Journal articles on the topic 'Ceramic proppants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ceramic proppants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cutler, R. A., D. O. Enniss, A. H. Jones, and S. R. Swanson. "Fracture Conductivity Comparison of Ceramic Proppants." Society of Petroleum Engineers Journal 25, no. 02 (1985): 157–70. http://dx.doi.org/10.2118/11634-pa.
Full textWang, Wen, Desheng Zhou, Tuan Gu, Yanhua Yan, Xin Yang, and Shucan Xu. "Experimental Investigation on the Influence of Proppant Crushing on the Propped Fracture Conductivity." Processes 13, no. 7 (2025): 2166. https://doi.org/10.3390/pr13072166.
Full textB, Guo. "Effect of Fluid Contact Angle of Oil-wet Ceramic Fracture Proppant on the Water Flow from Sandstones to Proppant Packs." Petroleum & Petrochemical Engineering Journal 6, no. 1 (2022): 1–9. http://dx.doi.org/10.23880/ppej-16000295.
Full textde Campos, Vitor Polezi Pesce, Gisele Aparecida Amaral Labat, Eduardo Sansone, Douglas Gouvea, and Guilherme Frederico Bernardo Lenz e Silva. "Development of Sodium Hydroxide-Activated Metakaolin with Nanocarbon Materials as Synthetic Ceramic Proppants." Materials Science Forum 912 (January 2018): 251–56. http://dx.doi.org/10.4028/www.scientific.net/msf.912.251.
Full textGuo, Zixi, Dong Chen, and Yiyu Chen. "Numerical Calculation and Application for Crushing Rate and Fracture Conductivity of Combined Proppants." Energies 17, no. 16 (2024): 3868. http://dx.doi.org/10.3390/en17163868.
Full textWang, Ming, and Boyun Guo. "Effect of Fluid Contact Angle of Oil-Wet Fracture Proppant on the Competing Water/Oil Flow in Sandstone-Proppant Systems." Sustainability 14, no. 7 (2022): 3766. http://dx.doi.org/10.3390/su14073766.
Full textWang, Kaiyue, Huijun Wang, Yi Zhou, et al. "Preparation and characterization of low-cost high-performance mullite-quartz ceramic proppants for coal bed methane wells." Science and Engineering of Composite Materials 25, no. 5 (2018): 957–61. http://dx.doi.org/10.1515/secm-2017-0142.
Full textSong, Enpeng, Quan Jin, and Ke Cai. "Research on the hardness testing method of ceramsite proppants." Journal of Physics: Conference Series 3021, no. 1 (2025): 012009. https://doi.org/10.1088/1742-6596/3021/1/012009.
Full textLiang, Tiancheng, Jinwei Zhang, Chuanyou Meng, Nailing Xiu, Bo Cai, and Haifeng Fu. "Conductivity prediction of proppant-packs based on particle size distribution under variable stress conditions." E3S Web of Conferences 205 (2020): 03010. http://dx.doi.org/10.1051/e3sconf/202020503010.
Full textAlkan, Gözde, Peter Mechnich, and Johannes Pernpeintner. "Improved Performance of Ceramic Solar Absorber Particles Coated with Black Oxide Pigment Deposited by Resonant Acoustic Mixing and Reaction Sintering." Coatings 12, no. 6 (2022): 757. http://dx.doi.org/10.3390/coatings12060757.
Full textDzhienalyev, Tolebi, Alla Biryukova, Bagdaulet Kenzhaliyev, Alma Uskenbaeva, and Galiya Ruzakhunova. "Mullite–Silicate Proppants Based on High-Iron Bauxite and Waste from Metallurgical Industry in Kazakhstan." Ceramics 7, no. 4 (2024): 1488–99. http://dx.doi.org/10.3390/ceramics7040096.
Full textTong, Yu Ping, Hui Xian Wang, and Qing Feng Wang. "Preparation of a New Fracture Ceramic Proppant." Applied Mechanics and Materials 438-439 (October 2013): 207–10. http://dx.doi.org/10.4028/www.scientific.net/amm.438-439.207.
Full textBiryukova, A. A., T. D. Dzhienalyev, and A. V. Boronina. "Ceramic Proppants Based on Ultrabasic Rocks of Kazakhstan Chromite Ore Deposits." Materials Science Forum 946 (February 2019): 169–73. http://dx.doi.org/10.4028/www.scientific.net/msf.946.169.
Full textPauliukevich, Yu G., P. S. Laryionov, and I. V. Kavrus. "INFLUENCE OF STRUCTURAL FACTORS ON THE MECHANICAL STRENGTH OF GLASS-CERAMIC PROPANTS." Steklo i Keramika, no. 13 (January 2023): 22–27. http://dx.doi.org/10.14489/glc.2023.01.pp.022-027.
Full textBiryukova, A. A., T. D. Dzhienalyev, and A. V. Panichkin. "Ceramic proppants for hydraulic fracturing." IOP Conference Series: Materials Science and Engineering 1040 (January 15, 2021): 012008. http://dx.doi.org/10.1088/1757-899x/1040/1/012008.
Full textBadikova, Albina D., Dilara R. Kireeva, Ivan M. Borisov, Diana I. Kletskova, and Aleksandr I. Voloshin. "DEVELOPMENT TRENDS IN PROPPANT MODIFICATION PROCESSES." Oil and Gas Business, no. 1 (March 6, 2024): 105–30. http://dx.doi.org/10.17122/ogbus-2024-1-105-130.
Full textDabo, Kofi, Susan Schrader, Richard Schrader, and Sterling Richard. "Using Laboratory Results from New Methods of Measuring Proppant Conductivity to Model Hydraulic Fractures in Reservoir Simulation." European Journal of Technology 6, no. 2 (2022): 62–72. http://dx.doi.org/10.47672/ejt.1117.
Full textDenney, Dennis. "Erosion by Sand and Ceramic Proppants During Slurry Injection and Proppant Flowback." Journal of Petroleum Technology 57, no. 03 (2005): 35–37. http://dx.doi.org/10.2118/0305-0035-jpt.
Full textWisniewski, P., J. Szymanska, M. Malek, and J. Mizera. "Optimizing the Lightweight Ceramic Proppants Properties." Acta Physica Polonica A 129, no. 4 (2016): 501–3. http://dx.doi.org/10.12693/aphyspola.129.501.
Full textHao, Jianying, Baolin Mu, Yunfeng Gao, Pinbo Bai, Yuming Tian, and Guomin Li. "Toughening effect of mullite whisker within low-density ceramic proppants." Advanced Composites Letters 28 (January 1, 2019): 2633366X1989062. http://dx.doi.org/10.1177/2633366x19890625.
Full textChen, Xudong, Saisai Li, Yudong Shang, Jun Wang, and Jiaojiao Zheng. "In situ mullite whisker network formation for high strength and lightweight ceramic proppants." Processing and Application of Ceramics 18, no. 1 (2024): 77–86. http://dx.doi.org/10.2298/pac2401077c.
Full textMałek, Marcin, Paweł Wiśniewski, Mateusz Konrad Koralnik, Joanna Szymańska, Jarosław Mizera, and Krzysztof Jan Kurzydłowski. "Experimental ceramic proppants characterization in the process of shale gas extraction." Mechanik, no. 5-6 (May 2016): 516–17. http://dx.doi.org/10.17814/mechanik.2016.5-6.64.
Full textBiryukova, A. A., T. D. Dzhienalyev, and T. A. Tikhonova. "Ceramic Proppants Based on Kazakhstan Natural Alumosilicate Resources." Refractories and Industrial Ceramics 58, no. 3 (2017): 269–75. http://dx.doi.org/10.1007/s11148-017-0095-y.
Full textLi, Xianjun, and Jianying Hao. "Optimization design of low-density and high-strength ceramic proppants by orthogonal experiment." Advanced Composites Letters 29 (January 1, 2020): 2633366X2095487. http://dx.doi.org/10.1177/2633366x20954875.
Full textRazgulyaeva, Valeriya M., Irina A. Pavlova, and Elena P. Farafontova. "Felsite in Ceramic Materials Production." Defect and Diffusion Forum 410 (August 17, 2021): 704–8. http://dx.doi.org/10.4028/www.scientific.net/ddf.410.704.
Full textRamadhan, Dimas, Hidayat Tulloh, and Cahyadi Julianto. "Analysis Study Of The Effect In Selecting Combination Of Fracturing Fluid Types And Proppant Sizes On Folds Of Increase (FOI) To Improve Well Productivity." Journal of Petroleum and Geothermal Technology 1, no. 2 (2020): 92. http://dx.doi.org/10.31315/jpgt.v1i2.3886.
Full textKukurugya, Frantisek, Jef Bergmans, Ruben Snellings, and Jeroen Spooren. "Recycling of spent Cu-based oxygen carriers into high-strength ceramic proppants." Ceramics International 43, no. 18 (2017): 16895–902. https://doi.org/10.1016/j.ceramint.2017.09.090.
Full textde Campos, Vitor Polezi Pesce, Samuel Marcio Toffoli, Douglas Gouvea, and Guilherme Frederico Bernardo Lenz e Silva. "Evaluation of Industrial Rejects of Mineral and Metallurgical Processing as Ceramic Synthetic Proppants." Materials Science Forum 798-799 (June 2014): 503–8. http://dx.doi.org/10.4028/www.scientific.net/msf.798-799.503.
Full textHao, Jianying, Haiqiang Ma, Xin Feng, et al. "Microstructure and fracture mechanism of low density ceramic proppants." Materials Letters 213 (February 2018): 92–94. http://dx.doi.org/10.1016/j.matlet.2017.11.021.
Full textMocciaro, Anabella, Maria B. Lombardi, and Alberto N. Scian. "Effect of raw material milling on ceramic proppants properties." Applied Clay Science 153 (March 2018): 90–94. http://dx.doi.org/10.1016/j.clay.2017.12.009.
Full textPavlyukevich, Yu G., P. S. Larionov, L. F. Papko, S. E. Barantseva, and A. P. Kravchuk. "Obtaining Glass Ceramic Proppants Based on Petrurgic Raw Material." Glass and Ceramics 76, no. 7-8 (2019): 286–89. http://dx.doi.org/10.1007/s10717-019-00185-4.
Full textVakalova, T. V., L. P. Devyashina, M. A. Burihina, A. S. Kisner, and N. V. Pashenko. "Alumosilicate ceramic proppants based on natural refractory raw materials." IOP Conference Series: Materials Science and Engineering 286 (December 2017): 012012. http://dx.doi.org/10.1088/1757-899x/286/1/012012.
Full textWang, Guang, Qinyue Ma, Longqiang Ren, and Jirui Hou. "Preparation and Properties of Lightweight Amphiphobic Proppant for Hydraulic Fracturing." Polymers 16, no. 18 (2024): 2575. http://dx.doi.org/10.3390/polym16182575.
Full textToniolo, Nicoletta, Acacio Rincon Romero, Mauro Marangoni, Mohammed Binhussain, Aldo R. Boccaccini, and Enrico Bernardo. "Glass-ceramic proppants from sinter-crystallisation of waste-derived glasses." Advances in Applied Ceramics 117, no. 2 (2017): 127–32. http://dx.doi.org/10.1080/17436753.2017.1394019.
Full textHao, Jianying, Haiqiang Ma, Xin Feng, Yunfeng Gao, Kaiyue Wang, and Yuming Tian. "Low-temperature sintering of ceramic proppants by adding solid wastes." International Journal of Applied Ceramic Technology 15, no. 2 (2017): 563–68. http://dx.doi.org/10.1111/ijac.12818.
Full textVereshchagin, V. I., and T. S. Petrovskaya. "TRADITIONS AND PERSPECTIVES OF THE TECHNOLOGY OF SILICATES AND NANOMATERIALS DEPARTMENT." Steklo i Keramika, no. 13 (January 2023): 47–50. http://dx.doi.org/10.14489/glc.2023.01.pp.047-050.
Full textWiśniewski, Paweł, Mateusz Konrad Koralnik, Marcin Małek, Joanna Szymańska, Jarosław Mizera, and Krzysztof Jan Kurzydłowski. "Characterization and evaluation properties of ceramic proppants used in the extraction of the unconventional hydrocarbons." Mechanik, no. 5-6 (May 2016): 518–19. http://dx.doi.org/10.17814/mechanik.2016.5-6.65.
Full textZarzycka, Dorota, Paweł Wiśniewski, and Jarosław Mizera. "Rheological studies of ceramic slurries used for the preparation of the proppants." Mechanik, no. 5-6 (May 2016): 514–15. http://dx.doi.org/10.17814/mechanik.2016.5-6.63.
Full textMan, Shuai, and Ron Chik-Kwong Wong. "Compression and crushing behavior of ceramic proppants and sand under high stresses." Journal of Petroleum Science and Engineering 158 (September 2017): 268–83. http://dx.doi.org/10.1016/j.petrol.2017.08.052.
Full textKukurugya, Frantisek, Jef Bergmans, Ruben Snellings, and Jeroen Spooren. "Recycling of spent Cu-based oxygen carriers into high-strength ceramic proppants." Ceramics International 43, no. 18 (2017): 16895–902. http://dx.doi.org/10.1016/j.ceramint.2017.09.090.
Full textLi, Guomin, Xin Chang, Baoshun Zhu, et al. "Sintering mechanism of high-intensity and low-density ceramic proppants prepared by recycling of waste ceramic sands." Advances in Applied Ceramics 118, no. 3 (2018): 114–20. http://dx.doi.org/10.1080/17436753.2018.1537204.
Full textHernández, María, María Herrera, Ricardo Anaya, et al. "High macroscopic neutron capture cross section ceramics based on bauxite and Gd2O3." Science of Sintering 52, no. 4 (2020): 387–403. http://dx.doi.org/10.2298/sos2004387h.
Full textConconi, M. S., M. Morosi, J. Maggi, P. E. Zalba, F. Cravero, and N. M. Rendtorff. "Thermal behavior (TG-DTA-TMA), sintering and properties of a kaolinitic clay from Buenos Aires Province, Argentina." Cerâmica 65, no. 374 (2019): 227–35. http://dx.doi.org/10.1590/0366-69132019653742621.
Full textNeducin, R. Marinkovic, J. Ranogajec, and V. Mihalj. "The influence of multi component powder characteristics on mechanical properties of ceramic proppants." International Journal of Materials and Product Technology 8, no. 2/3/4 (1993): 459–67. http://dx.doi.org/10.1504/ijmpt.1993.036558.
Full textWei, Gongjue, Tayfun Babadagli, Hai Huang, Lei Hou, and Huazhou Li. "A visual experimental study: Resin-coated ceramic proppants transport within rough vertical models." Journal of Petroleum Science and Engineering 191 (August 2020): 107142. http://dx.doi.org/10.1016/j.petrol.2020.107142.
Full textSzymanska, Joanna, Pawel Wisniewski, Paulina Wawulska-Marek, and Jaroslaw Mizera. "Determination of loamy resources impact on granulation of ceramic proppants and their properties." Applied Clay Science 166 (December 2018): 327–38. http://dx.doi.org/10.1016/j.clay.2018.09.032.
Full textAbd El-Kader, M., M. I. Abdou, A. M. Fadl, A. Abd Rabou, O. A. Desouky, and M. F. El-Shahat. "Novel light-weight glass-ceramic proppants based on frits for hydraulic fracturing process." Ceramics International 46, no. 2 (2020): 1947–53. http://dx.doi.org/10.1016/j.ceramint.2019.09.173.
Full textMa, Haiqiang, Yuming Tian, and Guomin Li. "Effects of sintering temperature on microstructure, properties, and crushing behavior of ceramic proppants." International Journal of Applied Ceramic Technology 16, no. 4 (2019): 1450–59. http://dx.doi.org/10.1111/ijac.13204.
Full textSun, Hu, Bencheng He, Hongxing Xu, et al. "Experimental Investigation on the Fracture Conductivity Behavior of Quartz Sand and Ceramic Mixed Proppants." ACS Omega 7, no. 12 (2022): 10243–54. http://dx.doi.org/10.1021/acsomega.1c06828.
Full textWang, Bo, Huan Li, Enyu Zhang, Jinglong Ma, Zichen Shang, and Xiongfei Liu. "Construction and Application of a Quantitative Perforation Erosion Model Based on Field Experiments." Materials 18, no. 11 (2025): 2507. https://doi.org/10.3390/ma18112507.
Full text