To see the other types of publications on this topic, follow the link: Centromer.

Dissertations / Theses on the topic 'Centromer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Centromer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Haupt, Wolfgang E. "Genetische und molekulare Charakterisierung der Centromer-1-Region von Arabidopsis thaliana." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963027107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schmidt, Joachim. "Das Kinetochorprotein Slk19 Funktion und Interaktion mit der proteasomalen Untereinheit Pre4 /." [S.l. : s.n.], 2005. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-25022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weber, Beatrice. "Molekulare Charakterisierung von Ty3-gypsy-Retrotransposons als abundante Sequenzklasse des Centromers eines Minichromosoms in Beta vulgaris L." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1202422376474-41371.

Full text
Abstract:
Die Gattung Beta gehört zur Familie der Chenopodiaceae und wird in die vier Sektionen Beta, Corollinae, Nanae und Procumbentes unterteilt, wobei die Zuckerrübe der Sektion Beta zugeordnet wird. Aus dem Genom der Zuckerrübe und verwandter Wildarten konnten bereits eine Vielzahl von repetitiven DNA-Familien kloniert und untersucht werden. Mit der monosomen Fragmentadditionslinie PRO1 stand eine Chromosomenmutante zur Verfügung, die neben den 18 B. vulgaris-Chromosomen ein Chromosomenfragment der Wildrübe Beta procumbens enthält. Da dieses als Minichromosom bezeichnete Fragment mitotische Stabilität aufweist, muss es ein funktionelles Centromer besitzen, das auch im genetischen Hintergrund von Beta vulgaris aktiv ist. Mit der Erstellung einer BAC (bacterial artifical chromosome)-Bank von PRO1 wurde die molekulare Charakterisierung von Ty3-gypsy-Retrotransposons eines einzelnen Wildrüben-Centromers möglich. Die für die Wildrübe Beta procumbens spezifischen Satellitenrepeats pTS5 und pTS4.1 dienten der Selektion von BACs aus der Centromer-Region des PRO1-Minichromosoms. Die Identifizierung eines unikalen genomischen Locus, mit einer Verschachtelung von zwei nicht homologen LTR-Retrotransposons, ermöglichte die gerichtete Isolation der LTR-Retrotransposons Beetle1 und Beetle2. Das Retrotransposon Beetle1 hat eine Gesamtlänge von 6736 bp und wird von LTR-Sequenzen begrenzt, die eine Länge von 1091 bp (5’-LTR) bzw. 1089 bp (3’-LTR) aufweisen. Das LTR-Retrotransposon Beetle2 weist mit 6690 bp eine ähnliche Gesamtlänge wie Beetle1 auf. Es wird von deutlich kürzeren LTR-Sequenzen mit einer Länge von 774 bp begrenzt. Aufgrund der Reihenfolge der Polyproteingene lassen sich Beetle1 und Beetle2 in die Gruppe der Ty3-gypsy-Retrotransposons (Metaviridae) einordnen. Beide Retrotransposon-Familien besitzen ein einziges offenes Leseraster (open reading frame; ORF) mit fusionierten gag- und pol-Genen. Datenbankrecherchen zeigten hohe Homologien von Beetle1 und Beetle2 mit den centromerischen Ty3-gypsy-Retrotransposons CRM aus Zea mays, CRR aus Oryza sativa und cereba aus Hordeum vulgare. Diese centromerischen Retrotransposons (CRs) sind in den Poaceae stark konserviert und stellen neben Satellitenrepeats eine hochabundante Sequenzklasse der Centromere der Süßgräser dar. Da sie im 3’-Bereich des gag-pol-Polyproteins eine Chromodomäne aufweisen, werden sie der eigenständigen Gruppe der Chromoviren zugeordnet. Chromodomänen sind zur Bindung von Proteinen und DNA befähigt und spielen eine wichtige Rolle in der Chromatin-Modifikation und der Bildung von Heterochromatin-Regionen. Beetle1 und Beetle2 besitzen Motive einer Chromodomäne, die vermutlich für eine gerichtete Transposition in die Centromer-Region verantwortlich ist. Neben der geringen Divergenz von Beetle1- und Beetle2-Sequenzen sowohl im Genom von Beta procumbens als auch in den anderen Arten der Sektion Procumbentes spricht auch das junge Alter von 100 000 bis 350 000 Jahren und die Transkriptionsaktivität für eine Einordnung dieser Ty3-gypsy-Retrotransposons in die Gruppe der Chromoviren. Sowohl die Southern-Hybridisierung als auch die Fluoreszenz-in situ-Hybridisierung zeigten, dass Beetle1 und Beetle2 nur für die Sektion Procumbentes spezifisch sind und dort in hoher Kopienzahl vorkommen. Untersuchungen mit methylierungssensitiven Restriktionsendonukleasen veranschaulichten den hohen Grad an Cytosin-Methylierung von Beetle1 und Beetle2.
APA, Harvard, Vancouver, ISO, and other styles
4

Weber, Beatrice. "Molekulare Charakterisierung von Ty3-gypsy-Retrotransposons als abundante Sequenzklasse des Centromers eines Minichromosoms in Beta vulgaris L." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A24052.

Full text
Abstract:
Die Gattung Beta gehört zur Familie der Chenopodiaceae und wird in die vier Sektionen Beta, Corollinae, Nanae und Procumbentes unterteilt, wobei die Zuckerrübe der Sektion Beta zugeordnet wird. Aus dem Genom der Zuckerrübe und verwandter Wildarten konnten bereits eine Vielzahl von repetitiven DNA-Familien kloniert und untersucht werden. Mit der monosomen Fragmentadditionslinie PRO1 stand eine Chromosomenmutante zur Verfügung, die neben den 18 B. vulgaris-Chromosomen ein Chromosomenfragment der Wildrübe Beta procumbens enthält. Da dieses als Minichromosom bezeichnete Fragment mitotische Stabilität aufweist, muss es ein funktionelles Centromer besitzen, das auch im genetischen Hintergrund von Beta vulgaris aktiv ist. Mit der Erstellung einer BAC (bacterial artifical chromosome)-Bank von PRO1 wurde die molekulare Charakterisierung von Ty3-gypsy-Retrotransposons eines einzelnen Wildrüben-Centromers möglich. Die für die Wildrübe Beta procumbens spezifischen Satellitenrepeats pTS5 und pTS4.1 dienten der Selektion von BACs aus der Centromer-Region des PRO1-Minichromosoms. Die Identifizierung eines unikalen genomischen Locus, mit einer Verschachtelung von zwei nicht homologen LTR-Retrotransposons, ermöglichte die gerichtete Isolation der LTR-Retrotransposons Beetle1 und Beetle2. Das Retrotransposon Beetle1 hat eine Gesamtlänge von 6736 bp und wird von LTR-Sequenzen begrenzt, die eine Länge von 1091 bp (5’-LTR) bzw. 1089 bp (3’-LTR) aufweisen. Das LTR-Retrotransposon Beetle2 weist mit 6690 bp eine ähnliche Gesamtlänge wie Beetle1 auf. Es wird von deutlich kürzeren LTR-Sequenzen mit einer Länge von 774 bp begrenzt. Aufgrund der Reihenfolge der Polyproteingene lassen sich Beetle1 und Beetle2 in die Gruppe der Ty3-gypsy-Retrotransposons (Metaviridae) einordnen. Beide Retrotransposon-Familien besitzen ein einziges offenes Leseraster (open reading frame; ORF) mit fusionierten gag- und pol-Genen. Datenbankrecherchen zeigten hohe Homologien von Beetle1 und Beetle2 mit den centromerischen Ty3-gypsy-Retrotransposons CRM aus Zea mays, CRR aus Oryza sativa und cereba aus Hordeum vulgare. Diese centromerischen Retrotransposons (CRs) sind in den Poaceae stark konserviert und stellen neben Satellitenrepeats eine hochabundante Sequenzklasse der Centromere der Süßgräser dar. Da sie im 3’-Bereich des gag-pol-Polyproteins eine Chromodomäne aufweisen, werden sie der eigenständigen Gruppe der Chromoviren zugeordnet. Chromodomänen sind zur Bindung von Proteinen und DNA befähigt und spielen eine wichtige Rolle in der Chromatin-Modifikation und der Bildung von Heterochromatin-Regionen. Beetle1 und Beetle2 besitzen Motive einer Chromodomäne, die vermutlich für eine gerichtete Transposition in die Centromer-Region verantwortlich ist. Neben der geringen Divergenz von Beetle1- und Beetle2-Sequenzen sowohl im Genom von Beta procumbens als auch in den anderen Arten der Sektion Procumbentes spricht auch das junge Alter von 100 000 bis 350 000 Jahren und die Transkriptionsaktivität für eine Einordnung dieser Ty3-gypsy-Retrotransposons in die Gruppe der Chromoviren. Sowohl die Southern-Hybridisierung als auch die Fluoreszenz-in situ-Hybridisierung zeigten, dass Beetle1 und Beetle2 nur für die Sektion Procumbentes spezifisch sind und dort in hoher Kopienzahl vorkommen. Untersuchungen mit methylierungssensitiven Restriktionsendonukleasen veranschaulichten den hohen Grad an Cytosin-Methylierung von Beetle1 und Beetle2.
APA, Harvard, Vancouver, ISO, and other styles
5

Martínez, Láinez Joan Marc. "Regulación del ciclo celular por ploidía en Saccharomyces cerevisiae." Doctoral thesis, Universitat Internacional de Catalunya, 2017. http://hdl.handle.net/10803/461358.

Full text
Abstract:
Una de les característiques cel·lulars amb més impacte sobre la seva fisiologia cel·lular és la mida, regulada per multitud de factors extrínsecs i intrínsecs, i una característica de vital rellevància ja que afecta al volum de diferents orgànuls i a la seva proporció, l’arquitectura interna de la cèl·lula i té capacitat de adaptar-se al contingut de DNA. Respecte a aquest últim, i gràcies a estudis que es remunten a un segle fins l’actualitat, es postula que existeix un mecanisme pel que la cèl·lula es capaç de regular la seva mida cel·lular mitjançant la ploïdia. Això passa al llarg de tot l’arbre de la vida, existint evidències d’una correlació lineal entre la mida i el nombre de cromosomes que contenen las cèl·lules. No obstant, aquest mecanisme continua esquiu i es desconeix quins elements participen. Aquest estudi, basat en un model eucariota como és S. cerevisiae, es va iniciar gràcies a la observació prèvia de que vectors llançadora centromèrics, YCp, produeixen un increment de mida. En aquest treball se ha determinat que el centròmer és el principal element inductor d’aquest fenotip, descartant altres opcions com la quantitat de DNA o la recuperació de vies metabòliques aportada per aquests vectors, el que es va confirmar mitjançant cromosomes artificials, YAK, i la integració de nous centròmers condicionals en els cromosomes de llevat. A més, s’ha desenvolupat un sistema per quantificar el número de centròmers aportant a la cèl·lula mitjançant fluorescència, protocol que ha permès relacionar de forma molt precisa la dosis centromèrica a la mida cel·lular. Pel que es refereix al mecanisme molecular implicat, es va observar que un nombre elevat de centròmers augmenta la degradació de la ciclina Cln3 a través de elements del SCF presents en el nucli, el que produeix un clar retràs a la fase G1 i, com a conseqüència, un increment en la mida cel·lular. En aquest mecanisme es revela la participació de proteïnes senyalitzadores del centròmer, com són Mad3, Mad2, i Bub3, així com les interacciones in vivo entre Mad3 i Cln3 o Cdc4. Aquestes dades apunten la existència d’un nou mecanisme molecular per la regulació de la mida cel·lular per ploïdia.
Una de las características celulares con más impacto sobre su fisiología celular es el tamaño, regulada por multitud de factores extrínseco e intrínsecos, y una característica de vital relevancia ya que afecta el volumen de diferentes orgánulos y su proporción, la arquitectura interna de la célula y tiene capacidad de adaptarse al contenido de DNA. Respecto a este último, y gracias a estudios que se remontan desde hace un siglo hasta la actualidad, se postula que existe un mecanismo por el cual la célula es capaz de regular su tamaño celular mediante ploidía. Esto ocurre a lo largo de todo el árbol de la vida, existiendo evidencias de una correlación lineal entre el tamaño y el número de cromosomas que contienen las células. No obstante, este mecanismo permanece esquivo y se desconoce que elementos participan. Este estudio, basado en un modelo eucariota como es S. cerevisiae, se inició gracias a la observación previa que vectores lanzadera centroméricos, YCp, producen un incremento de tamaño. En este trabajo hemos determinado que el centrómero es el principal elemento inductor de este fenotipo, descartando otras opciones como la cantidad de DNA o la recuperación de vías metabólicas aportada por estos vectores, lo que se confirmó mediante cromosomas artificiales, YAK, y la integración de nuevos centrómeros condicionales en los cromosomas de levadura. Además, se ha desarrollado un sistema para cuantificar el número de centrómeros aportado a la célula mediante fluorescencia, protocolo que ha permitido relacionar de forma muy precisa la dosis centromérica al tamaño celular. Por lo que se refiere al mecanismo molecular implicado, hemos observado que un número elevado de centrómeros aumenta la degradación de la ciclina Cln3 a través de elementos del SCF presentes en el núcleo, lo que produce un claro retraso en la fase G1 y, en consecuencia, un incremento en el tamaño celular. En este mecanismo hemos desvelado la participación de proteinas señalizadoras del centrómero, como son Mad3, Mad2, y Bub3, así como las interacciones in vivo entre Mad3 y Cln3 o Cdc4. Estos datos apuntan a la existencia de un nuevo mecanismo molecular para la regulación del tamaño celular por ploidía.
APA, Harvard, Vancouver, ISO, and other styles
6

Schau, Katharina [Verfasser]. "Molekularzytogenetische Analyse strahleninduzierter Chromosomenveränderungen mittels Fluoreszenz-in-situ-Hybridisierung mit einer All-Human-Centromer-Probe bei Trägerinnen einer pathogenen BRCA1-Mutation / Katharina Schau." Kiel : Universitätsbibliothek Kiel, 2016. http://d-nb.info/1118500059/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Costa, Lionel. "Etude de la régulation de la structure de la chromatine par la RiboNucléase Latente (RNase L) chez les mammifères." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20225/document.

Full text
Abstract:
L'endoribonucléase RNase L est essentiellement connu comme étant un acteur critique de l'immunité innée pour enrayer la progression d'une infection virale en clivant les ARN cellulaires. Son activité est régulée par de nombreux facteurs tels que la 2-5A et son inhibiteur, la RLI. Au cours de cette étude, nous avons démontré une implication de l'activité de la RNase L dans la régulation de la structure du domaine centromérique. Nous présentons dans ce manuscrit, les perturbations majeures engendrées par une augmentation ou une inhibition de l'activité de la RNase L représentées par une délocalisation de HP1-alpha et de CENP-C causant une déstructuration générale des chromosomes. Ces délocalisations de protéines centrales de la structure chromatinienne seraient causées par un défaut de la maturation des transcrits majeures péricentromériques lors d'une modulation de l'activité de la RNase L. Pour terminer, nous avons également identifié un potentiel trafic cyto-nucléaire empreinté par la RNase L. Nous proposons ainsi une fonction nucléaire inattendue de la RNase L par son implication dans la régulation des transcrits péricentromériques assurant l'intégrité structurale de la chromatine
The endoribonuclease Latente (RNase L) is mostly known as a critical factor in the innate immunity during the cell's defence against a viral infection. The antiviral activity of RNase L which is characterize by it capacity of cleavage of viral RNA, is regulated by several factors like it activator the oligoadénylates 2-5A and his inhibitor RLI. In this manuscript, we have studied the role of the activity of RNase L in the regulation of the structure of centromeric domains. Our results show a general destructuration of chromosomes observed in cells over-expressing RNase L or RLI. These major aberrations are demonstrated by a delocalization of essentials proteins for the structure of chromatin: HP1-alpha and CENP-C. The mislocalization of these proteins could be provoked by a default in the maturation of major transcripts due to a modulation of the activity of RNase L. moreover, in this study, we have identified a mechanism regulating the cyto-nuclear shuttling of RNase L. therefore, we propose that a new nuclear function of RNase L: it's implication in the regulation of pericentromeric transcripts needed to stabilize the integrity of the structure of chromatin
APA, Harvard, Vancouver, ISO, and other styles
8

Ferri, Frederica. "Role of non-coding murine centromeric RNA in the assembly and function of centromere." Paris 7, 2009. http://www.theses.fr/2009PA077129.

Full text
Abstract:
Le centromère est une structure chromosomique spécialisée comportant un type unique de chromatine, nécessaire pour la ségrégation correcte des chromosomes pendant la mitose. L'assemblage et la fonction des centromères exigent l'association dynamique d'une grande variété de protéines au cours du cycle cellulaire. Par ailleurs, des données de plus en plus abondantes montrent que les ARNs non-codant sont des composants intégraux de la chromatine et contribuent à son organisation structurale. Les ARNs centromériques que nous avons récemment caractérisés sont transcrits à partir des répétitions des centromères murins. Leur accumulation sur les chromocentres nous a permis de les proposer comme facteur d'assemblage ou de maintien des protéines centromériques, nécessaires à la ségrégation correcte des chromosomes. Nos résultats montrent que les ARNs centromériques s'accumulent principalement en phase G2/M, au cours de laquelle est assemblé le complexe passager du centromère. Ces ARNs sont des composants intégrales de la chromatine centromérique: ils interagissent avec CENP-A et font partie du complexe passager au début de la mitose. De plus, l'association des protéines passagères Aurora B et Survivin au niveau de la chromatine centromérique et l'activité de la kinase Aurora B dépendent d'un ARN. Enfin, des tests fonctionnels indiquent que l'activité enzymatique de Aurora B dépend de la présence des ARNs centromériques. Ces données suggèrent que les transcrits centromériques pourraient jouer un rôle important dans l'assemblage et la fonction du centromère en recrutant et/ou stabilisant Aurora B au niveau de la chromatine associée à CENP-A et en réglant son activité enzymatique
The centromeres of eukaryotic chromosomes are genomic regions featuring a unique, specific chromatin architecture that is necessary for proper chromosome segregation during mitosis. While there is evidence that the assembly and highly specialized fonction of centromeric chromatin domains require the dynamic association of a large variety of proteins during various stages of the cell-cycle, it is now becoming clear that non-coding RNA are integral components of chromatin and contribute to its structural organization. We recently described new RNA, transcribed from murine centromeric minor satellite repeats, which localize on chromocenters. We now considered the implication of these RNA in recruiting and/or stabilizing rfconucleoprotein complexes located at centromeric regions and their functional dynamics during cell cycle. We reported that levels of minor satellite RNA vary during cell cycle progression, accumulating in G2/M phase, concomitantly with the localization of the chromosomal passenger complex to the centromere. We showed that minor satellite RNA are components of CENP-A chromatin and interact with proteins of the chromosomal passenger complex at the onset of mitosis. Both interactions between endogenous passenger proteins Aurora B and Survivin within centromeric chromatin and Aurora B kinase activity are sensitive to RNaseA. More importantly, this Aurora B kinase activity can be specifically rescued by restitution of minor satellite RNA. Together, our data provide new insights into thé implication of minor satellite RNA in the establishment of a functional centromere, by regulating Aurora B association with CENP-A-associated domains and enzymatic function
APA, Harvard, Vancouver, ISO, and other styles
9

Barinova-Melenkova, Natalja. "Anaphase bridges generated by dicentric chromosomes break predominantly at pericentromeric regions and internal telomeric sequences." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112101.

Full text
Abstract:
Dans la plupart des eucaryotes, il n’existe qu’une seule région centromérique par chromosome et celle-ci est capable d’être liée au fuseau mitotique via le complexe du kinétochore. Dans ce contexte, la présence de deux centromères est un défi pour une séparation normale. Au cours de la mitose, la capture des deux centromères de la même chromatides vers les pôles opposés génère un pont d’anaphase résultant en une rupture entre les centromères. Les extrémités libérées peuvent être fusionnées bout à bout recréant ainsi un dicentrique. Le chromosome entre alors dans un cycle de Rupture Cassure Pont, capable quelques cycles d’entrainer des modifications profondes du nombre de copies de gène qui peuvent contribuer à l'oncogenèse et résistance à la chimiothérapie. Malgré son importance, le mécanisme de rupture reste pour une grande partie inexploré. Ce projet permet l’analyse de la rupture des chromosomes dicentriques en utilisant le modèle de la levure bourgeonnante, Saccharomyces cerevisiae. Nous utilisons des souches dicentriques conditionnelles dans lequelles un chromosome, portant un centromère conditionnel sous le contrôle de deux promoteurs inductibles au galactose, est fusionné à un autre chromosome natif par recombinaison homologue. Nous avons observé que les chromosomes dicentriques ont tendance à casser dans le voisinage des deux centromères. La région de la rupture se répand sur ~ 30 kb vers l'autre centromère. Une insertion d’un fragment d’ADN 1-kb possédant un centromère ectopique dans un chromosome avec un centromère conditionnelle établit un point chaud d’environs 30 kb indiscernables des points chauds à centromères natifs. En outre, la taille de zone de rupture n’est pas corrélée à la distance intercentromerique (des intervalles de 30-600 kb ont été testés). Cela indique que la plus forte propension à rompre est une conséquence de la structure ou de la fonction des centromères et est sans rapport avec les séquences environnantes des chromosomes. Il est encore difficile de savoir si la rupture aux centromères a une fonction physiologique, mais nous pouvons supposer que ce point chaud peut favoriser les réarrangements d'ADN dans ces régions permettant ainsi l’inactivation du centromère et donc le retour à un caryotype stable. Globalement dans la S.cerevisiae, les dicentriques cassent dans les régions péricentromériques ou dans les fusions de télomères quand ils sont présents. Fait intéressant, les séquences télomériques internes, à savoir les répétitions TG₁₋₃, établissent plusieurs points chauds de rupture à une fréquence similaire. En perspective, il serait intéressant d'aborder les questions suivantes : 1) Quelles sont les caractéristiques qui rendent une région plus sujette à la casse ? 2) Quelles sont les positions de rupture au niveau des nucléotides ? 3) Existe-t-il un contrôle de la cassure des chromatides exercé dans la cellule ? 4) Quelle peut être la fonction biologique des points chauds de cassures ?
In most eukaryotes, there is one defined centromeric region per chromosome that links it to the spindle apparatus via the kinetochore complex. In this context, the presence of two centromeres is a challenge for an accurate segregation. During mitosis, the capture of the two centromeres of the same chromatid to opposite poles generates anaphase bridges that results in breakage between the centromeres. The released ends can be fused end-to-end thus recreating dicentric. It enters breakage-fusion-bridge cycles that, in multiple rounds, can result in large gene copy number alterations that can contribute to oncogenesis and chemotherapy resistance. Despite of its significance, the mechanism of breakage remains for a large part unexplored. This project adresses the dicentric breakage using a budding yeast, Saccharomyces cerevisiae. We use conditional dicentric strains, where a chromosome, bearing a conditional centromere under the control of two galactose-inducible promoters, is fused to another native chromosome by homologous recombination. We observed that dicentric chromosomes tend to break in the vicinity of the two centromeres. The breakage region spreads over ~30 kb towards the other centromere. An insertion of a 1-kb ectopic centromere in a chromosome with a conditional centromere establishes a ~30 kb hot spot indistinguishable from the hot spots at native centromeres. Furthermore, the size of breakage region is unrelated to an intercentromeric distance (30-600 kb intervals were tested). This indicates that the higher propensity to break is a consequence of centromere structure or function and is unrelated to the native surrounding sequences. It is yet unclear whether breakage at centromeres has a physiological function but we can speculate that this hot spot may favour local DNA rearrangements that result in centromere inactivation and thus the return to a stable karyotype. Overall in budding yeast, dicentrics break at pericentromeric regions or at the telomere fusions when they are present. Interestingly, internal telomeric sequences, i.e. TG₁₋₃ repeats, establish several breakage hot spots with a similar frequency. In perspective, it would be interesting to address the following questions: 1) What are features that make a region more prone to breakage? 2) What are the positions of breakage at nucleotide level? 3) Is there a coordination of dicentric chromatid breakage? 4) What can be the biological function of dicentric breakage hot spots?
APA, Harvard, Vancouver, ISO, and other styles
10

Filipescu, Dan. "The role of the histone variant cenp-a and its chaperone hjurp in mouse centromere propagation and tumorigenesis." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066170.

Full text
Abstract:
Les centromères contribuent à garantir la distribution égale de l'ADN en mitose. Leur identité n'est pas codifiée par la séquence d'ADN, mais de manière épigénétique par le variant de l'histone H3 CENP-A. Dans des lignées cellulaires humaines transformées, CENP-A est incorporé au centromère par son chaperon HJURP, au début de la phase G1. Pendant ma thèse, j'ai utilisé le modèle murin pour étudier les particularités de la chromatine centromérique et son dysfonctionnement dans le cancer. J'ai montré que CENP-A est maintenu sur le génome paternel au cours de la spermatogenèse, contrairement aux autres histones, et peut constituer une marque transgénérationnelle du centromère. Nous avons généré une souris KO pour HJURP pour l'étudier in vivo, et avons détecté son amplification dans de multiples souches de souris. En parallèle, nous avons étudié l'interaction entre la dynamique des variants d'histone et la structure d'ordre supérieur de la chromatine centromèrique. Nous avons découvert que la réorganisation de l'hétérochromatine péricentrique au cours du cycle cellulaire contrôle les deux modes distinctifs d'incorporation des variants d'H2A et la stoechiométrie de CENP A. Pour explorer le lien entre la tumorigenèse et la surexpression de CENP A/HJURP dans des cancers humains, nous avons utilisé un modèle de transformation de fibroblastes murins embryonnaires. Dans le fond génétique nul pour p53 de ces cellules, la surexpression exogène des deux facteurs n'apportait pas un avantage prolifératif mesurable, mais leur accumulation était une conséquence de la transformation. Actuellement, nous analysons si cette surexpression contribue à augmenter la capacité de transformation
Centromeres are genomic loci ensuring equal distribution of the two sets of chromosomes in mitosis. Their identity is not encoded in the underlying DNA sequence but specified epigenetically by the histone H3 variant CENP-A. In transformed human cell lines, CENP A is deposited at centromeres by the histone chaperone HJURP in a distinct window of the cell cycle. During my PhD I have taken advantage of the mouse model to address cell cycle and developmental features of centromeric chromatin, as well as its dysfunction in cancer.Using an organism-level approach, I could observe that contrary to most histones, CENP-A is retained on the paternal genome during spermatogenesis, acting as a transgenerational mark of the centromere. To study the role of HJURP in vivo, we generated a knockout mouse and discovered that its genomic locus underwent amplification in several mouse subspecies.In parallel, we addressed the crosstalk between histone variant dynamics and higher-order chromatin structure at the centromere, and revealed that the dynamic reorganization of pericentric heterochromatin during the cell cycle controls the distinct incorporation of H2A variants and CENP-A stoichiometry.Finally, to explore the connection between tumorigenesis and CENP-A/HJURP overexpression, recorded in a number of human cancers, we used a mouse embryonic fibroblast model of transformation. We determined that whereas their overexpression did not confer a measurable proliferative advantage in a p53-deficient background, CENP-A/HJURP upregulation was a consequence of transformation. Whether their accumulation has a functional role to enhance tumorigenesis in this system was further investigated
APA, Harvard, Vancouver, ISO, and other styles
11

Seitz, Stefanie. "Connecting the histone acetyltransferase complex SAS-I to the centromere in S. cerevisiae." Doctoral thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973040629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Behrens, Fauke. "Analysis of the human centromere : an investigation into the use of a centromeric microdissection library for isolating and mapping of centromeric DNA sequences." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Morency, Eric. "The protein of herpes simplex virus Type 1 : from centromeres to the interphase centromere damage response." Lyon 1, 2007. http://www.theses.fr/2007LYO10317.

Full text
Abstract:
Cette étude se focalise sur l'activité de la protéine ICP0 du virus Herpès Simplex de type 1. Dans le contexte de ses activités nucléaires, nous avons découvert une nouvelle réponse cellulaire suite à des dommages centromériques induits par ICP0. [. . . ]
APA, Harvard, Vancouver, ISO, and other styles
14

Du, Hang [Verfasser]. "ZBTB24, a gene associated with human immunodeficiency-centromere instability-facial anomalies (ICF) syndrome, regulates centromeric and pericentromeric heterochromatin formation / Hang Du." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1098185366/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Samereier, Matthias. "Functional analyses of microtubule and centrosome-associated proteins in Dictyostelium discoideum." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5283/.

Full text
Abstract:
Understanding the role of microtubule-associated proteins is the key to understand the complex mechanisms regulating microtubule dynamics. This study employs the model system Dictyostelium discoideum to elucidate the role of the microtubule-associated protein TACC (Transforming acidic coiled-coil) in promoting microtubule growth and stability. Dictyostelium TACC was localized at the centrosome throughout the entire cell cycle. The protein was also detected at microtubule plus ends, however, unexpectedly only during interphase but not during mitosis. The same cell cycle-dependent localization pattern was observed for CP224, the Dictyostelium XMAP215 homologue. These ubiquitous MAPs have been found to interact with TACC proteins directly and are known to act as microtubule polymerases and nucleators. This work shows for the first time in vivo that both a TACC and XMAP215 family protein can differentially localize to microtubule plus ends during interphase and mitosis. RNAi knockdown mutants revealed that TACC promotes microtubule growth during interphase and is essential for proper formation of astral microtubules in mitosis. In many organisms, impaired microtubule stability upon TACC depletion was explained by the failure to efficiently recruit the TACC-binding XMAP215 protein to centrosomes or spindle poles. By contrast, fluorescence recovery after photobleaching (FRAP) analyses conducted in this study demonstrate that in Dictyostelium recruitment of CP224 to centrosomes or spindle poles is not perturbed in the absence of TACC. Instead, CP224 could no longer be detected at the tips of microtubules in TACC mutant cells. This finding demonstrates for the first time in vivo that a TACC protein is essential for the association of an XMAP215 protein with microtubule plus ends. The GFP-TACC strains generated in this work also turned out to be a valuable tool to study the unusual microtubule dynamics in Dictyostelium. Here, microtubules exhibit a high degree of lateral bending movements but, in contrast most other organisms, they do not obviously undergo any growth or shrinkage events during interphase. Despite of that they are affected by microtubuledepolymerizing drugs such as thiabendazole or nocodazol which are thought to act solely on dynamic microtubules. Employing 5D-fluorescence live cell microscopy and FRAP analyses this study suggests Dictyostelium microtubules to be dynamic only in the periphery, while they are stable at the centrosome. In the recent years, the identification of yet unknown components of the Dictyostelium centrosome has made tremendous progress. A proteomic approach previously conducted by our group disclosed several uncharacterized candidate proteins, which remained to be verified as genuine centrosomal components. The second part of this study focuses on the investigation of three such candidate proteins, Cenp68, CP103 and the putative spindle assembly checkpoint protein Mad1. While a GFP-CP103 fusion protein could clearly be localized to isolated centrosomes that are free of microtubules, Cenp68 and Mad1 were found to associate with the centromeres and kinetochores, respectively. The investigation of Cenp68 included the generation of a polyclonal anti-Cenp68 antibody, the screening for interacting proteins and the generation of knockout mutants which, however, did not display any obvious phenotype. Yet, Cenp68 has turned out as a very useful marker to study centromere dynamics during the entire cell cycle. During mitosis, GFP-Mad1 localization strongly resembled the behavior of other Mad1 proteins, suggesting the existence of a yet uncharacterized spindle assembly checkpoint in Dictyostelium.
Die Kenntnis der Funktion von Mikrotubuli-assoziierenden Proteinen (MAPs) ist von grundlegender Bedeutung für das Verständnis der Mikrotubuli-Dynamik und deren Regulation. Im Rahmen dieser Arbeit wurde die Rolle des Mikrotubuli-assoziierenden Proteins TACC (Transforming acidic coiled-coil), welches in vielen Organismen an der Stabilisierung und dem Wachstum von Mikrotubuli beteiligt ist, im Modellorganismus Dictyostelium discoideum untersucht. Das Dictyostelium TACC Protein konnte während des gesamten Zellzyklus am Centrosom nachgewiesen werden. Darüber hinaus wurde es an den Mikrotubuli-Plus-Enden vorgefunden, überraschenderweise jedoch ausschließlich während der Interphase. Die gleiche Zellzyklusabhängige Lokalisation wurde für CP224 beobachtet, einem Homologen der XMAP215 Proteine in Dictyostelium. Diese ubiquitären MAPs sind konservierte, direkte Interaktionspartner der TACC Proteine und spielen eine zentrale Rolle bei der Nukleation und der Polymerisation von Mikrotubuli. Durch diese Arbeit konnte erstmals in vivo gezeigt werden, dass TACC und XMAP215 Proteine während der Interphase und Mitose unterschiedlich stark mit Mikrotubuli-Plus-Enden assoziiert sein können. Durch Untersuchungen an Knockdown-Mutanten wurde ersichtlich, dass Dictyostelium TACC eine Rolle beim Mikrotubuli-Wachstum während der Interphase spielt und über weite Strecken der Mitose essentiell für die Ausbildung von astralen Mikrotubuli ist. In anderen Organismen konnte als Ursache instabiler Mikrotubuli in TACC Mutanten häufig unzureichendes Rekrutieren des jeweiligen XMAP215 Proteins an das Centrosom ausgemacht werden. Um entsprechende Auswirkungen auf die Lokalisation von CP224 durch den Knockdown von TACC in Dictyostelium zu untersuchen, wurden Fluorescence Recovery after Photobleaching (FRAP) Experimente durchgeführt. Diese ergaben, dass CP224 auch in Abwesenheit von TACC in vollem Umfang an die Centrosomen und Spindelpole rekrutiert wird. Anders als im Wildtyp, konnte in TACC Mutanten allerdings kein CP224 an den Mikrotubuli-Plus-Enden nachgewiesen werden. Somit konnte erstmals in vivo gezeigt werden, dass ein TACC Protein essentiell für die Assoziation eines XMAP215 Proteins mit den Mikrotubuli-Plus-Enden ist. Im Laufe der genannten Experimente stellte sich heraus, dass sich die GFP-TACC Stämme aufgrund ihrer markierten Plus-Enden sehr gut für Untersuchungen zur ungewöhnlichen Mikrotubuli-Dynamik in Dictyostelium eignen. Zwar weisen Mikrotubuli hier über die gesamte Länge ausgeprägte Krümmungs- und Seitwärtsbewegungen auf, es können jedoch im Vergleich zu anderen Organismen während der Interphase kaum Wachstums- oder Verkürzungsvorgänge beobachtet werden. Dennoch können Dictyostelium Mikrotubuli unter Verwendung von Agenzien wie Thiabendazol oder Nocodazol, welche ausschließlich auf dynamische Mikrotubuli wirken, signifikant verkürzt werden. Durch FRAP Experimente und Einsatz von 5D Fluoreszenz-Mikroskopie an lebenden Zellen konnte in dieser Arbeit erstmalig nachgewiesen werden, dass Dictyostelium Mikrotubuli nur in der Zellperipherie, nicht aber im pericentrosomalen Bereich dynamisch sind. Die Identifikation bislang unbekannter Bestandteile des Dictyostelium Centrosoms erfuhr in den vergangenen Jahren große Fortschritte. Ein von unserer Gruppe durchgeführter Proteomics-Ansatz brachte eine Vielzahl potentiell centrosomaler Proteine zu Tage, von welchen bereits viele am Centrosom nachgewiesen werden konnten. Der zweite Teil dieser Arbeit befasst sich mit der Charakterisierung dreier noch unbekannter Proteine aus dem Proteomics-Ansatz, Cenp68, CP103 und dem Dictyostelium Homologen des Spindle Assembly Checkpunkt Proteins Mad1. Hierbei zeigte sich, dass lediglich CP103 Bestandteil isolierter, Mikrotubuli-freier Centrosomen ist, während Cenp68 an die Centromere und Mad1 an die Kinetochoren lokalisieren. Die Charakterisierung von Cenp68 umfasste außerdem die Herstellung eines polyklonalen anti-Cenp68 Antikörpers, das Suchen nach Interaktionspartnern und die Erzeugung eines Cenp68 Knockout-Stammes. Letzterer wies jedoch keinen offensichtlichen Phänotyp auf. Das Verhalten des Dictyostelium Mad1 Proteins während der Mitose stimmte in großen Teilen mit dem anderer Mad1 Proteine überein, was auf die Existenz eines bislang unerforschten Spindle Assembly Chekpunkts in Dictyostelium hinweisen könnte.
APA, Harvard, Vancouver, ISO, and other styles
16

Bernard, Pascal. "Structure et fonctions des centromères chez la levure Schizosaccharomyces pombe." Bordeaux 2, 2000. http://www.theses.fr/2000BOR28725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Putkey, Frances Rosanne. "Identifying mechanisms of centromere-dependent chromosome movement and centromere identity /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2001. http://wwwlib.umi.com/cr/ucsd/fullcit?p9993985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gross, Sylvain. "Etude de la déstabilisation des structures protéique et chromatinienne des centromères par la protéine ICP0 du virus Herpes Simplex de Type 1." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00838586.

Full text
Abstract:
Le virus Herpes Simplex de type 1 (HSV-1) possède un mode d'infection particulier dit bimodal. Il peut soit se répliquer de manière active lors d'une phase dite lytique soit migrer dans les neurones et rester en latence. Il peut réactiver pour rétablir une infection lytique. Une protéine virale majeure dans la réactivation de HSV-1 est ICP0. C'est une protéine nucléaire à activité E3 ubiquitine ligase, qui possède la particularité d'induire la dégradation par le protéasome de plusieurs protéines centromériques constitutives, ce qui provoque une déstabilisation du centromère interphasique. Mon équipe a découvert une réponse cellulaire à l'instabilité centromérique, induite par la protéine ICP0, et nommée iCDR (pour interphase Centromere Damage Response.). L'objectif général de ma thèse est de déterminer les modifications structurales que subissent les centromères endommagés par ICP0 à l'origine de l'iCDR et probablement de la réactivation. J'ai pu démontrer qu'ICP0 affectait toute la structure protéique étroitement associée aux centromères durant l'interphase. Suite à ces résultats, j'ai pu démontrer, par des analyses de digestion de chromatine à la nucléase microccocale (MNAse), que l'occupation nucléosomique de la chromatine centromérique suite à l'activité d'ICP0 était affectée de façon significative. Une étude in vivo effectuée à partir de tissus nerveux provenant de souris infectées de manière latente, a permis de démontrer une co-localisation entre les génomes HSV-1 latents et les centromères. Cette co-localisation est associée à une répression transcriptionnelle du virus. Les résultats de ma thèse montrent donc que les effets d'ICP0 sur la déstabilisation des centromères sont en relation avec un rôle de ces centromères durant la latence. Ceci suggère fortement une implication de la déstabilisation des centromères dans le processus de réactivation contrôlé par ICP0.
APA, Harvard, Vancouver, ISO, and other styles
19

Dalkara, Defne. "Etude des fonctions du domaine amino-terminal de CENP-A pendant la mitose." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV001.

Full text
Abstract:
Le variant d’histone CENP-A marque épigénétiquement le centromère. La présence de CENP-A au centromère permet le recrutement de protéines centromériques qui constituent la plateforme pour l’assemblage de kinétochores fonctionnels.Dans les cellules humaines, l'extrémité amino-terminale de CENP-A ainsi que la phosphorylation de la sérine 7, ont été signalées comme étant cruciales pour la progression de la mitose. Cependant, aucune phosphorylation de CENP-A dans d'autres espèces de métazoaires n'a été décrite. Ici, nous montrons que le domaine NH2-terminal CENP-A, mais pas sa séquence primaire, est nécessaire pour la mitose dans les fibroblastes embryonnaires de souris (MEFs). Nos données montrent que les défauts mitotiques résultant de la déplétion de CENP-A endogène peuvent être restaurés lorsque les MEFs expriment un mutant GFP-CENP-A dont l'extrémité NH2-terminal de CENP-A a été échangée par la queue phosphorylable de l'histone canonique H3. Inversement, dans ce même mutant, lorsque l’on remplace les deux serines phosphorylables par des résidus alanines, les défauts mitotiques persistent. En outre, le mutant de fusion non- phosphorylable de CENP-A, où les sept serines du domaine NH2-terminal ont été remplacées par des résidus alanines, a été également incapable de restaurer le phénotype mitotique des cellules déplétées en CENP-A endogène.Nous avons également identifié les trois premières sérines de la queue de CENP-A comme sites potentiels de phosphorylation. De plus, nos résultats montrent que l’absence de phosphorylation du domaine amino-terminal conduit à la délocalisation de la protéine centromérique CENP-C. Ces résultats suggèrent que la phosphorylation mitotique de CENP-A est un événement potentiellement fréquent chez les métazoaires et essentiel à la progression mitotique.Dans la seconde partie de ce travail, nous avons voulu lier sans ambiguïté la fonction du domaine NH2-terminal du CENP-A à la mitose. Nous avons conçu une nouvelle méthode, appelée approche Hara-kiri, pour pouvoir éliminer le domaine NH2- terminal seulement pendant la mitose. Ceci afin de répondre à la question ci-dessus dans les cellules humaines. L'élimination du domaine NH2-terminal du CENP-A en utilisant l'approche Hara-kiri en début de mitose a conduit à une augmentation des défauts mitotiques dans les cellules. Prises collectivement, ces données montrent que le domaine NH2-terminal CENP-A est nécessaire pendant la mitose afin d’assurer le bon déroulement de la division cellulaire
The histone variant CENP-A epigenetically marks the centromere. The presence of CENP-A at the centromeres allows the recruitment of centromeric proteins that constitute the platform for functional kinetochores.In human cells, the NH2-terminus of CENP-A and its phosphorylation at serine 7 in mitosis has been reported to be crucial for the progression of mitosis. However, no phosphorylation of CENP-A in other metazoan species has been described. Here, we show that the NH2-terminus of CENP-A, but not its primary sequence, is required for mitosis in mouse embryonic cells (MEFs). Our data show that the mitotic defects resulting from the depletion of the endogenous CENP-A can be rescued when MEFs expressing a GFP- CENP-A mutant where the NH2-terminus of CENP-A was swapped with the phosphorylatable tail of conventional histone H3. Conversely, no rescue was observed when the two phosphorylatable serines in the H3 tail mutant were replaced with alanines. Furthermore, a non-phosphorylatable fusion mutant of CENP-A where all seven serines in the amino-tail were replaced with alanines, was also unable to rescue the mitotic phenotype of CENP-A depleted cells.We also identified that the first three serines of the tail of CENP-A as potential sites for phosphorylation. Additionally, we were able to link the phosphorylation of CENP-A amino-tail to the proper localization of the key centromeric protein CENP-C. These results suggest that mitotic CENP-A phosphorylation is a potentially common event in metazoans essential for mitotic progression.In the second par of this work we wanted to unambiguously tie the NH2-terminus function of CENP-A to mitosis. To achieve this, we wanted to remove the CENP-A amino-tail only during mitosis and we devised a new method called the Hara-kiri approach in order to answer the above question in human cells. The removal of the NH2-terminal domain of CENP-A using the Hara-kiri approach at the onset of mitosis led to increased mitotic defects in cells. Taken collectively these data show that the CENP-A NH2- terminus is required during mitosis to assure proper cell division
APA, Harvard, Vancouver, ISO, and other styles
20

Rouzeau, Sébastien. "Rôle de la protéine BLM dans le maintien de l’intégrité du centromère : implications dans le phénotype cellulaire associé au syndrome de Bloom." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA11T110/document.

Full text
Abstract:
Le syndrome de Bloom (BS) est une maladie génétique rare caractérisée par une forte augmentation du taux d’échanges entre chromatides soeurs, des anomalies de ségrégation des chromosomes et une prédisposition au développement de tous types de cancers. Ce syndrome est la conséquence de mutations dans les deux copies du gène BLM, codant pour une 3’-5’ ADN hélicase de type RecQ. La ou les fonctions de la protéine BLM sont encore mal définies mais les données de la littérature convergent vers un rôle de BLM dans des mécanismes de surveillance et/ou maintien de l’intégrité du génome. La protéine BLM serait impliquée dans le redémarrage de fourches de réplication bloquées pendant la phase S et serait nécessaire à la résolution de ponts anaphasiques en mitose, notamment de ponts particuliers appelées « UltraFine anaphase Bridges » (UFBs). Ces UFBs, qui relient les chromatides soeurs entre elles, ne sont pas détectables par les colorants classiques et leur présence ne peut-être révélée que par la détection des protéines PICH (Plk1-Interacting Checkpoint Helicase) ou BLM. A l’état basal, ces UFBs sont essentiellement d’origine centromérique (cUFBs).Tout l’enjeu de mon projet était de déterminer si BLM était également impliquée dans la prévention de la formation de ces cUFBs et donc si BLM jouait un rôle avant l’anaphase. Nous avons montré que BLM est recrutée aux centromères de la phase G2 jusqu’en mitose. BLM, en coopération avec la protéine PICH, est nécessaire (1) à l’organisation structurale de l’ADN centromérique, (2) à la disjonction complète des centromères, indépendamment de la voie des cohésines, suggérant une implication de ces protéines dans le processus de décaténation des centromères et (3) au recrutement de la topoisomérase IIa (Topo IIa) active aux centromères.Nos résultats révèlent ainsi une nouvelle localisation et une nouvelle fonction de la protéine BLM aux centromères et montrent pour la première fois l’implication des protéines BLM et PICH dans la décaténation centromérique avant l’anaphase. Nous proposons que BLM et PICH, par leurs activités respectives hélicase et de remodelage de la chromatine, modifient la structure des centromères pendant la pré-métaphase, rendant ainsi certaines caténations accessibles à la Topo IIa avant l’anaphase. La défaillance de ce mécanisme entraînerait la persistance de caténations centromériques non résolues avant l’anaphase. Ainsi, dans les cellules BS, la fréquence élevée de cUFBs aurait deux origines différentes : une partie correspondrait à des cUFBs formés du fait d’une décaténation défaillante des centromères avant l’anaphase, et l’autre partie correspondrait à des cUFBs « physiologiques » non résolus en anaphase. Afin de distinguer l’origine des cUFBs, nous avons appelé ceux issus de caténations non résolues avant l’anaphase les UFBs centromériques surnuméraires (SC-UFBs pour Supernumerary Centromeric UFBs)
Bloom syndrome (BS) is a rare genetic disease characterized by a sharp increase in the rate of sister chromatid exchanges, chromosome segregation abnormailities and a predisposition to the development of all types of cancers. This syndrome is caused by mutations in both copies of the BLM gene, which encodes BLM, a RecQ 3'-5 DNA helicase. The specific function(s) of BLM remain unclear, but the data from the literature converge towards a role for BLM in mechanisms monitoring and / or maintaining genome integrity. The BLM protein may be involved in restarting stalled replication forks during S phase and necessary to resolve anaphase bridges in mitosis, including particular bridges called "Ultrafine Anaphase Bridges" (UFBs). These UFBs, which link sister chromatids together, are not detectable by conventional stains and their presence can only be revealed by the detection of the proteins PICH (PLK1-interacting checkpoint helicase) or BLM. In untreated cells, UFBs originate mostly from centromeres (cUFBs).The challenge of my project was to determine whether BLM was also involved in preventing the formation of cUFBs and so, if it played a role before anaphase.We showed that BLM is recruited at centromeres from G2 phase to mitosis. BLM, in cooperation with PICH, is required for (1) structural organization of centromeric DNA, (2) completion of centromere disjunction, independently of the cohesin pathway, suggesting an involvement of these proteins in centromere decatenation process, and (3) recruitment of active topoisomerase IIα (Topo IIα) to centromeres. Thus, we report a new localization and a new function of BLM at centromeres, revealing for the first time a new role for BLM and PICH in a previously unknown centromeric decatenation mechanism, crucial for complete centromere disjunction.We propose that the combined action of BLM and PICH promotes, through their helicase and chromatin remodelling activities, respectively, the organization of centromeric chromatin, thereby rendering some centromeric catenates accessible to Topo IIa before the onset of anaphase. The failure of this mechanism may lead to the persistence of some centromeric catenations not resolved before anaphase. Thus, the increase in the frequency of centromeric UFBs in BLMdeficient cells has two different origins: cUFBs arising from catenations not resolved before anaphase and physiological cUFBs not processed at anaphase onset. Two distinguish the two cUFB origins, we defined the former as supernumerary centromeric UFBs (SC-UFBs)
APA, Harvard, Vancouver, ISO, and other styles
21

Bergmann, Jan H. "Hacking the centromere chromatin code : dissecting the epigenetic regulation of centromere identity." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4670.

Full text
Abstract:
The centromere is a specialized chromatin domain that serves as the assembly site for the mitotic kinetochore structure, thereby playing a fundamental role in facilitating the maintenance of the genetic information. A histone H3 variant termed CENP-A is specifically found at all active centromeres. Beyond this, however, little is known about how and to which extent the chromatin environment of centromeres modulates and contributes towards centromere identity and function. Here, I have employed a novel Human Artificial Chromosome (HAC), the centromere of which can be targeted by fusions to the tet repressor, to characterize the chromatin environment underlying active kinetochores, as well as to specifically probe the role of this environment in the maintenance of kinetochore structure and function. My data demonstrate that centromeric chromatin resembles the downstream regions of actively transcribed genes. This includes the previously unrecognized presence of histone H3 nucleosomes methylated at lysine 36 within the chromatin underlying functional kinetochores. Targeted manipulation of this chromatin through tethering of a heterochromatin-seeding transcriptional repressor results in the inactivation of HAC kinetochore function concomitant with a hierarchical disassembly of the structure. Through an even more selective engineering of the HAC centromere chromatin, I have provided evidence supporting a critical role for nucleosomes dimethylated at lysine 4 on histone H3 in facilitating local transcription of the underlying DNA. Tethering of different chromatin-modifying activities into the HAC kinetochore collectively reveals a critical role for both, histone H3 dimethylated on lysine 4 and low-level, non-coding transcription in the maintenance of the CENP-A chromatin domain. On one hand, repression of centromeric transcription negatively correlates with the maintenance of CENP-A and ultimately results in the loss of kinetochore function. On the other hand, increasing kinetochore-associated RNA polymerase activity to within physiological levels for euchromatin is associated with rapid loss of CENP-A from the HAC centromere. Together, my data point towards the requirement for a delicate balance of transcriptional activity that is required to shape and maintain the chromatin environment of active centromeres.
APA, Harvard, Vancouver, ISO, and other styles
22

Rakkaa, Tarik. "Rôle de la kinase CDK11p58 dans la protection de la cohésion des chromatides sœurs au centromère." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S191.

Full text
Abstract:
Pour assurer une ségrégation correcte des chromosomes, la cohésion entre les deux chromatides sœurs doit être protégée au centromère contre la vague de phosphorylation du "prophase pathway", depuis la prophase jusqu'à la transition métaphase-anaphase. Cette protection est sous contrôle de la shugoshine (Sgo1), une protéine recrutée au centromère par la thréonine 120 de l'histone H2A phosphorylée par la kinase Bub1. Mon équipe d'accueil a montré que la déplétion de la désacétylase HDAC3 conduit à l'acétylation et la perte de la di-méthylation de la lysine 4 de l'histone 3 au centromère. Cette acétylation forcée de H3K4 est corrélée avec un défaut de la protection de la cohésion et une perte de la localisation des acteurs majeurs de cette protection. L'objectif général de ma thèse est de déterminer le rôle de la protéine kinase CDK11p58 dans la protection de la cohésion. Nous avons pu confirmer que CDK11p58 est nécessaire à la protection de la cohésion centromérique. Des analyses de déplétion de CDK11 montrent une séparation précoce des chromatides sœurs. Cette séparation est corrélée à une perte de la localisation de Bub1, de la phosphorylation de H2A-T120 et de Sgo1 au centromère, mais la diméthylation de H3K4 reste intacte. Grâce à des expériences de FISH en utilisant des sondes qui ciblent la région centromérique du chromosome 11, nous avons démontré que CDK11 protège la cohésion des chromatides sœurs à partir de la mitose mais pas en interphase. En utilisant des lignées exprimant la forme sauvage ou mutée sur le domaine kinase de CDK11p58, nous avons démontré que l'activité kinase de cette protéine est nécessaire pour ce processus de protection. Les résultats de ma thèse documentent le rôle de l'activité kinase de CDK11p58 dans la protection de la cohésion des chromatides sœurs. Ces résultats montrent l'existence d'un substrat de CDK11p58 impliqué dans le recrutement au centromère des facteurs de cohésion qui assurent la protection des cohésines centromériques contre le "prophase pathway"
Sister chromatid cohesion during the early stages of mitosis is essential to ensure faithful chromosome segregation. Sister chromatid cohesion is established in S phase and is maintained at centromeres until the metaphase to anaphase transition. Protection of cohesion at centromeres is under the control of the Bub1 kinase which phosphorylates histone H2A on threonine 120. Phosphorylated H2AT120 recruits the cohesion protection factor shugoshin (Sgo1) at centromeres. We had previously reported that depletion of the HDAC3 deacetylase induces acetylation of histone H3 lysine 4 at the centromere and loss of dimethylation at the same position. Forced acetylation of H3K4 at centromeres correlates with impaired Sgo1 recruitment and loss of sister chromatid separation. Cdk11p58, a member of the p34cdc2 related protein kinase family, is a G2/M specific protein, involved in different cell cycle events such as centrosome maturation, spindle formation or centriole duplication. It has also been reported as being involved in sister chromatid cohesion. Here we report that, upon cdk11p58 depletion, sister chromatids do not prematurely separate until the early stages of mitosis. We confirm that Cdk11p58 depletion induces a loss of Bub1 and Sgo1 from the centromeres and we show that H3K4 dimethylation is not affected by Cdk11p58 depletion. We report that depletion of endogenous Cdk11p58 in a cell line expressing a kinase-dead version of Cdk11p58 do not rescue the premature sister chromatid separation phenotype. Thus, phosphorylation of an unknown susbtrate by Cdk11p58 is necessary to maintain Bub1 at centromeres and our efforts are now directed towards its identification
APA, Harvard, Vancouver, ISO, and other styles
23

Le, Boulch Marie. "Décryptage des mécanismes d’ubiquitylation régulant l’histone centromérique CenH3 chez Saccharomyces cerevisiae." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1B009.

Full text
Abstract:
L’ubiquitylation consiste en l’attachement covalent de l’ubiquitine sur d’autres protéines. Ce processus fait intervenir successivement trois familles d'enzymes : d’activation (E1s), de conjugaison (E2s) et de ligation (E3s) de l’ubiquitine. Lors de ma thèse, je m’intéresse au réseau d’enzymes d’ubiquitylation qui régule Cse4, l’histone variant localisée spécifiquement au centromère. Cse4 est une protéine essentielle qui permet une ségrégation correcte des chromosomes. Lorsqu’elle est trop exprimée, Cse4 peut se localiser sur la chromatine noncentromérique ce qui entraîne une instabilité génétique observée dans de nombreux cancers. Chez la levure, l’ubiquitylation empêche cette mauvaise localisation en menant à la dégradation de Cse4, mais les mécanismes précis ne sont pas connus et les données ont été obtenues en surexprimant Cse4. Notre hypothèse est que chez la levure, Cse4 endogène pourrait être régulée différemment grâce à plusieurs couples d’enzymes E2/E3. Dans ce contexte, l’objectif de ma thèse est de réaliser une étude détaillée du réseau d’enzymes impliqué dans l’ubiquitylation de Cse4 exprimée de façon endogène afin de mieux comprendre sa régulation. Nous avons pu notamment mettre en évidence une variation de l’ubiquitylation de Cse4 au cours de la phase S dépendant de l’E3 Psh1
Ubiquitylation consists of the covalent attachment of ubiquitin to other proteins. This process successively involves three families of enzymes: activation (E1s), conjugation (E2s) and ligation (E3s) enzymes. In my thesis, I am interested in the ubiquitylation network that regulates endogenous Cse4, the variant histone specifically located at the centromere. Cse4 is an essential protein that allows proper segregation of chromosomes. When Cse4 is over-expressed, it can localize on noncentromeric chromatin resulting in genetic instability observed in many cancers. In budding yeast, ubiquitylation prevents mislocalisation of Cse4 by leading to its degradation, but precise mechanisms are not known and data were obtained by overexpressing Cse4. Our hypothesis is that in yeast, endogenous Cse4 could be regulated differently thanks to several pairs of E2 / E3 enzymes. In this context, the goal of my thesis is to carry out a detailed study of the network of enzymes involved in endogenously expressed Cse4 ubiquitylation in order to better understand its regulation. In particular, we have been able to show a variation of the ubiquitylation during S phase dependent of the E3 Psh1
APA, Harvard, Vancouver, ISO, and other styles
24

Cacheux, Lauriane. "Diversité et histoire évolutive de l’ADN alpha satellite chez les Cercopithèques." Thesis, Paris, Muséum national d'histoire naturelle, 2016. http://www.theses.fr/2016MNHN0020/document.

Full text
Abstract:
Les régions centromériques reposent, chez les Primates, sur une famille de séquences répétées en tandem appelée l'ADN alpha satellite. Les monomères de cet ADN (≈170 pb) se sont diversifiés au cours de l'évolution, formant des familles de séquences aux profils d'organisation et distribution variés. La diversité des alphas satellites chez les primates non-humains reste cependant peu caractérisée, et la compréhension de la dynamique évolutive de cet ADN nécessite son intégration dans de plus larges analyses comparatives. Les Cercopithèques, qui présentent une évolution chromosomique originale par fissions et émergences de nouveaux centromères, apparaissent comme des modèles d'étude prometteurs.Nous avons appliqué une nouvelle technologie de séquençage à des monomères et dimères d'alpha satellites, isolés à partir des génomes de Cercopithecus solatus (2n = 60) et C. pogonias (2n = 72). Ces deux espèces appartiennent à des lignées primaires distinctes au sein des Cercopithèques, et ont divergé l'une de l'autre il y a plusieurs millions d'années. L'analyse computationnelle des séquences collectées a permis la caractérisation de six familles d'alpha satellites, dont quatre sont partagées entre espèces et deux ne sont retrouvées que chez C. pogonias. Au moins trois familles seraient impliquées dans des répétitions d'ordre supérieur, profil d'organisation jusque-là inconnu dans l'ADN alpha satellite des Cercopithèques. L'hybridation in situ en fluorescence des familles identifiées, réalisée grâce à des sondes oligonucléotidiques hautement discriminantes, a permis de visualiser leur distribution sur les chromosomes de C. solatus et C. pogonias. Certaines de ces familles se distribuent différentiellement entre chromosomes, révélant l'existence d'une diversité interchromosomique de l'ADN alpha satellite chez les singes de l'Ancien Monde. Leurs positions sur les régions centromériques vont en faveur de l'hypothèse du gradient d'âge des alphas satellites, selon laquelle les familles se forment aux centromères en déplaçant les familles préexistantes vers les péricentromères. L'extension de cette analyse cytogénétique à quinze espèces et l'interprétation de ses résultats à la lumière d'une phylogénie moléculaire, nouvellement reconstruite, nous ont permis de proposer un scénario évolutif pour l'ADN alpha satellite chez les Cercopithèques. Celui-ci apparaît évoluer de manière concertée avec les chromosomes, se diversifiant et se déplaçant sur les régions centromériques à mesure que ces derniers se fissionnent et voient l'émergence de nouveaux centromères. Ces travaux ont enfin apporté des informations nouvelles quant aux relations de parenté entre Cercopithèques, invitant à une intégration de l'ADN alpha satellite dans l'étude de l'histoire évolutive des Primates. L'approche méthodologique mise au point a permis de caractériser la diversité et de comprendre l'évolution de l'ADN alpha satellite chez les Cercopithèques. Elle pourra être appliquée à l'étude de ces séquences particulières chez d'autres primates, ainsi qu'à l'étude de différents satellites chez des espèces primates comme non-primates
Alpha satellite DNA is the main family of tandemly repeated sequences lying in primate centromere regions. Alpha satellite monomers (≈170 bp) diversified during the course of evolution, forming distinct families of alpha satellite sequences that exhibit specific organizational and distribution patterns. The limited amount of studies concerning non-human primates is a restriction to the understanding of alpha satellite evolutionary dynamics, which calls for the integration of this element into comparative studies. Cercopithecini, which display an unusual chromosomal evolution by multiple fissions and new centromere formations, constitute a promising study model.We carried out next generation sequencing of alpha satellite monomers and dimers isolated from the Cercopithecus solatus (2n = 60) and C. pogonias (2n = 72) genomes. These species belong to different primary lineages within the Cercopithecini tribe and diverged from each other several million years ago. Computational tools were used to analyze the collected sequences and characterize six alpha satellite families, four of them being shared between species and two being limited to C. pogonias. At least three families belong to higher order repeats, an organizational pattern that had never been observed in Cercopithecini. The fluorescence in situ hybridization of each family, performed with highly discriminant oligonucleotide probes, showed their distribution on C. solatus and C. pogonias chromosomes. Some of them distribute on distinct sets of chromosomes, disclosing the existence of alpha satellite interchromosomal diversity in Old World monkeys. Their position along centromeric regions is largely in accordance with the age-gradient hypothesis, according to which new families expand at centromere, thereby splitting and displacing older families toward pericentromeres. The extension of this analysis to fifteen species, combined to a newly reconstructed molecular phylogeny, allowed us to propose an evolutionary scenario for alpha satellite DNA in Cercopithecini. Alpha satellite DNA diversification and displacement on centromere regions appear intimately connected to chromosome rearrangement dynamics, including new centromere formations, which suggests that centromeres and chromosomes evolve in a concerted manner. Finally, this work provided information about Cercopithecini relationships and thus encourages the integration of alpha satellite DNA into the study of primate evolutionary history.Our new methodological approach allowed deciphering alpha satellite diversity and dynamics in Cercopithecini. This framework could be used to study alpha satellite DNA in other primates, and be applied to different satellites in primates as in non-primate species
APA, Harvard, Vancouver, ISO, and other styles
25

Alcaide, Luis Fernando Aragon. "Centromeres and chromosome pairing." Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.480632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

He, Hong. "Organization of centromere associated DNA in Chironomus pallidivittatus." Lund : Dept. of Genetics, Lund University, 1997. http://books.google.com/books?id=OL5qAAAAMAAJ.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

LE, NORMAND ISABELLE. "Les anticorps anticentromeres : interet diagnostique." Angers, 1991. http://www.theses.fr/1991ANGE1029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lamb, Jonathan C. "Centromere function and evolution in maize (Zea mays)." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4446.

Full text
Abstract:
Thesis (Ph. D.) University of Missouri-Columbia, 2006.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 3, 2007) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
29

Maney, Robert Todd. "A functional analysis of mitotic centromere-associated kinesin /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Phelps-Durr, Tara L. "Molecular analyses of the maize B chromosome centromere /." free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3025644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Milks, Kirstin Jane. "CENP-C's role in centromere and kinetochore assembly /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ribeiro, Susana Abreu. "Structural and functional mapping of the vertebrate centromere." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4653.

Full text
Abstract:
Mitosis is the shortest phase of the cell cycle but visually the most outstanding. The key goal of mitosis is to accurately drive chromosome segregation. On one hand, DNA has to be condensed into characteristically shaped chromosomes. On the other hand, a very specialized structure needs to be built to conduct segregation, the mitotic spindle which is composed of microtubules organized into an antiparallel array between the two poles. The interaction between microtubules and chromosomes occurs at the kinetochore, a macromolecular complex assembled in mitosis at the centromere. The centromere/kinetochore monitors proper spindle microtubule attachment to each of the chromosomes, aligning them at the metaphase plate and also ensuring that chromosome segregation happens in perfect synchrony. Although centromeres are present in all eukaryotes, their basic structure and chromatin folding are still poorly understood. One of the aims of my work was to understand the function of the condensin complex specifically at the centromere during mitosis. Condensin I and II are pentameric protein complexes that are among the most abundant components of mitotic chromosomes. I have shown that condensin is important to confer stiffness to the innercentromeric chromatin once spindle microtubules interact with kinetochores in metaphase. Labile inner-centromeric regions delay mitotic progression by altering microtubule-kinetochore attachments and/or dynamics with a consequent increase in levels of Mad2 checkpoint protein bound to kinetochores. In the absence of condensin, kinetochores perform prominent “excursions” toward the poles trailing behind a thin thread of chromatin. These excursions are reversible suggesting that the centromeric chromatin behaves like an elastic polymer. During these excursions I noticed that only the inner centromeric chromatin was subjected to reversible deformations while the kinetochores (inner and outer plates) remained mostly unaltered. This suggested that the centromeric chromatin part of the inner kinetochore plate was organised differently from the subjacent chromatin. I went on to investigate how the centromeric chromatin is organised within the inner kinetochore domain. Super-resolution analyses of artificially unfolded centromeric chromatin revealed novel details of the vertebrate inner kinetochore domain. All together, the data allowed me to propose a new model for the centromeric chromatin folding: CENP-A domains are interspersed with H3 domains arranged in a linear segment that forms planar sinusoidal waves distributed in several layers. Both CENP-A and H3 arrays face the external surface, building a platform for CCAN proteins. CENP-C binds to more internal CENP-A blocks thereby crosslinking the layers. This organization of the chromatin explains the localisation and similar compliant behaviour that CENP-A and CENP-C showed when kinetochores come under tension. Other kinetochore proteins (the KMN complex) assemble in mitosis on top of the CCAN and bind microtubules. KMN binding may confer an extra degree of stability to the kinetochore by crosslinking CENP-C either directly or indirectly. My work and the testable model that I have developed for kinetochore organization provide a fundamental advance in our understanding of this specialized chromosomal substructure.
APA, Harvard, Vancouver, ISO, and other styles
33

Silva, Mariana Coelho Correia da. "Epigenetic and cell cycle control of centromere inheritance." Doctoral thesis, Universidade Nova de Lisboa. Instituto de Tecnologia Química e Biológica, 2012. http://hdl.handle.net/10362/10520.

Full text
Abstract:
Dissertation presented to obtain the Ph.D degree in Biology, Cell Biology
Cell division is a fundamental process of all living organisms by which a parental cell divides into two genetically identical daughter cells. Faithful cell division requires duplication and subsequent equal distribution of the parental genetic information, the genome, between daughter cells. In eukaryotes, genomic information is organized in chromosomes, which consist of linear DNA sequences packaged into histone protein-DNA complexes called nucleosomes.(...)
APA, Harvard, Vancouver, ISO, and other styles
34

Lo, Wing Ip Anthony. "Human centromeric and neocentromeric chromatin /." Connect to thesis, 2000. http://eprints.unimelb.edu.au/archive/00000771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Martinez, Perez Enrique. "Centromeres, polyploidy and chromosome pairing." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pavlíková, Hana. "Marketingová strategie firmy Centropen a.s." Master's thesis, Vysoká škola ekonomická v Praze, 2008. http://www.nusl.cz/ntk/nusl-3963.

Full text
Abstract:
Charakteristika podniku Centropen. Analýza vnějšího prostředí. Marketingový výzkum zaměřený na dva různé cílové segmenty.Zmapování současné strategie firmy. Návrh zlepšení a strategií, které povedou k naplnění marketingových cílů.
APA, Harvard, Vancouver, ISO, and other styles
37

Pavlíková, Hana Bc. "Marketingová strategie firmy Centropen a.s." Master's thesis, Vysoká škola ekonomická v Praze, 2008. http://www.nusl.cz/ntk/nusl-165166.

Full text
Abstract:
Charakteristika podniku Centropen. Analýza vnějšího prostředí. Marketingový výzkum zaměřený na dva různé cílové segmenty.Zmapování současné strategie firmy. Návrh zlepšení a strategií, které povedou k naplnění marketingových cílů.
APA, Harvard, Vancouver, ISO, and other styles
38

Vallardi, Giulia. "PP2A-B56 isoform specificity at the centromere and kinetochore." Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/97f2119d-0187-4a09-9652-7f579012d35e.

Full text
Abstract:
At least three major mitotic processes are regulated by the PP2A-B56 phosphatase complex: the Spindle Assembly Checkpoint (SAC), kinetochore-microtubule attachments and sister chromatid cohesion. We show here that these key functions of PP2A-B56, which require its localization to either the kinetochore or centromere, are split between distinct subsets of B56 isoforms. PP2A-B56γ and PP2A-B56δ localize to the outer kinetochore (via BUBR1), whereas PP2A-B56α and PP2A-B56ε localize to the centromere (via Sgo2). The differential localization observed is due to a difference in affinity for the receptors: PP2A-B56γ has a reduced affinity for Sgo2 compared to PP2A-B56α and, vice versa, PP2A-B56α has a reduced affinity for BUBR1 compared to PP2A-B56γ. Given that the known binding interfaces for both BUBR1 and Sgo2 are highly conserved in all B56 isoform, we generated a series of chimeras between B56α and B56γ to uncover isoform specific interactions. This led to the identifications of two distinct regions within B56α and B56γ that regulate the binding to Sgo2 and BUBR1. Furthermore, site directed mutagenesis has revealed that proper holoenzyme assembly has a role in regulating the localization of B56: it is needed for centromeric accumulation and it interferes with kinetochore accumulation of B56α. We will present a model to explain how this differential localization could be linked to post-translational modifications of PP2AC. Together, these results help to clarify how individual PP2A-B56 isoforms achieve subcellular specificity during mitosis.
APA, Harvard, Vancouver, ISO, and other styles
39

Gaitan, Maria Clara Echeverry. "Studies on centromere organisation and function in `Trypanosoma brucei'." Thesis, London School of Hygiene and Tropical Medicine (University of London), 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wong, Nicholas Chau-Lun. "DNA methylation at the neocentromere /." Connect to thesis, 2006. http://eprints.unimelb.edu.au/archive/00001883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dambacher, Silvia. "Regulation of centromeric and pericentric heterochromatin." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-163218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Barth, Teresa. "Identification and characterization of novel Drosophila melanogaster centromere-associated proteins." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-178635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mellone, Barbara. "Investigating the role of histones in fission yeast centromere function." Thesis, Open University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kaszás, Étienne. "Molecular and genetic analyses of the maize B chromosome centromere /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Maggert, Keith Andrew. "Epigenetic regulation of centromere and neocentromere activity in Drosophila melanogaster /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9975896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Perriches, T. R. A. "The CBF3 complex structure and function during point centromere establishment." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1463174/.

Full text
Abstract:
This thesis investigates the structure and function of the kinetochore centromere binding factor 3 (CBF3) complex. The kinetochore is a multi-protein complex, which controls the chromosome attachment to the mitotic or meiotic spindle and nucleates on the centromere. The latter is a specific chromosomal loci divided in two groups highly divergent in length and composition: regional and point centromeres. Regional centromeres are composed of long arrays of repetitive DNA supporting multiple microtubule nucleations. On the contrary, point centromeres are characterised by a short and conserved sequence supporting a single microtubule attachment. Despite this discrepancy, both point and regional centromere establishment start with the replacement of the histone H3 by the Cse4 histone variant. The point centromeres H3 replacement by Cse4 (loading) solely relies on the recognition of a conserved DNA sequence (licensing) by the CBF3 complex, a crucial centromere element composed by four essential proteins: Ndc10, Cep3, Ctf13 and Skp1. Ctf13 and Skp1 regulate the CBF3 assembly. Cep3, the licensing element, recognises the point centromere DNA sequence. Finally, Ndc10 acts as the loading factor of the CBF3 complex by recruiting Cse4. At the start of this work the structural basis underlying the mechanism of Cse4 loading by Ndc10 was speculative and the structure of the complex was unknown, mainly because of the inherent instability of Ctf13. In this study, I solved the X-ray structure of Ndc10 Nterminal domain (Ndc10NTD) at 1.9 Å and highlighted the unsuspected similarities of the Ndc10NTD fold with the tyrosine recombinase/λ-integrase family. Interestingly, Ndc10 lost the catalytic activity characteristic to the family but conserved a strong DNA binding, which I characterised by structural and mutagenesis studies. Furthermore, I described the Ndc10 C-terminal domain, which displays another DNA binding domain and supports the Ndc10 dimerisation. Ultimately, this work will lead to the structural characterisation of the Ndc10 dimer bound to DNA, of which preliminary crystallisation and data collection results are presented. Finally, I will introduce early results on the purification of the Ctf13 subdomains and the CBF3 reconstitution, a challenging step toward the comprehension of the point centromere establishment.
APA, Harvard, Vancouver, ISO, and other styles
47

Castillejo-López, Casimiro. "Repetitive DNA in search of a function a study of telomeric and centromeric sequences in Chironomus /." Lund : Lund University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/68945096.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shivaraju, Manunatha. "Regulators of centromeric nucleonsomes in Saccharomyces cerevisiae." Thesis, Open University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zoli, Monica <1982&gt. "Structural and functional analysis of centromeric chromatin." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3803/.

Full text
Abstract:
Animal neocentromeres are defined as ectopic centromeres that have formed in non-centromeric locations and avoid some of the features, like the DNA satellite sequence, that normally characterize canonical centromeres. Despite this, they are stable functional centromeres inherited through generations. The only existence of neocentromeres provide convincing evidence that centromere specification is determined by epigenetic rather than sequence-specific mechanisms. For all this reasons, we used them as simplified models to investigate the molecular mechanisms that underlay the formation and the maintenance of functional centromeres. We collected human cell lines carrying neocentromeres in different positions. To investigate the region involved in the process at the DNA sequence level we applied a recent technology that integrates Chromatin Immuno-Precipitation and DNA microarrays (ChIP-on-chip) using rabbit polyclonal antibodies directed against CENP-A or CENP-C human centromeric proteins. These DNA binding-proteins are required for kinetochore function and are exclusively targeted to functional centromeres. Thus, the immunoprecipitation of DNA bound by these proteins allows the isolation of centromeric sequences, including those of the neocentromeres. Neocentromeres arise even in protein-coding genes region. We further analyzed if the increased scaffold attachment sites and the corresponding tighter chromatin of the region involved in the neocentromerization process still were permissive or not to transcription of within encoded genes. Centromere repositioning is a phenomenon in which a neocentromere arisen without altering the gene order, followed by the inactivation of the canonical centromere, becomes fixed in population. It is a process of chromosome rearrangement fundamental in evolution, at the bases of speciation. The repeat-free region where the neocentromere initially forms, progressively acquires extended arrays of satellite tandem repeats that may contribute to its functional stability. In this view our attention focalized to the repositioned horse ECA11 centromere. ChIP-on-chip analysis was used to define the region involved and SNPs studies, mapping within the region involved into neocentromerization, were carried on. We have been able to describe the structural polymorphism of the chromosome 11 centromeric domain of Caballus population. That polymorphism was seen even between homologues chromosome of the same cells. That discovery was the first described ever. Genomic plasticity had a fundamental role in evolution. Centromeres are not static packaged region of genomes. The key question that fascinates biologists is to understand how that centromere plasticity could be combined to the stability and maintenance of centromeric function. Starting from the epigenetic point of view that underlies centromere formation, we decided to analyze the RNA content of centromeric chromatin. RNA, as well as secondary chemically modifications that involve both histones and DNA, represents a good candidate to guide somehow the centromere formation and maintenance. Many observations suggest that transcription of centromeric DNA or of other non-coding RNAs could affect centromere formation. To date has been no thorough investigation addressing the identity of the chromatin-associated RNAs (CARs) on a global scale. This prompted us to develop techniques to identify CARs in a genome-wide approach using high-throughput genomic platforms. The future goal of this study will be to focalize the attention on what strictly happens specifically inside centromere chromatin.
APA, Harvard, Vancouver, ISO, and other styles
50

Mitchell, Arthur Richard. "The chromosomal environment of centromeric DNA sequences." Thesis, Edinburgh Napier University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography