Journal articles on the topic 'Ceramic substrates of high permittivity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ceramic substrates of high permittivity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Szwagierczak, Dorota, Beata Synkiewicz-Musialska, Jan Kulawik, and Norbert Pałka. "Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications." Materials 14, no. 14 (2021): 4017. http://dx.doi.org/10.3390/ma14144017.
Full textLe Coq, Michel, Eric Rius, Jean-Francois Favennec, et al. "Miniaturized C-Band SIW Filters Using High-Permittivity Ceramic Substrates." IEEE Transactions on Components, Packaging and Manufacturing Technology 5, no. 5 (2015): 620–26. http://dx.doi.org/10.1109/tcpmt.2015.2422613.
Full textFreitas, Antonio E., Taise M. Manhabosco, Ronaldo J. C. Batista, et al. "Development and Characterization of Titanium Dioxide Ceramic Substrates with High Dielectric Permittivities." Materials 13, no. 2 (2020): 386. http://dx.doi.org/10.3390/ma13020386.
Full textZakharov, A. V. "Stripline combline filters on substrates designed on high-permittivity ceramic materials." Journal of Communications Technology and Electronics 58, no. 3 (2013): 265–72. http://dx.doi.org/10.1134/s1064226913030145.
Full textXiong, Zhao Xian, X. Xue, Hong Qiu, et al. "Microwave Dielectric Ceramics and Devices for Wireless Technologies." Key Engineering Materials 368-372 (February 2008): 154–58. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.154.
Full textBabar, A. A., V. A. Bhagavati, L. Ukkonen, A. Z. Elsherbeni, P. Kallio, and L. Sydänheimo. "Performance of High-Permittivity Ceramic-Polymer Composite as a Substrate for UHF RFID Tag Antennas." International Journal of Antennas and Propagation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/905409.
Full textEngin, A. Ege, and Pavithra Pasunoori. "Automated Complex Permittivity Characterization of Ceramic Substrates Considering Surface-Roughness Loss." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, CICMT (2012): 000613–20. http://dx.doi.org/10.4071/cicmt-2012-tha34.
Full textEngin, A. Ege, and Pavithra Pasunoori. "Automated Complex Permittivity Characterization of Ceramic Substrates Considering Surface-Roughness Loss." Journal of Microelectronics and Electronic Packaging 9, no. 3 (2012): 144–48. http://dx.doi.org/10.4071/imaps.339.
Full textHuang, Cheng-Liang, Jun-Jie Wang, and Yu-Pin Chang. "Using high permittivity ceramic substrates to design a bandpass filter with open stub." Microwave and Optical Technology Letters 49, no. 4 (2007): 771–73. http://dx.doi.org/10.1002/mop.22252.
Full textMilosavljevic, Zlatoljub D. "Miniature Ceramic Antennas for Wireless Applications." Advances in Science and Technology 67 (October 2010): 1–9. http://dx.doi.org/10.4028/www.scientific.net/ast.67.1.
Full textMandeep, J. S., N. K. Loke, S. I. S. Hassan, M. F. Ain, S. Sreekantan, and K. Y. Cheong. "Investigation of Microwave Properties of High Permittivity Ceramic Substrate." Journal of Electromagnetic Waves and Applications 22, no. 14-15 (2008): 1873–82. http://dx.doi.org/10.1163/156939308787537955.
Full textZhao, Xin, K. Jagannadham, Wuttichai Reainthippayasakul, Michael T. Lanagan, and Douglas C. Hopkins. "Thermal and Electrical Characterizations of Ultra-Thin Flexible 3YSZ Ceramic for Electronic Packaging Applications." International Symposium on Microelectronics 2016, no. 1 (2016): 000391–96. http://dx.doi.org/10.4071/isom-2016-tha13.
Full textHuang, Cheng-Liang, Jun-Jie Wang, and Po-Hsin Li. "Using high permittivity ceramic substrates to fabricate a miniaturized bandpass filter with capacitive load." Microwave and Optical Technology Letters 49, no. 7 (2007): 1609–13. http://dx.doi.org/10.1002/mop.22533.
Full textCastro, Juan, Eduardo Rojas, Thomas Weller, and Jing Wang. "Engineered Nanocomposites for Additive Manufacturing of Microwave Electronics." International Symposium on Microelectronics 2015, no. 1 (2015): 000189–96. http://dx.doi.org/10.4071/isom-2015-wa12.
Full textPalmqvist, Lisa, Karin Lindqvist, and Chris Shaw. "Porous Multilayer PZT Materials Made by Aqueous Tape Casting." Key Engineering Materials 333 (March 2007): 215–18. http://dx.doi.org/10.4028/www.scientific.net/kem.333.215.
Full textHuang, Cheng-Liang, and Shih-Sheng Liu. "End-coupled microstrip slow-wave resonator filtlers using high-permittivity ceramic substrate." Microwave and Optical Technology Letters 51, no. 6 (2009): 1613–15. http://dx.doi.org/10.1002/mop.24366.
Full textHoorfar, A., and A. Perrotta. "An experimental study of microstrip antennas on very high permittivity ceramic substrates and very small ground planes." IEEE Transactions on Antennas and Propagation 49, no. 5 (2001): 838–40. http://dx.doi.org/10.1109/8.929638.
Full textTan, Qiulin, Zhong Ren, Ting Cai, et al. "Wireless Passive Temperature Sensor Realized on Multilayer HTCC Tapes for Harsh Environment." Journal of Sensors 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/124058.
Full textRhbanou, Ahmed, Seddik Bri, and Mohamed Sabbane. "Analysis of Substrate Integrated Waveguide (SIW) Resonator and Design of Miniaturized SIW Bandpass Filter." International Journal of Electronics and Telecommunications 63, no. 3 (2017): 255–60. http://dx.doi.org/10.1515/eletel-2017-0034.
Full textChen, Yuan-Bin, Cheng-Liang Huang, and Shih-Hung Lin. "Planar compact, broad-stopband elliptic-function lowpass filters using high-permittivity ceramic substrate." Microwave and Optical Technology Letters 48, no. 7 (2006): 1432–36. http://dx.doi.org/10.1002/mop.21635.
Full textZhang, Li, Zhen Xing Yue, and Long Tu Li. "Low Dielectric Loss Polymer-Ceramic Composites for Wireless Temperature Sensation." Key Engineering Materials 602-603 (March 2014): 752–56. http://dx.doi.org/10.4028/www.scientific.net/kem.602-603.752.
Full textWeiling, Xiao, Xiao Peng, Luo Heng, Zhou Wei, and Li Yang. "Preparation and Dielectric Properties of Si3N4/BN(CB) Composite Ceramic." High Temperature Materials and Processes 35, no. 5 (2016): 523–29. http://dx.doi.org/10.1515/htmp-2015-0015.
Full textGalizia, Pietro, Maksimas Anbinderis, Robertas Grigalaitis, et al. "Magneto-dielectric characterization of TiO2-CoFe2O4 derived ceramic composites." Processing and Application of Ceramics 12, no. 4 (2018): 350–56. http://dx.doi.org/10.2298/pac1804350g.
Full textRhbanou, Ahmed, Fadl El, Nawfal Jebbor, and Seddik Bri. "New design of miniature C-band substrate integrated waveguide bandpass filters using ceramic material." FME Transactions 49, no. 1 (2021): 103–12. http://dx.doi.org/10.5937/fme2101103r.
Full textPeng, Zhiwei, Jiann-Yang Hwang, Matthew Andriese, Yuanbo Zhang, Guanghui Li, and Tao Jiang. "Electromagnetic characteristics of low-permittivity ceramics as substrates for mushroom-like high impedance surfaces." Ceramics International 41, no. 2 (2015): 3058–63. http://dx.doi.org/10.1016/j.ceramint.2014.10.145.
Full textTzou, Wen-Cheng, Hua-Ming Chen, Ying-Chung Chen, and Cheng-Fu Yang. "Bandwidth enhancement of U-slot patch antenna on high permittivity ceramic substrate for Bluetooth application." Microwave and Optical Technology Letters 36, no. 6 (2003): 499–501. http://dx.doi.org/10.1002/mop.10802.
Full textPetzelt, Jan. "Infrared and THz spectroscopy of nanostructured dielectrics." Processing and Application of Ceramics 3, no. 3 (2009): 145–55. http://dx.doi.org/10.2298/pac0903145p.
Full textUllah, M. Habib, Mohammad T. Islam, J. S. Mandeep, and N. Misran. "Ceramic-polytetrafluoroethylene composite material-based miniaturized split-ring patch antenna." Science and Engineering of Composite Materials 21, no. 3 (2014): 405–10. http://dx.doi.org/10.1515/secm-2013-0149.
Full textAhmed, Gulzar, Asif Sultan, Tariqullah Jan, Majid Ashraf, and Muhammad Sarim. "A Novel Low Profile Rectangular Microstrip Patch Antenna for L-Band Applications Using High Permittivity Substrate." Mehran University Research Journal of Engineering and Technology 38, no. 4 (2019): 915–22. http://dx.doi.org/10.22581/muet1982.1904.05.
Full textMesgarpour Tousi, Maryam, and Mona Ghassemi. "Effects of Frequency and Temperature on Electric Field Mitigation Method via Protruding Substrate Combined with Applying Nonlinear FDC Layer in Wide Bandgap Power Modules." Energies 13, no. 8 (2020): 2022. http://dx.doi.org/10.3390/en13082022.
Full textCastro, Juan, Eduardo Rojas, Thomas Weller, and Jing Wang. "High-Permittivity and Low-Loss Electromagnetic Composites Based on Co-fired Ba0.55Sr0.45TiO3 or MgCaTiO2 Microfillers for Additive Manufacturing and Their Application to 3-D Printed K-Band Antennas." Journal of Microelectronics and Electronic Packaging 13, no. 3 (2016): 102–12. http://dx.doi.org/10.4071/imaps.509.
Full textGaya, Abinash, Mohd Haizal Jamaluddin, Irfan Ali, and Ayman A. Althuwayb. "Circular Patch Fed Rectangular Dielectric Resonator Antenna with High Gain and High Efficiency for Millimeter Wave 5G Small Cell Applications." Sensors 21, no. 8 (2021): 2694. http://dx.doi.org/10.3390/s21082694.
Full textRonkainen, Helena, Ulla Kanerva, Tommi Varis, et al. "Materials for Electronics by Thermal Spraying." Materials Science Forum 762 (July 2013): 451–56. http://dx.doi.org/10.4028/www.scientific.net/msf.762.451.
Full textFriederich, A., C. Kohler, M. Sazegar, et al. "Preparation of Integrated Passive Microwave Devices Through Inkjet Printing." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (2013): 000232–39. http://dx.doi.org/10.4071/cicmt-2013-tha24.
Full textShi, Di, Taimur Aftab, Gunnar Gidion, Fatma Sayed, and Leonhard M. Reindl. "A Novel Electrically Small Ground-Penetrating Radar Patch Antenna with a Parasitic Ring for Respiration Detection." Sensors 21, no. 6 (2021): 1930. http://dx.doi.org/10.3390/s21061930.
Full textPan, Chung-Long, Chun-Hsu Shen, Shih-Hung Lin, and Qi-Zi Lin. "Tunable Microwave Dielectric Properties of Ca0.6La0.8/3TiO3 and Ca0.8Sm0.4/3TiO3-Modified (Mg0.6Zn0.4)0.95Ni0.05TiO3 Ceramics with a Near-Zero Temperature Coefficient." Molecules 26, no. 16 (2021): 4715. http://dx.doi.org/10.3390/molecules26164715.
Full textStrunck, Sebastian, Alexander Gaebler, Onur H. Karabey, et al. "Reliability study of a tunable Ka-band SIW-phase shifter based on liquid crystal in LTCC-technology." International Journal of Microwave and Wireless Technologies 7, no. 5 (2014): 521–27. http://dx.doi.org/10.1017/s175907871400083x.
Full textJasińska, Laura, Karol Malecha, Krzysztof Szostak, and Piotr Słobodzian. "Impact of process parameters on printing resolution and dielectric properties of LTCC substrate." Microelectronics International 36, no. 3 (2019): 114–19. http://dx.doi.org/10.1108/mi-12-2018-0083.
Full textLeupold, Nico, Michael Schubert, Jaroslaw Kita, and Ralf Moos. "Influence of high temperature annealing on the dielectric properties of alumina films prepared by the aerosol deposition method." Functional Materials Letters 11, no. 02 (2018): 1850022. http://dx.doi.org/10.1142/s1793604718500224.
Full textSurendra, Loya, and Habibulla khan. "Design and Analysis of Cylindrical Dielectric Resonator Antenna for 5G Application." International Journal of Engineering and Advanced Technology 10, no. 2 (2020): 116–19. http://dx.doi.org/10.35940/ijeat.b2042.1210220.
Full textArab, Homa, Steven Dufour, Emilia Moldovan, Cevdet Akyel, and Serioja Tatu. "A 77-GHz Six-Port Sensor for Accurate Near-Field Displacement and Doppler Measurements." Sensors 18, no. 8 (2018): 2565. http://dx.doi.org/10.3390/s18082565.
Full textHuang, Cheng-Liang, Shin-Tung Tasi, and Yuan-Bin Chen. "Band-pass filters using high-permittivity ceramics substrate." Microwave and Optical Technology Letters 52, no. 10 (2010): 2344–47. http://dx.doi.org/10.1002/mop.25439.
Full textChen, Yuan-Bin, Cheng-Liang Huang, and Ching-Wen Lo. "Planar compact elliptic-function low-pass filter using high-permittivity ceramics substrate." Microwave and Optical Technology Letters 48, no. 7 (2006): 1393–98. http://dx.doi.org/10.1002/mop.21637.
Full textEhata, Katsufumi, Shenglei Che, and Norimasa Sakamoto. "A Technique for Permittivity Measurement of Ceramic Powders at Microwave Frequencies." Key Engineering Materials 320 (September 2006): 185–88. http://dx.doi.org/10.4028/www.scientific.net/kem.320.185.
Full textKot, J. S., N. Nikolic, and T. S. Bird. "Integrated-circuit antenna for high-permittivity substrates." IEE Proceedings - Microwaves, Antennas and Propagation 144, no. 1 (1997): 47. http://dx.doi.org/10.1049/ip-map:19970978.
Full textRoy, B., and D. Chakravorty. "High dielectric permittivity in glass-ceramic metal nanocomposites." Journal of Materials Research 8, no. 6 (1993): 1206–8. http://dx.doi.org/10.1557/jmr.1993.1206.
Full textGolovina, Iryna, Ilia Geifman, and Anatolii Belous. "New ceramic EPR resonators with high dielectric permittivity." Journal of Magnetic Resonance 195, no. 1 (2008): 52–59. http://dx.doi.org/10.1016/j.jmr.2008.08.015.
Full textMazzara, G. P., S. Skirius, G. Cao, et al. "High dielectric permittivity of ceramic and single-crystalPrBa2Cu3Ox." Physical Review B 47, no. 13 (1993): 8119–23. http://dx.doi.org/10.1103/physrevb.47.8119.
Full textHuang, Cheng-Liang, Yuan-Bin Chen, and Meng-Lin Lee. "Quasi-elliptic function filters with a dual-passband response with high-permittivity ceramics substrate." Microwave and Optical Technology Letters 51, no. 1 (2008): 245–48. http://dx.doi.org/10.1002/mop.23962.
Full textAussenhofer, S. A., and A. G. Webb. "High-permittivity solid ceramic resonators for high-field human MRI." NMR in Biomedicine 26, no. 11 (2013): 1555–61. http://dx.doi.org/10.1002/nbm.2990.
Full text