conventional histone H3. Conversely, no rescue was observed when the two phosphorylatable serines in the H3 tail mutant were replaced with alanines. Furthermore, a non-phosphorylatable fusion mutant of CENP-A where all seven serines in the amino-tail were replaced with alanines, was also unable to rescue the mitotic phenotype of CENP-A depleted cells.We also identified that the first three serines of the tail of CENP-A as potential sites for phosphorylation. Additionally, we were able to link the phosphorylation of CENP-A amino-tail to the proper localization of the key centromeric protein CENP-C. These results suggest that mitotic CENP-A phosphorylation is a potentially common event in metazoans essential for mitotic progression.In the second par of this work we wanted to unambiguously tie the NH2-terminus function of CENP-A to mitosis. To achieve this, we wanted to remove the CENP-A amino-tail only during mitosis and we devised a new method called the Hara-kiri approach in order to answer the above question in human cells. The removal of the NH2-terminal domain of CENP-A using the Hara-kiri approach at the onset of mitosis led to increased mitotic defects in cells. Taken collectively these data show that the CENP-A NH2- terminus is required during mitosis to assure proper cell division
Rouzeau, Sébastien. "Rôle de la protéine BLM dans le maintien de l’intégrité du centromère : implications dans le phénotype cellulaire associé au syndrome de Bloom." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA11T110/document.
Full textBloom syndrome (BS) is a rare genetic disease characterized by a sharp increase in the rate of sister chromatid exchanges, chromosome segregation abnormailities and a predisposition to the development of all types of cancers. This syndrome is caused by mutations in both copies of the BLM gene, which encodes BLM, a RecQ 3'-5 DNA helicase. The specific function(s) of BLM remain unclear, but the data from the literature converge towards a role for BLM in mechanisms monitoring and / or maintaining genome integrity. The BLM protein may be involved in restarting stalled replication forks during S phase and necessary to resolve anaphase bridges in mitosis, including particular bridges called "Ultrafine Anaphase Bridges" (UFBs). These UFBs, which link sister chromatids together, are not detectable by conventional stains and their presence can only be revealed by the detection of the proteins PICH (PLK1-interacting checkpoint helicase) or BLM. In untreated cells, UFBs originate mostly from centromeres (cUFBs).The challenge of my project was to determine whether BLM was also involved in preventing the formation of cUFBs and so, if it played a role before anaphase.We showed that BLM is recruited at centromeres from G2 phase to mitosis. BLM, in cooperation with PICH, is required for (1) structural organization of centromeric DNA, (2) completion of centromere disjunction, independently of the cohesin pathway, suggesting an involvement of these proteins in centromere decatenation process, and (3) recruitment of active topoisomerase IIα (Topo IIα) to centromeres. Thus, we report a new localization and a new function of BLM at centromeres, revealing for the first time a new role for BLM and PICH in a previously unknown centromeric decatenation mechanism, crucial for complete centromere disjunction.We propose that the combined action of BLM and PICH promotes, through their helicase and chromatin remodelling activities, respectively, the organization of centromeric chromatin, thereby rendering some centromeric catenates accessible to Topo IIa before the onset of anaphase. The failure of this mechanism may lead to the persistence of some centromeric catenations not resolved before anaphase. Thus, the increase in the frequency of centromeric UFBs in BLMdeficient cells has two different origins: cUFBs arising from catenations not resolved before anaphase and physiological cUFBs not processed at anaphase onset. Two distinguish the two cUFB origins, we defined the former as supernumerary centromeric UFBs (SC-UFBs)
Bergmann, Jan H. "Hacking the centromere chromatin code : dissecting the epigenetic regulation of centromere identity." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4670.
Full textRakkaa, Tarik. "Rôle de la kinase CDK11p58 dans la protection de la cohésion des chromatides sœurs au centromère." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S191.
Full textSister chromatid cohesion during the early stages of mitosis is essential to ensure faithful chromosome segregation. Sister chromatid cohesion is established in S phase and is maintained at centromeres until the metaphase to anaphase transition. Protection of cohesion at centromeres is under the control of the Bub1 kinase which phosphorylates histone H2A on threonine 120. Phosphorylated H2AT120 recruits the cohesion protection factor shugoshin (Sgo1) at centromeres. We had previously reported that depletion of the HDAC3 deacetylase induces acetylation of histone H3 lysine 4 at the centromere and loss of dimethylation at the same position. Forced acetylation of H3K4 at centromeres correlates with impaired Sgo1 recruitment and loss of sister chromatid separation. Cdk11p58, a member of the p34cdc2 related protein kinase family, is a G2/M specific protein, involved in different cell cycle events such as centrosome maturation, spindle formation or centriole duplication. It has also been reported as being involved in sister chromatid cohesion. Here we report that, upon cdk11p58 depletion, sister chromatids do not prematurely separate until the early stages of mitosis. We confirm that Cdk11p58 depletion induces a loss of Bub1 and Sgo1 from the centromeres and we show that H3K4 dimethylation is not affected by Cdk11p58 depletion. We report that depletion of endogenous Cdk11p58 in a cell line expressing a kinase-dead version of Cdk11p58 do not rescue the premature sister chromatid separation phenotype. Thus, phosphorylation of an unknown susbtrate by Cdk11p58 is necessary to maintain Bub1 at centromeres and our efforts are now directed towards its identification
Le, Boulch Marie. "Décryptage des mécanismes d’ubiquitylation régulant l’histone centromérique CenH3 chez Saccharomyces cerevisiae." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1B009.
Full textUbiquitylation consists of the covalent attachment of ubiquitin to other proteins. This process successively involves three families of enzymes: activation (E1s), conjugation (E2s) and ligation (E3s) enzymes. In my thesis, I am interested in the ubiquitylation network that regulates endogenous Cse4, the variant histone specifically located at the centromere. Cse4 is an essential protein that allows proper segregation of chromosomes. When Cse4 is over-expressed, it can localize on noncentromeric chromatin resulting in genetic instability observed in many cancers. In budding yeast, ubiquitylation prevents mislocalisation of Cse4 by leading to its degradation, but precise mechanisms are not known and data were obtained by overexpressing Cse4. Our hypothesis is that in yeast, endogenous Cse4 could be regulated differently thanks to several pairs of E2 / E3 enzymes. In this context, the goal of my thesis is to carry out a detailed study of the network of enzymes involved in endogenously expressed Cse4 ubiquitylation in order to better understand its regulation. In particular, we have been able to show a variation of the ubiquitylation during S phase dependent of the E3 Psh1
Cacheux, Lauriane. "Diversité et histoire évolutive de l’ADN alpha satellite chez les Cercopithèques." Thesis, Paris, Muséum national d'histoire naturelle, 2016. http://www.theses.fr/2016MNHN0020/document.
Full textAlpha satellite DNA is the main family of tandemly repeated sequences lying in primate centromere regions. Alpha satellite monomers (≈170 bp) diversified during the course of evolution, forming distinct families of alpha satellite sequences that exhibit specific organizational and distribution patterns. The limited amount of studies concerning non-human primates is a restriction to the understanding of alpha satellite evolutionary dynamics, which calls for the integration of this element into comparative studies. Cercopithecini, which display an unusual chromosomal evolution by multiple fissions and new centromere formations, constitute a promising study model.We carried out next generation sequencing of alpha satellite monomers and dimers isolated from the Cercopithecus solatus (2n = 60) and C. pogonias (2n = 72) genomes. These species belong to different primary lineages within the Cercopithecini tribe and diverged from each other several million years ago. Computational tools were used to analyze the collected sequences and characterize six alpha satellite families, four of them being shared between species and two being limited to C. pogonias. At least three families belong to higher order repeats, an organizational pattern that had never been observed in Cercopithecini. The fluorescence in situ hybridization of each family, performed with highly discriminant oligonucleotide probes, showed their distribution on C. solatus and C. pogonias chromosomes. Some of them distribute on distinct sets of chromosomes, disclosing the existence of alpha satellite interchromosomal diversity in Old World monkeys. Their position along centromeric regions is largely in accordance with the age-gradient hypothesis, according to which new families expand at centromere, thereby splitting and displacing older families toward pericentromeres. The extension of this analysis to fifteen species, combined to a newly reconstructed molecular phylogeny, allowed us to propose an evolutionary scenario for alpha satellite DNA in Cercopithecini. Alpha satellite DNA diversification and displacement on centromere regions appear intimately connected to chromosome rearrangement dynamics, including new centromere formations, which suggests that centromeres and chromosomes evolve in a concerted manner. Finally, this work provided information about Cercopithecini relationships and thus encourages the integration of alpha satellite DNA into the study of primate evolutionary history.Our new methodological approach allowed deciphering alpha satellite diversity and dynamics in Cercopithecini. This framework could be used to study alpha satellite DNA in other primates, and be applied to different satellites in primates as in non-primate species
Alcaide, Luis Fernando Aragon. "Centromeres and chromosome pairing." Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.480632.
Full textHe, Hong. "Organization of centromere associated DNA in Chironomus pallidivittatus." Lund : Dept. of Genetics, Lund University, 1997. http://books.google.com/books?id=OL5qAAAAMAAJ.
Full textLE, NORMAND ISABELLE. "Les anticorps anticentromeres : interet diagnostique." Angers, 1991. http://www.theses.fr/1991ANGE1029.
Full textLamb, Jonathan C. "Centromere function and evolution in maize (Zea mays)." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4446.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 3, 2007) Includes bibliographical references.
Maney, Robert Todd. "A functional analysis of mitotic centromere-associated kinesin /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10532.
Full textPhelps-Durr, Tara L. "Molecular analyses of the maize B chromosome centromere /." free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3025644.
Full textMilks, Kirstin Jane. "CENP-C's role in centromere and kinetochore assembly /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textRibeiro, Susana Abreu. "Structural and functional mapping of the vertebrate centromere." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4653.
Full textSilva, Mariana Coelho Correia da. "Epigenetic and cell cycle control of centromere inheritance." Doctoral thesis, Universidade Nova de Lisboa. Instituto de Tecnologia Química e Biológica, 2012. http://hdl.handle.net/10362/10520.
Full textCell division is a fundamental process of all living organisms by which a parental cell divides into two genetically identical daughter cells. Faithful cell division requires duplication and subsequent equal distribution of the parental genetic information, the genome, between daughter cells. In eukaryotes, genomic information is organized in chromosomes, which consist of linear DNA sequences packaged into histone protein-DNA complexes called nucleosomes.(...)
Lo, Wing Ip Anthony. "Human centromeric and neocentromeric chromatin /." Connect to thesis, 2000. http://eprints.unimelb.edu.au/archive/00000771.
Full textMartinez, Perez Enrique. "Centromeres, polyploidy and chromosome pairing." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365011.
Full textPavlíková, Hana. "Marketingová strategie firmy Centropen a.s." Master's thesis, Vysoká škola ekonomická v Praze, 2008. http://www.nusl.cz/ntk/nusl-3963.
Full textPavlíková, Hana Bc. "Marketingová strategie firmy Centropen a.s." Master's thesis, Vysoká škola ekonomická v Praze, 2008. http://www.nusl.cz/ntk/nusl-165166.
Full textVallardi, Giulia. "PP2A-B56 isoform specificity at the centromere and kinetochore." Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/97f2119d-0187-4a09-9652-7f579012d35e.
Full textGaitan, Maria Clara Echeverry. "Studies on centromere organisation and function in `Trypanosoma brucei'." Thesis, London School of Hygiene and Tropical Medicine (University of London), 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590634.
Full textWong, Nicholas Chau-Lun. "DNA methylation at the neocentromere /." Connect to thesis, 2006. http://eprints.unimelb.edu.au/archive/00001883.
Full textDambacher, Silvia. "Regulation of centromeric and pericentric heterochromatin." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-163218.
Full textBarth, Teresa. "Identification and characterization of novel Drosophila melanogaster centromere-associated proteins." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-178635.
Full textMellone, Barbara. "Investigating the role of histones in fission yeast centromere function." Thesis, Open University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394785.
Full textKaszás, Étienne. "Molecular and genetic analyses of the maize B chromosome centromere /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841157.
Full textMaggert, Keith Andrew. "Epigenetic regulation of centromere and neocentromere activity in Drosophila melanogaster /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9975896.
Full textPerriches, T. R. A. "The CBF3 complex structure and function during point centromere establishment." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1463174/.
Full textCastillejo-López, Casimiro. "Repetitive DNA in search of a function a study of telomeric and centromeric sequences in Chironomus /." Lund : Lund University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/68945096.html.
Full textShivaraju, Manunatha. "Regulators of centromeric nucleonsomes in Saccharomyces cerevisiae." Thesis, Open University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539419.
Full textZoli, Monica <1982>. "Structural and functional analysis of centromeric chromatin." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3803/.
Full textMitchell, Arthur Richard. "The chromosomal environment of centromeric DNA sequences." Thesis, Edinburgh Napier University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294078.
Full text