To see the other types of publications on this topic, follow the link: Ceramic matrix composite.

Journal articles on the topic 'Ceramic matrix composite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ceramic matrix composite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Konopka, Katarzyna. "Particle-Reinforced Ceramic Matrix Composites—Selected Examples." Journal of Composites Science 6, no. 6 (June 19, 2022): 178. http://dx.doi.org/10.3390/jcs6060178.

Full text
Abstract:
This paper presents some examples of ceramic matrix composites (CMCs) reinforced with metal or intermetallic phases fabricated by powder consolidation without a liquid phase (melted metal). Composites with a complex structure, which are an advanced group of CMCs called hybrid composites, were described in contrast to conventional composites with a ceramic matrix. In advanced CMCs, their complex structures make it possible to achieve the synergistic effect of the micro- and nanoparticles of the metallic, intermetallic, and ceramic phases on the composite properties, which is not possible in conventional materials. Various combinations of substrates in the form of powder as more than one metal and ceramics with different powder sizes that are used to form hybrid composites were analyzed. The types of CMC microstructures, together with their geometrical schemas and some examples of real ceramic matrix composites, were described. The schemas of composite microstructures showed the possible location of the ceramic, metallic, or intermetallic phases in composites. A new concept of an advanced ceramic–intermetallic composite fabricated by the consolidation of pre-composite powder mixed with ceramic powder was also presented. This concept is based on the selection of substrates, two metals in the form of powder, which will form a new compound, intermetallic material, during processing. Metal powders were milled with ceramic powders to obtain a pre-composite powder consisting of intermetallic material and ceramics. In the next step, the consolidation of pre-composite powder with ceramic powder allows the creation of composites with complex microstructures. Selected examples of real particle-reinforced conventional and hybrid microstructures based on our own investigations were presented. In addition to microstructures, the properties and possible applications of CMCs were analyzed.
APA, Harvard, Vancouver, ISO, and other styles
2

Cheng, Zhao Gang, Xin Hua Ni, and Xie Quan Liu. "The Mechanical-Stress-Field of Matrix in Eutectic Ceramic Composite." Applied Mechanics and Materials 121-126 (October 2011): 3607–11. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.3607.

Full text
Abstract:
Based on the interaction between nano-fiber and eutectic interphase, forth-phase mode is used to get the mechanical stress field of matrix in eutectic composite ceramics. The effective flexibility increment tensor of eutectic ceramic composite is obtained by the volumetric average strain. The remote stress boundary condition of the eutectic composite ceramis is accounted for getting the mechanical stress field in matrix. The results show the mechanical stress field of the matrix is associated with the stiffness and the volume fractions of each component in eutectic composite ceramic , the shape of interphase and nano-fiber. The stresses in matrix will decrease due to the strong constraining effects of the eutectic interphase. The eutectic interphase make the eutectic composite ceramics strengthen.
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Jeongguk. "Investigation of Failure Mechanisms in Ceramic Composites as Potential Railway Brake Disc Materials." Materials 13, no. 22 (November 15, 2020): 5141. http://dx.doi.org/10.3390/ma13225141.

Full text
Abstract:
Ceramic composite materials have been efficiently used for high-temperature structural applications with improved toughness by complementing the shortcomings of monolithic ceramics. In this study, the fracture characteristics and fracture mechanisms of ceramic composite materials were studied. The ceramic composite material used in this study is Nicalon ceramic fiber reinforced ceramic matrix composites. The tensile failure behavior of two types of ceramic composites with different microstructures, namely, plain-weave and cross-ply composites, was studied. Tensile tests were performed on two types of ceramic composite material specimens. Microstructure analysis using SEM was performed to find out the relationship between tensile fracture characteristics and microstructure. It was found that there was a difference in the fracture mechanism according to the characteristics of each microstructure. In this study, the results of tensile tests, failure modes, failure characteristics, and failure mechanisms were analyzed in detail for two fabric structures, namely, plain-weave and cross-ply structures, which are representative of ceramic matrix composites. In order to help understanding of the fracture process and mechanism, the fracture initiation, crack propagation, and fracture mechanism of each composite material are schematically expressed in a two-dimensional figure. Through these results, it is intended to provide useful information for the design of ceramic composite materials based on the mechanistic understanding of the fracture process of ceramic composite materials.
APA, Harvard, Vancouver, ISO, and other styles
4

ISHII, K., M. KOYAMA, H. HATTA, and I. SHIOTA. "CMC-09: Hybrid Bonding between C/C Composites Using Si Infiltration(CMC-II: CERAMICS AND CERAMIC MATRIX COMPOSITE)." Proceedings of the JSME Materials and Processing Conference (M&P) 2005 (2005): 37. http://dx.doi.org/10.1299/jsmeintmp.2005.37_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

HASHIMOTO, R., M. HOJO, A. OGAWA, Y. SOFUE, and F. ZHOU. "CMC-10: Rotational Strength of C/SiC Composite Blisk Model(CMC-II: CERAMICS AND CERAMIC MATRIX COMPOSITE)." Proceedings of the JSME Materials and Processing Conference (M&P) 2005 (2005): 37–38. http://dx.doi.org/10.1299/jsmeintmp.2005.37_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Penghu, Haiyun Jin, Shichao Wei, Huaidong Liu, Naikui Gao, and Zhongqi Shi. "Ceramization Mechanism of Ceramizable Silicone Rubber Composites with Nano Silica at Low Temperature." Materials 13, no. 17 (August 21, 2020): 3708. http://dx.doi.org/10.3390/ma13173708.

Full text
Abstract:
Ceramizable composite is a kind of polymer matrix composite that can turn into ceramic material at a high temperature. It can be used for the ceramic insulation of a metal conductor because of its processability. However, poor low-temperature ceramization performance is a problem of ceramizable composites. In this paper, ceramizable composites were prepared by using silicone rubber as a matrix. Ceramic samples were sintered at different temperatures no more than 1000 °C, according to thermogravimetric analysis results of the composites. The linear contraction and flexural strength of the ceramics were measured. The microstructure and crystalline phase of ceramics were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the composites turned into ceramics at 800 °C, and a new crystal and continuous microstructure formed in the samples. The flexural strength of ceramics was 46.76 MPa, which was more than twice that of similar materials reported in other research sintered at 1000 °C. The maximum flexural strength was 54.56 MPa, when the sintering temperature was no more than 1000 °C. Moreover, glass frit and nano silica played important roles in the formation of the ceramic phase in this research. A proper content of nano silica could increase the strength of the ceramic samples.
APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Y., JH Wang, XY Xu, TT Duan, SQ Yan, DG Wang, PX Xin, L. Wang, YS Huang, and N. Li. "Ballistic Performance of Protection Structures Using Fiber Composites as Matrix Armor." Journal of Physics: Conference Series 2460, no. 1 (April 1, 2023): 012126. http://dx.doi.org/10.1088/1742-6596/2460/1/012126.

Full text
Abstract:
Abstract The protective performance of a composite structure composed of the composite layer (FC composite) as the matrix armor and the ballistic ceramic layer as the faceplate against Type 53 7.62 mm Armor-Piercing Incendiary (API) is studied. FC composite is used as the hybrid fiber layer mainly containing carbon fiber, and the ballistic ceramic layer is respectively made of three kinds of ballistic ceramics: alumina, silicon carbide and boron carbide. The results show that the weight of boron carbide ceramic is 14% ~ 30% less than that of alumina ceramic and 10% ~ 24% less than that of silicon carbide ceramic under equal thickness of the FC composite substrate. The lowest total areal density is 44 kg/m2 when the bearing capacity of the armored vehicle is basically satisfied.
APA, Harvard, Vancouver, ISO, and other styles
8

Homeny, J., and W. L. Vaughn. "Whisker-Reinforced Ceramic Matrix Composites." MRS Bulletin 12, no. 7 (November 1987): 66–72. http://dx.doi.org/10.1557/s0883769400066987.

Full text
Abstract:
Whisker-reinforced ceramic matrix composites have recently received a great deal of attention for applications as high temperature structural materials in, for example, advanced heat engines and high temperature energy conversion systems. For applications requiring mechanical reliability, the improvements that can be realized in fracture strength and fracture toughness are of great interest. Of particular importance for optimizing the mechanical reliability of these composites is the effect of the whisker/matrix interfacial characteristics on the strengthening and toughening mechanisms. Whisker reinforcements are primarily utilized to prevent catastrophic brittle failure by providing processes that dissipate energy during crack propagation. The degree of energy dissipation depends on the nature of the whisker/matrix interface, which can be controlled largely by the matrix chemistry, the whisker surface chemistry, and the processing parameters.It is generally believed that a strong interfacial bond results in a composite exhibiting brittle behavior. These composites usually have good fracture strengths but low fracture toughnesses. If the interfacial bond is weak, the composite will not fail in a catastrophic manner due to the activation of various energy dissipation processes. These latter composites tend to have high fracture toughnesses and low fracture strengths. Generally, the interface should be strong enough to transfer the load from the matrix to the whiskers, but weak enough to fail preferentially prior to failure. Thus, local damage occurs without catastrophic failure. It is therefore necessary to control the interfacial chemistry and bonding in order to optimize the overall mechanical performance of the composites.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Xuan, Yongzhe Fan, Xue Zhao, Ruina Ma, An Du, Xiaoming Cao, and Huiyun Ban. "Damping Capacity and Storage Modulus of SiC Matrix Composites Infiltrated by AlSi Alloy." Metals 9, no. 11 (November 7, 2019): 1195. http://dx.doi.org/10.3390/met9111195.

Full text
Abstract:
In this paper, we describe how an aluminum alloy-reinforced silicon carbide ceramic matrix composite (SiCCMC) with excellent damping capacity and storage modulus was fabricated by infiltration. The effects of silicon (Si) on the microstructure and damping capacity of the composite were studied. The interface bonding and damping mechanism involved were also discussed. The results show that composites with high damping capacity can be obtained by infiltrating SiC ceramics with aluminum alloy. The residual Si in the SiC ceramic had little effect on the damping capacity, and it provided the passage of aluminum alloy into the interior of the SiC ceramic. The aluminum atoms penetrate the SiC particles by diffusion. Optimal composite damping capacity was obtained when the Si content in the aluminum alloy was 15 wt. %, because the AlSi/SiC interface friction dissipated most of thermal energy. Ti3SiC2 formed on the surface had little effect on the damping capacity. Additionally, by changing the Si content in the aluminum alloy, the strength and damping capacity of the composites can be controlled.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Weili, Jianqi Chen, Xiaoning Sun, Guoxun Sun, Yanjie Liang, and Jianqiang Bi. "Mechanical Properties and Microstructure of Hot-Pressed Silica Matrix Composites." Materials 15, no. 10 (May 20, 2022): 3666. http://dx.doi.org/10.3390/ma15103666.

Full text
Abstract:
Silica is one of the most widely used ceramics due to its excellent chemical stability and dielectric property. However, its destructive brittle nature inhabits it from wider application as a functional ceramic. An improvement in toughness is a challenging topic for silica ceramic, as well as other ceramics. In the paper, silica ceramic with different types of boron nitride powders and alumina platelets was fabricated by hot-pressing. Introduction of the additives had great influence on the composites’ mechanical properties and microstructure. The silica matrix composite containing micro-sized boron nitride powders possessed the best mechanical properties, including the bending strength (134.5 MPa) and the fracture toughness (1.85 MPa·m1/2). Meanwhile, the introduction of alumina platelets combined with boron nitride nanosheets achieved an effective enhancement of fracture toughness while maintaining the bending strength. Compared with the monolithic silica, the composite with simultaneous addition of alumina platelets and boron nitride nanosheets had a fracture toughness of 2.23 MPa·m1/2, increased by approximately 27% (1.75 MPa·m1/2). The crack deflection and platelet pullout were contributing to enhancement of the fracture toughness. The improved mechanical properties, combined with the intrinsic excellent dielectric and chemical properties, make the silica matrix composites promising wave transparent and thermal protection materials.
APA, Harvard, Vancouver, ISO, and other styles
11

Yadav, Govind, R. S. Rana, R. K. Dwivedi, and Ankur Tiwari. "Development and Analysis of Automotive Component Using Aluminium Alloy Nano Silicon Carbide Composite." Applied Mechanics and Materials 813-814 (November 2015): 257–62. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.257.

Full text
Abstract:
Composite materials are important engineering materials due to their outstanding mechanical properties. Composites are materials in which the desirable properties of separate materials are combined by mechanically binding them together. Each of the components retains its structure and characteristic, but the composite generally possesses better properties. Composite materials offer superior properties to conventional alloys for various applications as they have high stiffness, strength and wear resistance. The development of these materials started with the production of continuous-fiber-reinforced composites. The high cost and difficulty of processing these composites restricted their application and led to the development of discontinuously reinforced composites. The aim involved in designing metal matrix composite materials is to combine the desirable attributes of metals and ceramics. The addition of high strength, high modulus refractory particles to a ductile metal matrix produce a material whose mechanical properties are intermediate between the matrix alloy and the ceramic reinforcement. Metal Matrix Composites with Aluminum as metal matrix is the burning area for research now a days.
APA, Harvard, Vancouver, ISO, and other styles
12

Schalek, Richard L., John Helmuth, and Lawrence T. Drzal. "Evaluation of Boron Nitride Coated Nextel 312TM Fiber/BlackglasTM Composites Using an Environmental SEM." Microscopy and Microanalysis 4, S2 (July 1998): 282–83. http://dx.doi.org/10.1017/s143192760002153x.

Full text
Abstract:
The most critical technical issue preventing large scale application of ceramic matrix composites is the cost-effective application of stable interface coatings on continuous ceramic fibers. Currently, an alumina-silica ceramic fiber containing up to 14 wt. % boria (Nextel 312TM) is composited at elevated temperatures to form a boron nitride (BN) coating on the fiber surface. This BN coating serves as a compliant layer facilitating crack deflection and producing a non-catastrophic failure mode. Continued development of these ceramic matrix composites requires a more complete understanding of the mechanistic paths involved in composite densification. The objective of this work is to investigate and more clearly describe the role of the BN coating and its relation to composite processing and properties of the densified Nextel 312TM fiber/BlackglasTM (silicon oxycarbide) composites.Three composites consisting of as-received fibers (coated with an organic sizing), desized fibers (sizing removed by heating), and boron nitride coated fibers were fabricated using BlackglasTM preceramic polymer 489C B-stage resin.
APA, Harvard, Vancouver, ISO, and other styles
13

Lei, Zheng, Wei Min Zuo, Bao Fu Feng, and Jun Tan Yuan. "A Technical Study of Hole Drilling in Ceramics/FRP Laminate Composite Components." Advanced Materials Research 97-101 (March 2010): 1965–70. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.1965.

Full text
Abstract:
Drilling process of the ceramic composite component (ceramics/FRP/aluminum alloy), as an example of similar ceramics/FRP laminate composite components, was studied intensively. According to the diverse machining properties of the composing materials of ceramic composite components, the special thinwall diamond core bit was developed, with copper based matrix of complex alloy and hot pressing process. Through machining competitive experiments, the feeding mode with constant pressure was determined. After analyzing the diverse hole defects, the process equipment with compressive pre stress was introduced to improve the hole drilling quality, with good validity proved theoretically by the finite element analysis and on this condition, water can be used as the coolant. The process technology presented in this paper can be used for hole drilling in similar composite components made of the same composing materials.
APA, Harvard, Vancouver, ISO, and other styles
14

Balazsi, Katalin, Mónika Furkó, Piotr Klimczyk, and Csaba Balázsi. "Influence of Graphene and Graphene Oxide on Properties of Spark Plasma Sintered Si3N4 Ceramic Matrix." Ceramics 3, no. 1 (February 5, 2020): 40–50. http://dx.doi.org/10.3390/ceramics3010005.

Full text
Abstract:
The sintering of ceramic matrix composites is usually carried out by raising the sintering temperature below the melting point of components. Spark plasma sintering (SPS) has the capability to densify ceramics at a relatively low temperature in a very short time. Two different additions, multilayered graphene (MLG) and graphene oxide (GrO), were added to Si3N4 ceramic matrix in various amount; 5 wt% and 30 wt%. The influence of reinforcing phase on final properties of spark plasma sintered Si3N4 composite was studied. The uniaxial-pressure-assisted SPS sintering resulted in a preferential alignment of both type of graphene in the Si3N4 ceramic matrix, leading to highly anisotropic properties with lower mechanical behavior but better tribological and electrical properties.
APA, Harvard, Vancouver, ISO, and other styles
15

Kaliński, Dariusz, Marcin Chmielewski, and Katarzyna Pietrzak. "Influence of Residual Thermal Stresses on the Properties of the NiAl Matrix Composites Reinforced with Ceramic Particles." Advances in Science and Technology 65 (October 2010): 21–26. http://dx.doi.org/10.4028/www.scientific.net/ast.65.21.

Full text
Abstract:
One of the most important problems in both the fabrication and exploitation of ceramicmetal composites are residual thermal stresses. The paper presents the results of a numerical analysis (by the Finite Elements Method) of the stress state induced in the NiAl matrix composites reinforced with spherical particles of a ceramic phase (Al2O3, ZrO2, TiC), including examinations of the dependence of this stress state on the volumetric fraction of the ceramics (20 to 40vol.%). The stress state prevailing in this composite appeared to be complex. In all the samples, the stresses active in the ceramic regions were compressive whereas those active in the metal matrix were tensile in the circumferential direction and compressive in the radial direction. An increase of the ceramic volumetric fraction resulted in an increase of the tensile stresses in the NiAl matrix and a decrease of the compressive stresses in the ceramic particles. These theoretical results were verified experimentally by examining the properties of the NiAl-Al2O3, NiAl-ZrO2 and NiAl-TiC (20 and 30 vol.% fraction of the ceramics) composites produced by hot-pressing. The microstructure, density, and bending strength of these composites were examined, and the results are discussed in the paper.
APA, Harvard, Vancouver, ISO, and other styles
16

Paknahad, Elham, and Andrew P. Grosvenor. "Investigation of CeTi2O6- and CaZrTi2O7-containing glass–ceramic composite materials." Canadian Journal of Chemistry 95, no. 11 (November 2017): 1110–21. http://dx.doi.org/10.1139/cjc-2016-0633.

Full text
Abstract:
Glass–ceramic composite materials are being investigated for numerous applications (i.e., textile, energy storage, nuclear waste immobilization applications, etc.) due to the chemical durability and flexibility of these materials. Borosilicate and Fe–Al–borosilicate glass–ceramic composites containing brannerite (CeTi2O6) or zirconolite (CaZrTi2O7) crystallites were synthesized at different annealing temperatures. The objective of this study was to understand the interaction of brannerite or zirconolite-type crystallites within the glass matrix and to investigate how the local structure of these composite materials changed with changing synthesis conditions. Powder X-ray diffraction (XRD) and Backscattered electron (BSE) microprobe images have been used to study how the ceramic crystallites dispersed in the glass matrix. X-ray absorption near edge spectroscopy (XANES) spectra were also collected from all glass–ceramic composite materials. Examination of Ti K-, Ce L3-, Zr K-, Si L2,3-, Fe K-, and Al L2,3-edge XANES spectra from the glass–ceramic composites have shown that the annealing temperature, glass composition, and the loading of the ceramic crystallites in the glass matrix can affect the local environment of the glass–ceramic composite materials. A comparison of the glass–ceramic composites containing brannerite or zirconolite crystallites has shown that similar changes in the long range and local structure of these composite materials occur when the synthesis conditions to form these materials or the composition are changed.
APA, Harvard, Vancouver, ISO, and other styles
17

Liao, Rong, Chong Hai Wang, Jian Liu, Hong Sheng Wang, and Qi Hong Wei. "Porous Nitride Ceramic Composites with Low-Dielectric Properties." Key Engineering Materials 512-515 (June 2012): 849–53. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.849.

Full text
Abstract:
The influences of the mullite hollow balls content on selected properties of Si3N4-BN matrix ceramics were investigated.The experiment showed that the apparent densities and the porosity of the nitride ceramic composites decreased as the mullite hollow balls contents increased.The strength of the porous nitride ceramic composite was greatly improved, and the dielectric constant decreased with a small addition of the mullite hollow balls. SEM micrographs showed that the mullite hollow balls became one flesh with the nitride ceramic composites.Many large pores appeared in the whole materials. The properties of the nitride ceramic composites were effectively improved.
APA, Harvard, Vancouver, ISO, and other styles
18

Bobylev S. V. "Effect of graphene platelets pullout from ceramic matrix on the fracture toughness of ceramic/graphene composites." Physics of the Solid State 64, no. 6 (2022): 677. http://dx.doi.org/10.21883/pss.2022.06.53832.306.

Full text
Abstract:
A theoretical model is proposed that describes the effect of graphene platelets pullout on the fracture toughness of ceramic/graphene composites. The dependences of fracture toughness on the graphene concentration and the dimensions of graphene platelets are calculated using a yttria-stabilized zirconia (YSZ)/graphene composite as an example. Calculations predict that if graphene platelets pullout from ceramic matrix is the dominant mechanism, then the maximum fracture toughness is achieved in the case of the longest and thinnest possible graphene platelets, provided that the latter have sufficient strength and adhesion to the matrix. The model shows a good correlation with experimental data at low graphene concentrations. Keywords: composites, graphene, ceramics, cracks, fracture toughness.
APA, Harvard, Vancouver, ISO, and other styles
19

Colomban, Philippe. "Sol-gel control of the micro/nanostructure of functional ceramic-ceramic and metal-ceramic composites." Journal of Materials Research 13, no. 4 (April 1998): 803–11. http://dx.doi.org/10.1557/jmr.1998.0102.

Full text
Abstract:
The problems encountered to tailor simultaneously various specific chemical or physical properties are discussed. Selected polymeric precursors used in association with fine powders allow the control of the nano/microstructure of composites and hence the preparation of functional (FGM) and hierarchical reinforced (HRC) composites, making it possible to combine several kinds of fibers, interphases, and matrices in the same composite (hot microwave absorbent), to control the fiber/matrix interface (long life times composites), to achieve net-shape sintering of 3D composite matrices, and to prepare thick films of metal-ceramic composites with tailored microwave absorption (radar stealthiness).
APA, Harvard, Vancouver, ISO, and other styles
20

Nickel, Klaus G. "Ceramic matrix composite corrosion models." Journal of the European Ceramic Society 25, no. 10 (January 2005): 1699–704. http://dx.doi.org/10.1016/j.jeurceramsoc.2004.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ishikawa, Toshihiro. "SA-Tyrannohex-Based Composite for High Temperature Applications." Advances in Science and Technology 71 (October 2010): 118–26. http://dx.doi.org/10.4028/www.scientific.net/ast.71.118.

Full text
Abstract:
To modify the relatively low fracture toughness of monolithic ceramics, the incorporation of long ceramic fibre within a matrix material has been extensively performed. In this case, as cracks form in the matrix material and approach the fibres, they will be deflected at the interface between the fibre and the matrix. We developed another approach toward improving the toughness of ceramics involving the creation of a textured internal structure within the ceramic itself, similar in some respects to the fibrous structure of wood. Actually, we developed a tough ceramic, which consists of a highly ordered, close-packed structure of very fine hexagonal columnar fibres with a thin interfacial carbon layer between fibres. The interior of the fibre element was composed of sintered beta-silicon carbide crystal. This concept is fundamentally different from that described previously, in that it is extremely difficult to distinguish separate “fibre” and “matrix” phases in the traditional composite sense. The toughness of the material in this case derives from the tremendous amount of interface area created within the internal structure through the close packing of the hexagonal columnar fibres. Furthermore, this ceramic also achieved the excellent high temperature properties, high thermal conductivity and low density. These properties will make it very attractive for replacement of heavy metal super alloy components.
APA, Harvard, Vancouver, ISO, and other styles
22

Ichard, J. C., R. Pailler, and Jacques Lamon. "Ceramic Matrix Composite with Increased Thermal Conductivity." Advances in Science and Technology 45 (October 2006): 1405–10. http://dx.doi.org/10.4028/www.scientific.net/ast.45.1405.

Full text
Abstract:
The purpose of the study was to increase the thermal conductivity of multilayered and self-sealing ceramic matrix composites via the silicon melt infiltration process. The first step of the process consisted in filling porosity using various organic xerogels by the sol-gel route. Carbon xerogels obtained by subsequent pyrolysis may reduce and homogenize the porous network within the composite. Cracking of the xerogels due to volumic shrinkage occurring during air drying may be decreased by controlling the initial parameters as concerns the gel solution and/or by operating a second impregnation/pyrolysis step. Filling of such composites by liquid silicon revealed that a specific route and particular conditions are necessary to eliminate porosity by controlling gas production species from pore surface at high temperature. This may be achieved through a directional flow and using highly viscous silicon (thanks to a localized wick), and by keeping the sides of the materials permeable to gas. This led to composite materials with a thermal conductivity which was four times as high as that of those materials densified via CVI. An increase in mechanical properties was also observed.
APA, Harvard, Vancouver, ISO, and other styles
23

Kaya, Figen. "Damage Detection in Fibre Reinforced Ceramic and Metal Matrix Composites by Acoustic Emission." Key Engineering Materials 434-435 (March 2010): 57–60. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.57.

Full text
Abstract:
In this work damage micro-mechanisms of two different types of fibre reinforced composites are investigated by acoustic emission, AE. Ceramic based oxide fibre reinforced mullite matrix composite and metallic based SiC fibre reinforced titanium matrix composites exhibit different fracture mechanisms during loading and AE technique could pinpoint these damage mechanisms based on the AE responses detected simultaneously. The results show that in a ceramic matrix composite, the identification of fibre fracture and matrix cracking requires careful analysis of the AE data as both fibres and matrix break in brittle manner. Whereas the separation of fibre fracture from the ductile tearing of matrix ligaments could be easier in metallic based composites, such as titanium matrix composites.
APA, Harvard, Vancouver, ISO, and other styles
24

Fu, Yun Wei, Xie Quan Liu, Xin Hua Ni, and Hong Na Cao. "Elastic Constants of Eutectic Composite Ceramic Containing Parallel Lamellar Inclusion." Applied Mechanics and Materials 251 (December 2012): 285–88. http://dx.doi.org/10.4028/www.scientific.net/amm.251.285.

Full text
Abstract:
The eutectic composite ceramic is composed of parallel lamellar inclusions distributed in the matrix. First, the recessive expression for the effective stress and the flexibility increment tensor of eutectic composite ceramic are obtained according to the four-phase model. Second, the analytical formula which contains elastic constant is given by applying Taylor’s formula. The eutectic composite ceramic is transverse isotropy, so there are five elastic constants. Third, the effective elastic constants of composite ceramics are predicted.
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Guo Jun, Hideki Kita, Naoki Kondo, and Tatsuki Ohji. "Strengthening Effect of In-Situ Dispersed Hexagonal Boron Nitride in Ceramic Composites." Key Engineering Materials 317-318 (August 2006): 163–66. http://dx.doi.org/10.4028/www.scientific.net/kem.317-318.163.

Full text
Abstract:
High strength particulate ceramic composites are in general reinforced by strong dispersoids, such as strong ceramic particles (SiC, TiB2, ZrO2, et al) and strong metallic particles (Mo, W, et al). In this work high strength ceramic composites with in-situ synthesized hexagonal boron nitride (h-BN) have been prepared and characterized. As an example, we manufactured mullite-BN composites by reactive hot pressing (RHP) using aluminum borates (9Al2O3·2B2O3 and 2Al2O3·B2O3) and silicon nitride as starting materials. The obtained material RHPed at 1800°C showed a strength of 540 MPa, which was 1.64 times higher than that of the monolithic mullite ceramics. TEM observation revealed that the composite had an isotropic microstructure with a fine mullite matrix grain size of less than 1 μm and a nano-sized h-BN platelets of about 200 nm in length and 60∼80 nm in thickness. The high strength was suggested to be from the reduced matrix grain size and the small toughening effect by the h-BN platelets. In addition, this kind of ceramic composite demonstrates low Young’s modulus that is beneficial to the thermal/mechanical shock resistance, and excellent machinability.
APA, Harvard, Vancouver, ISO, and other styles
26

Geringer, J. W., Y. Katoh, S. Gonczy, T. Burchell, M. Mitchell, M. Jenkins, and W. Windes. "ASME Code Rules and ASTM Standards Integration for Ceramic Composite Core Materials and Components1." Journal of Physics: Conference Series 2048, no. 1 (October 1, 2021): 012020. http://dx.doi.org/10.1088/1742-6596/2048/1/012020.

Full text
Abstract:
Abstract Fiber-reinforced ceramic matrix composites have many desirable properties for high-temperature nuclear applications, including excellent thermal and mechanical properties and reasonable to outstanding radiation resistance. Over the last 20 years, the use of ceramic composite materials has already expanded in many commercial nonnuclear industries as fabrication and application technologies mature. The new ASME design and construction rules under Section III, Subsection HH, Subpart B lay out the requirements and criteria for materials, design, machining and installation, inspection, examination, testing, and the marking procedure for ceramic composite core components, which is similar to the established graphite code under Section III, Subsection HH, Subpart A. Moreover, the general requirements listed in Section III, Subsection HA, Subpart B are also expanded to include ceramic composite materials. The code rules rely heavily on the development and publication of standards for composite specification, classification, and testing of mechanical, thermal, and other properties. These test methods are developed in the American Society for Testing and Materials Committee C28 on Advanced Ceramics with a current focus on ceramic composite tubes. Details of the composites code, design methodology, and similarities to the graphite code, as well as guidance for the development of specifications for ceramic composites for nuclear application and recent standard developments, are discussed. The next step is to “close the gap” to support licensing aspects by validating the code with benchmarking data.
APA, Harvard, Vancouver, ISO, and other styles
27

Pandji Nugraha, Mohammad, Ilham Fahira Minan Nurrohman, Haris Ardianto, and Hery Setiawan. "TENSILE TEST OF CARBON CLOTH COMPOSITE WITH MATRIX POLYPROYLENE RECYCLING WITH WORKING TEMPERATURE PARAMETER OF 600℃ WITH METAL AND CERAMIC PRESS MEDIA." Teknika STTKD: Jurnal Teknik, Elektronik, Engine 8, no. 1 (July 30, 2022): 52–57. http://dx.doi.org/10.56521/teknika.v8i1.504.

Full text
Abstract:
Right now the distribution of polypropylene in the environment has become more and more so that it can pollute the environment. Thus polypropylene waste can be converted into a composite matrix. In this study, the manufacture of composites from recycled polypropylene was carried out, to be further combined with carbon fiber. After that, tensile testing is carried out to find out the mechanical properties. As a variation, there are differences in press media, namely using metal and ceramics. This research method is carried out experimentally, where when polypropylene waste has been softened using a heat gun at a temperature of 600 °C, it is emphasized using aluminum metal and ceramics so that polypropylene can be solid. Then for the dimensions of its manufacture according to ASTM D 638 for recycled polypropylene and ASTM D3039 for recycled polypropylene matrix carbon fiber composites. From the tensile test results for ASTM D638, specimens with suppression treatment using metal press media have an average maximum tensile strength of 5.40 MPa. As for specimens with ceramic press media has an average value of 6.32 MPa. Tensile testing on recycled polypropylene matrix carbon fiber composite specimens showed tensile strength with a value of 7.53 MPa for the treatment of metal press media and for ceramic press media its strength value of 10.66 MPa. Thus ceramic press media in the polypropylene composite manufacturing process is better than metal press media
APA, Harvard, Vancouver, ISO, and other styles
28

Tripp, D. E., J. H. Hemann, and J. P. Gyekenyesi. "A Review of Failure Models for Ceramic Matrix Composite Laminates Under Monotonic Loads." Journal of Engineering for Gas Turbines and Power 112, no. 4 (October 1, 1990): 492–501. http://dx.doi.org/10.1115/1.2906194.

Full text
Abstract:
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by “trial and error” since the emphasis on feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short-term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
APA, Harvard, Vancouver, ISO, and other styles
29

Shestakov, A. M. "Silicon carbide fibers and whiskers for ceramic matrix composites (review)." Industrial laboratory. Diagnostics of materials 87, no. 8 (August 21, 2021): 51–63. http://dx.doi.org/10.26896/1028-6861-2021-87-8-51-63.

Full text
Abstract:
An increase the operating temperature range of structural elements and aircraft assemblies is one of the main goals in developing advanced and new models of aerospace equipment to improve their technical characteristics. The most heat-loaded aircraft structures, such as a combustion chamber, high-pressure turbine segments, nozzle flaps with a controlled thrust vector, must have a long service life under conditions of high temperatures, an oxidizing environment, fuel combustion products, and variable mechanical and thermal loads. At the same time, modern Ti and Ni-based superalloys have reached the limits of their operating temperatures. The leading world aircraft manufacturers — General Electric (USA), Rolls-Royce High Temperature Composite Inc. (USA), Snecma Propulsion Solide (France) — actively conduct fundamental research in developing ceramic materials with high (1300 – 1600°C) and ultrahigh (2000 – 2500°C) operating temperatures. However, ceramic materials have a number of shortcomings attributed to the high brittleness and low crack resistance of monolithic ceramics. Moreover, manufacturing of complex configuration and large-sized ceramic parts faces serious difficulties. Nowadays, ceramic composite materials with a high-temperature matrix (e.g., based on ZrC-SiC) and reinforcing filler, an inorganic fiber, (e.g., silicon carbide) appeared most promising for operating temperatures above 1200°C and exhibited enhanced energy efficiency. Ceramic fibers based on silicon compounds possess excellent mechanical properties: the tensile strength more than 2 GPa, modulus of elasticity more than 200 GPa, and thermal resistance at a temperature above 800°C, thus making them an essential reinforcing component in metal and ceramic composites. This review is devoted to silicon carbide core fibers obtained by chemical vapor deposition of silicon carbide onto a tungsten or carbon core, which makes it possible to obtain fibers a 100 – 150 μm in diameter to be used in composites with a metal matrix. The coreless SiC-fibers with a diameter of 10 – 20 μm obtained by molding a polymer precursor from a melt and used mainly in ceramic composites are also considered. A comparative analysis of the phase composition, physical and mechanical properties and thermal-oxidative resistance of fibers obtained by different methods is presented. Whiskers (filamentary crystals) are also considered as reinforcing fillers for composite materials along with their properties and methods of production. The prospects of using different fibers and whiskers as reinforcing fillers for composites are discussed.
APA, Harvard, Vancouver, ISO, and other styles
30

Chen, Song, and De Gui Zhu. "Low-Temperature Preparation of the BaO-B2O3 Matrix Composite Ceramics." Advanced Materials Research 849 (November 2013): 3–7. http://dx.doi.org/10.4028/www.scientific.net/amr.849.3.

Full text
Abstract:
In this work, the energy-saving LTCC composite ceramics containing quartz, fused quartz and zirconia ceramic particles, respectively based on the binary system BaO-B2O3 were prepared by traditional solid-state preparation process at a sintering temperature of 900°C. Sintering mechanism and physical properties of the LTCC composite ceramics are investigated and discussed in detail in terms of their mineral phase composition. The results indicate that the introduction of α-alumina to the binary system BaO-B2O3 can improve the sintering behavior whereas the presence of the functional ceramic particles in the composite ceramics is important to achieve the peculiar physical characterlistics, which consequently supply more possibilities to regulate on the physical properties of the composite ceramics.
APA, Harvard, Vancouver, ISO, and other styles
31

Nandakumar, A., and D. Dinakaran. "Effect of Nanoparticles in Reinforced Metal Matrix Composite on the Machinability Characteristics - A Review." Applied Mechanics and Materials 813-814 (November 2015): 625–28. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.625.

Full text
Abstract:
Metal Matrix nanoComposites (MMNC) refer to materials consisting of a ductile metal or alloy matrix in which some nanosized reinforcement materials is implanted. These materials combine metal and ceramic features, i.e., ductility and toughness with high strength. Thus, metal matrix nanocomposites are suitable for production of materials with high strength in shear/compression processes and high service temperature capabilities. Both Metal Matrix Composite (MMC) and Ceramic Matrix Composites (CMC) with Carbon nanoTubes (CNT) nanocomposites hold promise, but also pose challenges for real success. In the present paper deals an inclusive review of literature in effect of nanoparticles in reinforced metal matrix composites on the machinability characteristics of the composite materials.
APA, Harvard, Vancouver, ISO, and other styles
32

Hsueh, C. H. "Toughening Behavior and Interfacial Properties of Fiber-Reinforced Ceramic Composites." Journal of Energy Resources Technology 113, no. 3 (September 1, 1991): 197–203. http://dx.doi.org/10.1115/1.2905805.

Full text
Abstract:
Toughening of ceramics by incorporating strong fibers has become an established technology, resulting in the creation of a new generation of tough ceramic composites. This toughening effect is primarily due to bridging of the crack surfaces by intact fibers when the composite is subjected to tension. The fiber bridging mechanisms, which are contingent upon the stress transfer phenomena between the fiber and the matrix, are reviewed in this paper. The critical role of the properties at the fiber/matrix interface in controlling the stress transfer phenomena is examined. Finally, evaluations of the interfacial properties of the composite by the indentation technique and the corresponding analysis are presented.
APA, Harvard, Vancouver, ISO, and other styles
33

Jacob, Reenu, and Jayakumari Isac. "Morphological, thermal and optical studies of jute-reinforced PbSrCaCuO–polypropylene composite." Modern Physics Letters B 30, no. 31 (November 20, 2016): 1650379. http://dx.doi.org/10.1142/s0217984916503796.

Full text
Abstract:
New research with modern technologies has always grabbed substantial attention. Conservation of raw materials like natural fibers has helped composite world to explore eco-friendly components. The aim of this paper is to study the potential of jute fiber-reinforced ceramic polymers. Alkali-treated jute fiber has been incorporated in a polypropylene ceramic matrix at different volume fractions. The morphological, thermal and optical studies of jute-reinforced ceramic Pb2Sr2CaCu2O9 (PbSrCaCuO) are studied. Morphological results evidently demonstrate that when the polypropylene ceramic matrix is reinforced with jute fiber, interfacial interaction between the varying proportions of the jute fiber and ceramic composite takes place. TGA and DSC results confirm the enhancement in the thermal stability of ceramic composites reinforced with jute fiber. The UV analysis of the composite gives a good quality measure on the optical properties of the new composite prepared.
APA, Harvard, Vancouver, ISO, and other styles
34

Pan, Wen Ge, Gui Qiong Jiao, and Bo Wang. "Microstructure and Damage Evolution of Ceramic Matrix Composite." Key Engineering Materials 326-328 (December 2006): 1177–80. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1177.

Full text
Abstract:
The tensile damage evolution of 2D plain woven C/SiC composites strengthened with 1K and 3K carbon fiber bundles and microstructure’s influence on material’s damage evolution were investigated using the Acoustic Emission technology (AE) and failure observation. Experimental results reveal that damage evolution of these two kinds of composites is a gradual procedure and this procedure consists of three phases. There is no damage during the first phase. During the second phase, the damage, mainly consisting of matrix microcrack cracking, interface debonding of fiber and joining of microcrack, random takes place in the whole area of specimen. During the third damage phase, the damage, mainly consisting of macrocrack cracking, fibers breaking and fibers pulling out, mainly takes place in the local failure area of specimen. Because the microstructures of composites with 1K and 3K carbon fiber bundles are different, their damage mechanisms are different. Composite strengthened with 1K carbon fiber bundles get in second phase at 90% failure stress, and their main energy dissipation occurred during the second damage phase. While Composite strengthened with 3K carbon fiber bundles get in second phase at 80% failure stress, and their main energy dissipation occurred during the third damage phase.
APA, Harvard, Vancouver, ISO, and other styles
35

Yang, Fang Hong, Yan Yan Wang, Rui Xiang Liu, Chang Ling Zhou, Lu Ping Yang, and Kai Jiang. "Preparation and Performance of C/C-SiC Ceramic Matrix Composites." Solid State Phenomena 281 (August 2018): 402–7. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.402.

Full text
Abstract:
Carbon/carbon composite of various density were synthesized via chemical vapor infiltration process, and the sedimentary process of pyrolytic carbon were also researched. The density of the sample increased with the extension of growth time. Density change rate of the samples were various at different stages of the growth process, namely pyrolytic carbon of different densities formed at the different stages. It was found that pyrolytic carbon filled the pores of carbon fiber preform, which can help to relieve the interface stress between the fiber and the ceramic substrate. In order to improve the performance of the composite, SiC and ZrC ceramics were introduced into the carbon/carbon composite via polymer infiltration and pyrolysis (PIP) process. The ability of high temperature resistance and oxidation resistance of the composite were strengthened by the PIP process. The bending strength, tensile strength and compressive strength were also increased with the extension of PIP cycle. The C/C-SiC-ZrC composites were obtain through this process, which are useful in various areas.
APA, Harvard, Vancouver, ISO, and other styles
36

Konopka, K. "Novel Ceramic-Metal Composites with Metal Phase from Micro to Nanosize." Solid State Phenomena 101-102 (January 2005): 139–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.101-102.139.

Full text
Abstract:
The present paper is focused on ceramic–metal composites obtained via different technologies which leads to different microstructures in terms of size and distribution of metal phase. Composites analysed in paper were produced by the following methods:(a) infiltration of porous ceramics by metal, (b) consolidation under high pressure and (c) sintering of ceramic powder coated by metal. Their microstructures were investigated by scanning and transmission electron microscopy methods. The three methods of composite fabrication employed in the present study result in specific spatial distribution and dispersion of metal phase. Presureless infiltration of porous ceramics by liquid metal is driven by capillary force and make it possible to produce microstructure with percolation of metal phase in ceramic matrix. The volume fraction of metal phase in this case depends on the size of pores. The size of pores influence also the kinetics and extent of infiltration. Ceramic preforms with small size of pore are not fully infiltrated. This method is useful for composite with size of metal phase in the range of micrometers. Hot pressing under high pressure produces microstructures of composites with metal phase grain size in the range from nano to micrometers. Moreover, it allows to achieve the nanometric size of ceramic grains. In the case of ceramic powders covered by metal, compression and hot pressing preserves nanometric size of metal. The grain growth of ceramic grains is suppressed.
APA, Harvard, Vancouver, ISO, and other styles
37

Beena, P., and HS Jayanna. "Dielectric studies and AC conductivity of piezoelectric barium titanate ceramic polymer composites." Polymers and Polymer Composites 27, no. 9 (June 17, 2019): 619–25. http://dx.doi.org/10.1177/0967391119856140.

Full text
Abstract:
In this work, ceramics barium titanate (BT) polymer composites were prepared with BT/polyvinyl alcohol (PVA) having a ceramic concentration of 10, 30, and 50% by weight using solution casting method. The prepared thin film samples were characterized by X-ray diffraction for phase analysis. Scanning electron microscope (SEM) studies on composite films revealed ceramic crystallites are well dispersed in the polymer matrix. The dielectric constant ( εr) and the AC conductivity at room temperature and at different frequencies (100 Hz–5 MHz) of the piezoelectric composites with different concentrations were investigated. The result shows that the dielectric constant of ceramic-PVA composites was found to increase as ceramic concentration increases and the dielectric loss tangent decreased with increasing concentration. AC conductivity of the composites increased with increasing frequency.
APA, Harvard, Vancouver, ISO, and other styles
38

Katz, R. N., L. A. Bracamonte, J. C. Withers, and S. Chaudhury. "Hybrid Ceramic Matrix/Metal Matrix Composite Gun Barrels." Materials and Manufacturing Processes 21, no. 6 (September 2006): 579–83. http://dx.doi.org/10.1080/10426910600602846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Konopka, K., L. Litynska-Dobrzynska, and J. Dutkiewicz. "Sem and Tem Studies of NiAl2O4 Spinel Phase Distribution in Alumina Matrix." Archives of Metallurgy and Materials 58, no. 2 (June 1, 2013): 501–4. http://dx.doi.org/10.2478/amm-2013-0026.

Full text
Abstract:
Methods of enhancing of mechanical properties of ceramic-metal composites, particularly fracture toughness by introducing dispersed metal particles such as W, Mo, Ni, Al, etc to a ceramic matrix are well known. However, the dependence of the microstructures, especially interfaces, on the properties of composites is not well understood yet. Moreover, the ceramic-metal interfaces play a crucial role in tailoring the composite properties. In this paper we examine the alumina matrix composite with NiAl2O4 spinel phase and present the SEM and TEM studies of spinel distribution, size and crystallographic orientation. The composites were prepared by sintering Al2O3 and Ni powders below the melting point of Ni in argon. During the process of sintering the spinel phase appeared. It was not homogeneously distributed in the alumina matrix. The spinel phase areas were linked together and constituted an almost continuous form. We observed that the distribution and size of spinel influenced the fracture toughness of the composite.
APA, Harvard, Vancouver, ISO, and other styles
40

Gadow, Rainer. "Lightweight Engineering with Advanced Composite Materials - Ceramic and Metal Matrix Composites." Advances in Science and Technology 50 (October 2006): 163–73. http://dx.doi.org/10.4028/www.scientific.net/ast.50.163.

Full text
Abstract:
Light weight engineering by materials and by design are central challenges in modern product development for automotive applications. High strength structural ceramics and components were in the focus of R & D in automobile development since the 1970's and CMC have dominated advanced materials engineering in aerospace applications. The limiting factor for their market acceptance was the high processing and manufacturing cost. The automotive industry requires technical performance and high economic competitiveness with tough cost targets. The potential of ceramic matrix composites can be enhanced, if new fast and cost effective manufacturing technologies are applied. This is demonstrated in the case of SiC composites for high-performance disk brake rotors for passenger cars. Light metal composites are promising candidates to realize safety relevant lightweight components because of their high specific strength and strain to failure values, if their stiffness and their thermal and fatigue stability is appropriate for the application, i.e. in power train and wheel suspension of cars. Tailor-made fiber reinforcements in light metal matrices can solve this problem, but the integration of fibers with conventional manufacturing techniques like squeeze casting or diffusion bonding leads to restrictions in the component's geometry and results in elevated process cost mainly caused by long cyc1e times and the need of special tools and additional fiber coatings. A new manufacturing method for metal matrix composites (MMC) made by fast thixoforging is introduced. Thereby, prepregs consisting of laminated fiber woven fabrics and metal sheets or, alternatively, thermally sprayed metal coatings on ceramic fiber fabrics are used as preforms for an advanced thixoforging process for the manufacturing of Al-Si MMC components in mechanical engineering.
APA, Harvard, Vancouver, ISO, and other styles
41

Lu, Ya, Peiyan Sun, Xiaohong Yang, Xudong Guo, Xiaoke Li, and Wuyi Ming. "Review of Research Progress in Nontraditional Machining of Ultrahigh-Temperature Ceramic Matrix Composites." Coatings 13, no. 1 (January 14, 2023): 187. http://dx.doi.org/10.3390/coatings13010187.

Full text
Abstract:
Ultrahigh-temperature ceramic matrix composites are currently among the most promising high-temperature-resistant materials, owing to their high-temperature strength, high-toughness and excellent corrosion resistance; they are widely used in national defense and aerospace fields. However, it is a difficult material to machine, and high precision is difficult to achieve using traditional machining methods. Nontraditional machining methods are not constrained by material physical and mechanical properties, and good surface quality is easily obtained, which is an important direction in the field of ultrahigh-temperature ceramic matrix composites. This paper summarizes the recent nontraditional machining methods utilized in the fabrication of ultrahigh-temperature ceramic matrix composites. Firstly, various nontraditional machining methods for ultrahigh-temperature ceramic matrix composites based on borides, carbides and nitrides are reviewed, and the machining performances under different machining conditions are compared. Subsequently, the problems and challenges of ultrahigh-temperature ceramic matrix composite nontraditional machining are summarized and discussed. Lastly, the future development path of nontraditional machining methods for ultrahigh-temperature ceramic matrix composites is summarized and predicted.
APA, Harvard, Vancouver, ISO, and other styles
42

Hong, Sung Jin, and Deug Joong Kim. "Polymer Derived Ceramic Seals for Application in SOFC." Materials Science Forum 534-536 (January 2007): 1061–64. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.1061.

Full text
Abstract:
Polymer derived ceramic composites have been developed for SOFC seals. The formation and properties of the ceramic composite derived from a mixture with polysiloxane and filler were investigated. In the presence of filler materials such as ZrO2 and AlCo, the thermal properties of the ceramic composite could be controlled. The mixtures with polymethylsiloxane and fillers were prepared and their conversions to ceramic composites by annealing in N2 atmosphere were studied. The microcrystalline composites with filler embedded in a silicon-boron-oxycarbide glass matrix were formed. The thermal expansion behaviors were measured and discussed.
APA, Harvard, Vancouver, ISO, and other styles
43

Tanuma, Miho, Yoshikazu Kameshima, Akira Nakajima, Kiyoshi Okada, Shigeo Asai, and Masao Sumita. "Biocompatibility of CaSiO3 /High-Density Polyethylene Composites Prepared by Hot-Pressing." Key Engineering Materials 309-311 (May 2006): 1161–64. http://dx.doi.org/10.4028/www.scientific.net/kem.309-311.1161.

Full text
Abstract:
We have reported that CaSiO3 ceramics show very fast bone-like apatite formation in simulated body fluid (SBF). However, CaSiO3 ceramics have disadvantages in their mechanical properties and shapability. It is therefore more effective to develop composites of CaSiO3 particles dispersed in a matrix of polymer or metal. Such composites are usually prepared by homogeneously blending the ceramic powder with the matrix component. This method is, however, ineffective for the preparation of biocompatible polymers or metals because only the surfaces containing accidentally-exposed ceramic particles play a role in generating apatite in SBF. It is therefore necessary to add a large volume of ceramic powder and also to abrade the surface to expose more of the ceramic particles. In this study, CaSiO3/high-density polyethylene (HDPE) composites were prepared by hot-pressing to introduce surface CaSiO3 particles and their biocompatibilities were evaluated under in vitro conditions using SBF. CaSiO3 powders were spread on a HDPE plate and hot-pressed at 140oC and 4.9-14.7 MPa for 2 min. The composite sample (about 10×10×1 mm3 in size) was immersed in 30ml SBF (sample/solution ratio of 2.5 g/l) at 36.5oC. After 14 days soaking, the apatite product particles covered most of the composite surface and formed apatite layers. Bone-like apatite particles were formed only on the surface regions containing exposed CaSiO3 particles but no apatite was formed on the CaSiO3 particles buried in the HDPE matrix. The results show that this surface deposition method is very effective in developing biocompatibility in the composites using very small amounts of CaSiO3 powder (about <1 %v) compared with results reported for hydroxyapatite and AW glass-ceramic powders (requiring about 40 %v). It is also found that the inhomogeneous state of the CaSiO3 particles in the surface of the present composites strongly influences their biocompatibility. It will be necessary to improve the homogeneity of CaSiO3 dispersion in the surface of the composites to achieve a more uniform surface apatite layer.
APA, Harvard, Vancouver, ISO, and other styles
44

Khaliq, Hoeks, and Groen. "Fabrication of Piezoelectric Composites Using High-Temperature Dielectrophoresis." Journal of Manufacturing and Materials Processing 3, no. 3 (September 2, 2019): 77. http://dx.doi.org/10.3390/jmmp3030077.

Full text
Abstract:
In this paper, we present a method to create a highly sensitive piezoelectric quasi 1–3 composite using a thermoplastic material filled with a piezoelectric powder. An up-scalable high-temperature dielectrophoresis (DEP) process is used to manufacture the quasi 1–3 piezoelectric polymer-ceramic composites. For this work, thermoplastic cyclic butylene terephthalate (CBT) is used as a polymer matrix and PZT (lead zirconium titanate) ceramic powder is chosen as the piezoelectric active filler material. At high temperatures, the polymer is melted to provide a liquid medium to align the piezoelectric particles using the DEP process inside the molten matrix. The resulting distribution of aligned particles is frozen upon cooling the composite down to room temperature in as little as 10 min. A maximum piezoelectric voltage sensitivity (g33) value of 54 ± 4 mV·m/N is reported for the composite with 10 vol% PZT, which is twice the value calculated for PZT based ceramics.
APA, Harvard, Vancouver, ISO, and other styles
45

Morozov, N. F., B. N. Semenov, V. M. Smirnov, and E. G. Zemtsova. "Mechanical properties of metal–matrix composites reinforced with carbide structures." Journal of Physics: Conference Series 2231, no. 1 (April 1, 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2231/1/012003.

Full text
Abstract:
Abstract Metal–matrix composites based on an aluminum matrix reinforced with ceramic particles are widely used as structural materials in the aerospace and automotive industries. The main problems in the manufacture are the uniformity of the distribution of particles over the volume, poor adhesion of ceramic particles to the matrix metal, and the formation of aluminum carbide at the interfaces, leading to undesirable embrittlement. We propose a new technique for the manufacture of metal–matrix composites, which consists in creating a composite material, when carbide nanostructures form a framework in the volume of an aluminum matrix, and which allows solving the above problems. A finite element model of deformation of a metal–matrix composite reinforced with carbide structures is constructed.
APA, Harvard, Vancouver, ISO, and other styles
46

Sainbaatar, Zuo Tai Zhang, Wen Chao Li, and Xi Dong Wang. "Study of the AlON-VN Composite Ceramic." Key Engineering Materials 280-283 (February 2007): 1139–42. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1139.

Full text
Abstract:
Aluminium oxynitride-vanadium nitride (AlON-VN) composite ceramic was fabricated based on thermodynamic analysis of V-Al-O-N systems. The results indicated that the VN dispersed homogeneously in AlON matrix and can reinforce AlON matrix. Oxidation behavior was studied and the results showed that it belongs to self-protective oxidation due to the good adherence of oxidation product. Therefore, AlON-VN composites have excellent oxidation resistance.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Shu Qin, Xin Hua Ni, Xie Quan Liu, and Ying Chen Ma. "The Damage Finite Element Analysis of Eutectic Composite Ceramic Containing Lamellae." Applied Mechanics and Materials 121-126 (October 2011): 473–77. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.473.

Full text
Abstract:
According to microstructures in eutectic composite ceramic, the finite element model of composite with eutectic interphase is established. The mechanical stress field of eutectic composite ceramic containing lamellae is simulated. APDL programming in ANSYS is used to analyze the damage process of eutectic composite ceramic. Results show that the failure of eutectic composite ceramic is determined by the damage of matrix. As load is increasing, the damage will elongate along the interphase and extend to the internal of matrix. At last the damage arouses matrix fracture.
APA, Harvard, Vancouver, ISO, and other styles
48

Zhong, Jie, Dongling Yang, Shuangquan Guo, Xiaofeng Zhang, Xinghua Liang, and Xi Wu. "Rear Earth Oxide Multilayer Deposited by Plasma Spray-Physical Vapor Deposition for Envisaged Application as Thermal/Environmental Barrier Coating." Coatings 11, no. 8 (July 26, 2021): 889. http://dx.doi.org/10.3390/coatings11080889.

Full text
Abstract:
SiC fiber-reinforced SiC ceramic matrix composites (SiCf/SiC CMCs) are being increasingly used in the hot sections of gas turbines because of their light weight and mechanical properties at high temperatures. The objective of this investigation was the development of a thermal/environmental barrier coating (T/EBC) composite coating system consisting of an environmental barrier coating (EBC) to protect the ceramic matrix composites from chemical attack and a thermal barrier coating (TBC) that insulates and reduces the ceramic matrix composites substrate temperature for increased lifetime. In this paper, a plasma spray-physical vapor deposition (PS-PVD) method was used to prepare multilayer Si–HfO2/Yb2Si2O7/Yb2SiO5/Gd2Zr2O7 composite coatings on the surface of SiCf/SiC ceramic matrix composites. The purpose of this study is to develop a coating with resistance to high temperatures and chemical attack. Different process parameters are adopted, and their influence on the microstructure characteristics of the coating is discussed. The water quenching thermal cycle of the coating at high temperatures was tested. The results show that the structure of the thermal/environmental barrier composite coating changes after water quenching because point defects and dislocations appear in the Gd2Zr2O7 and Yb2SiO5 coatings. A phase transition was found to occur in the Yb2SiO5 and Yb2Si2O7 coatings. The failure mechanism of the T/EBC composite coating is mainly spalling when the top layer penetrates cracks and cracking occurs in the interface of the Si–HfO2/Yb2Si2O7 coating.
APA, Harvard, Vancouver, ISO, and other styles
49

Dixon, D. G. "Ceramic matrix composite-metal brazed joints." Journal of Materials Science 30, no. 6 (March 1995): 1539–44. http://dx.doi.org/10.1007/bf00375261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Huang, Xiao Ting, Shu Guang Chen, Hao Ran Sun, Yu Feng Chen, Hai Long Liang, Yan Li Huo, Chun Peng Wang, and Chuan Qi Hu. "Honeycomb Sandwich Structure of Cf/SiC Ceramic Matrix Composites Prepared by PIP-CVI." Key Engineering Materials 602-603 (March 2014): 422–25. http://dx.doi.org/10.4028/www.scientific.net/kem.602-603.422.

Full text
Abstract:
continuous carbon fiber reinforced silicon carbide (Cf/SiC) ceramic matrix composites were prepared by precursor infiltration pyrolysis and chemical vapor infiltration (PIP-CVI process), in which the honeycomb sandwich structure preforms were fabricated by the three dimensional braid method. In this paper, the microstructure and the bending strength were observed and analyzed by SEM and three point bending method. The results of the study show that: The Cf/SiC ceramic matrix composites, which were lightweight and high strength, were prepared by that technique. The composite samples have a fiber volume fraction of 20%, a density of 0.38 g/cm3 and a flexural strength of 3.81 MPa. The honeycomb sandwich fiber reinforced ceramic matrix composite with a light weight, corrosion resistance and excellent physical and mechanical properties is a kind of structure and functional ceramic materials, which can realize the structure and the requirement of heat integration.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography