To see the other types of publications on this topic, follow the link: Cerbera manghas.

Journal articles on the topic 'Cerbera manghas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cerbera manghas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Anggono, Willyanto, M. M. Noor, F. D. Suprianto, L. A. Lesmana, G. J. Gotama, and A. Setiyawan. "Effect of Cerbera Manghas Biodiesel on Diesel Engine Performance." International Journal of Automotive and Mechanical Engineering 15, no. 3 (October 5, 2018): 5667–82. http://dx.doi.org/10.15282/ijame.15.3.2018.20.0435.

Full text
Abstract:
In order to reduce the use of fossil fuel without interfering the availability of food crop, Cerbera manghas biodiesel has been studied as potential renewable fuel. This study investigated Cerbera manghas biodiesel as a replacement for pure petro-diesel and palm oil biodiesel produced in Indonesia. The investigation result indicates that Cerbera manghas biodiesel fuel has a lower density, kinematic viscosity, sulfur content, color (lighter), water content, distillation point compared to pure petro-diesel and palm oil biodiesel. Higher flash point and cetane index value in Cerbera manghas biodiesel were also discovered. The study investigated further the effect of biodiesel derived from Cerbera manghas biodiesel compared with pure petro-diesel and palm oil biodiesel in a single cylinder diesel engine. The study suggested that Cerbera manghas biodiesel has better engine performance (fuel consumption, brake mean effective pressure, thermal efficiency, torque, and power) compared to pure petro-diesel and palm oil biodiesel. The utilization of Cerbera manghas biodiesel gave better engine performance output compared to pure petro-diesel and palm oil biodiesel. This study supported the viability of Cerbera manghas biodiesel to be implemented as an alternative diesel fuel without interfering food resources or requiring additional modification to the existing diesel engine.
APA, Harvard, Vancouver, ISO, and other styles
2

Husin, Husni, Abubakar Abubakar, Suci Ramadhani, Cici Ferawati Br Sijabat, and Fikri Hasfita. "Coconut husk ash as heterogenous catalyst for biodiesel production from cerbera manghas seed oil." MATEC Web of Conferences 197 (2018): 09008. http://dx.doi.org/10.1051/matecconf/201819709008.

Full text
Abstract:
The research on the use of coconut husk as a solid catalyst for transesterification reaction of Cerbera manghas oil into biodiesel has been done. The aim of this study is to investigate the performance of coconut husk ash for biodiesel production from Cerbera manghas seed oil. Coconut husk is prepared by burning in air to obtain potassium oxide as active phase. The coconut husk is analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD spectrum shows that the peak characteristics of potassium oxide can be observed in the diffractogram. The particle size of the catalyst ranging from 1 - 3 μm with pentagonal structure. The coconut husk ash solid catalyst is used in the transesterification reaction of Cerbera manghas oil in a batch reactor. Biodiesel yield of 88.6% can be achieved over coconut husk ash catalyst, using a 10 wt.% of catalyst, reaction temperature at 3 hours, and a methanol-to-oil ratio of 6: 1. This solid catalyst can be separated easily from the reaction system and not soluble in methanol or methyl esters. The coconut husk ash catalyst is high potential to be developed as one of the solid catalysts to convert Cerbera manghas oil to biodiesel.
APA, Harvard, Vancouver, ISO, and other styles
3

YAMAUCHI, TATSUO, FUMIKO ABE, and ALFRED S. C. WAN. "Cerbera. III. Cardenolide monoglycosides from the leaves of Cerbera odollam and Cerbera manghas." CHEMICAL & PHARMACEUTICAL BULLETIN 35, no. 7 (1987): 2744–49. http://dx.doi.org/10.1248/cpb.35.2744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abe, Fumiko, Tatsuo Yamauchi, and Alfred S. C. Want. "Cerberalignans J-N, oligolignans from Cerbera manghas." Phytochemistry 28, no. 12 (January 1989): 3473–76. http://dx.doi.org/10.1016/0031-9422(89)80367-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

YAMAUCHI, TATSUO, FUMIKO ABE, and ALFRED S. C. WAN. "Studies on cerbera. IV. Polar cardenolide glycosides from the leaves of Cerbera odollam and Cerbera manghas." CHEMICAL & PHARMACEUTICAL BULLETIN 35, no. 12 (1987): 4813–18. http://dx.doi.org/10.1248/cpb.35.4813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Xiao-Po, Ming-Sheng Liu, Jun-Qing Zhang, Sheng-Li Kang, and Yue-Hu Pei. "Chemical constituents from the bark of Cerbera manghas." Journal of Asian Natural Products Research 11, no. 1 (January 1, 2009): 75–78. http://dx.doi.org/10.1080/10286020802514531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiao-po, Zhang, Pei Yue-hu, Liu Ming-sheng, Kang Sheng-li, and Zhang Jun-qing. "Chemical constituents from the leaves of Cerbera manghas." Asian Pacific Journal of Tropical Medicine 3, no. 2 (February 2010): 109–11. http://dx.doi.org/10.1016/s1995-7645(10)60046-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deng, Yecheng, Yongmei Liao, Jingjing Li, Linlin Yang, Hui Zhong, Qiuyan Zhou, and Zhen Qing. "Acaricidal Activity against Panonychus citri and Active Ingredient of the Mangrove Plant Cerbera manghas." Natural Product Communications 9, no. 9 (September 2014): 1934578X1400900. http://dx.doi.org/10.1177/1934578x1400900911.

Full text
Abstract:
Cerbera manghas is a mangrove plant which possesses comprehensive biological activities. A great deal of research has been undertaken on the chemical constituents and medical functions of C. manghas; insecticidal and antifungal activities have also been reported, but the acaricidal activity has not been studied. In our study, the acaricidal activity and active substances of C. manghas were investigated using a spray method, which showed that the methanol extracts of the fruit, twigs and leaves exhibited contact activity against female adults of Panonychus citri, with LC50 values at 24 h of 3.39 g L−1, 4.09 g L−1 and 4.11 g L−1, respectively. An acaricidal compound was isolated from C. manghas by an activity-guided isolation method, and identified as (-)-17β-neriifolin, which is a cardiac glycoside. (-)-17β-Neriifolin revealed high contact activity against female adults, nymphae, larvae and eggs of P. citri, with LC50 values at 24 h of 0.28 g L−1, 0.29 g L−1, 0.28 g L−1 and 1.45 g L−1, respectively.
APA, Harvard, Vancouver, ISO, and other styles
9

Mu, Han-Wei, Chun Hung Chen, Kai-Wei Yang, and Dong-Zong Hung. "Cerbera manghas poisoning survived by using extracorporeal life support." Clinical Toxicology 56, no. 2 (July 13, 2017): 153–54. http://dx.doi.org/10.1080/15563650.2017.1343478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ong, Hwai Chyuan, A. S. Silitonga, T. M. I. Mahlia, H. H. Masjuki, and W. T. Chong. "Investigation of Biodiesel Production from Cerbera Manghas Biofuel Sources." Energy Procedia 61 (2014): 436–39. http://dx.doi.org/10.1016/j.egypro.2014.11.1143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Xiao Po, Ming Sheng Liu, Yue Hu Pei, Jun Qing Zhang, and Sheng Li Kang. "Phenylpropionic acid derivates from the bark of Cerbera manghas." Fitoterapia 81, no. 7 (October 2010): 852–54. http://dx.doi.org/10.1016/j.fitote.2010.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Silitonga, Arridina, Teuku Mahlia, Abd Shamsuddin, Hwai Ong, Jassinnee Milano, Fitranto Kusumo, Abdi Sebayang, et al. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization." Energies 12, no. 20 (October 9, 2019): 3811. http://dx.doi.org/10.3390/en12203811.

Full text
Abstract:
Optimizing the process parameters of biodiesel production is the key to maximizing biodiesel yields. In this study, artificial neural network models integrated with ant colony optimization were developed to optimize the parameters of the two-step Cerbera manghas biodiesel production process: (1) esterification and (2) transesterification. The parameters of esterification and transesterification processes were optimized to minimize the acid value and maximize the C. manghas biodiesel yield, respectively. There was excellent agreement between the average experimental values and those predicted by the artificial neural network models, indicating their reliability. These models will be useful to predict the optimum process parameters, reducing the trial and error of conventional experimentation. The kinetic study was conducted to understand the mechanism of the transesterification process and, lastly, the model could measure the physicochemical properties of the C. manghas biodiesel.
APA, Harvard, Vancouver, ISO, and other styles
13

Bhikuning, Annisa, and M. Hafnan. "Biodiesel Production from Cerbera Manghas Using Different Catalyst; NaOH and Zeolite." Journal of Clean Energy Technologies 7, no. 2 (March 2019): 11–14. http://dx.doi.org/10.18178/jocet.2019.7.2.502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hendra, Djeni, Santiyo Wibowo, Novitri Hastuti, and Heru Wibisono. "KARAKTERISTIK BIODIESEL BIJI BINTARO (Cerbera manghas L) DENGAN PROSES MODIFIKASI." Jurnal Penelitian Hasil Hutan 34, no. 1 (March 30, 2016): 11–21. http://dx.doi.org/10.20886/jphh.2016.34.1.11-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Cheenpracha, Sarot, Chatchanok Karalai, Yanisa Rat-a-pa, Chanita Ponglimanont, and Kan Chantrapromma. "New Cytotoxic Cardenolide Glycoside from the Seeds of Cerbera manghas." CHEMICAL & PHARMACEUTICAL BULLETIN 52, no. 8 (2004): 1023–25. http://dx.doi.org/10.1248/cpb.52.1023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Prajitno, Danawati Hari, Lenny Marlinda, Muhammad Al-Muttaqii, Ignatius Gunardi, and Achmad Roesyadi. "Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst." Bulletin of Chemical Reaction Engineering & Catalysis 12, no. 2 (August 1, 2017): 167. http://dx.doi.org/10.9767/bcrec.12.2.496.167-184.

Full text
Abstract:
The effect of various reaction temperature on the hydrocracking of Cerbera manghas oil to produce a paraffin-rich mixture of hydrocarbons with Co-Ni/HZSM-5 as doubled promoted catalyst were studied. The Co-Ni/HZSM-5 catalyst with various metal loading and metal ratio was prepared by incipient wetness impregnation. The catalysts were characterized by XRD, AAS, and N2 adsorption-desorption. Surface area, pore diameter, and pore volume of catalysts decreased with the increasing of metals loading. The hydrocracking process was conducted under hydrogen initial pressure in batch reactor equipped with a mechanical stirrer. The reaction was carried out at a temperature of 300-375 oC for 2 h. Depending on the experimental condition, the reaction pressure changed between 10 bar and 15 bar. Several parameters were used to evaluate biofuel produced, including oxygen removal, hydrocarbon composition and gasoline/kerosene/diesel yields. Biofuel was analyzed by Fourier Transform Infrared Spectroscopic (FTIR) and gas chromatography-mass spectrometry (GC-MS). The composition of hydrocarbon compounds in liquid products was similar to the compounds in the gasoil sold in unit of Pertamina Gas Stations, namely pentadecane, hexadecane, heptadecane, octadecane, and nonadecane with different amounts for each biofuel produced at different reaction temperatures. However, isoparaffin compounds were not formed at all operating conditions. Pentadecane (n-C15) and heptadecane (n-C17) were the most abundant composition in gasoil when Co-Ni/HZSM-5 catalyst was used. Cerbera Manghas oil can be recommended as the source of non-edible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. Copyright © 2017 BCREC Group. All rights reservedReceived: 20th May 2016; Revised: 30th January 2017; Accepted: 10th February 2017How to Cite: Prajitno, D.H., Roesyadi, A., Al-Muttaqii, M., Marlinda, L., Gunardi, I. (2017). Hydrocracking of Cerbera manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 167-184 (doi:10.9767/bcrec.12.2.496.167-184)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.496.167-184
APA, Harvard, Vancouver, ISO, and other styles
17

ABE, Fumiko, and Tatsuo YAMAUCHI. "10-Carboxyloganin, Normonoterpenoid Gluosides and Dinormonoterpenoid Glucosides from the Leaves of Cerbera manghas (Studies on Cerbera. 10)." CHEMICAL & PHARMACEUTICAL BULLETIN 44, no. 10 (1996): 1797–800. http://dx.doi.org/10.1248/cpb.44.1797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sunandar, Kudrat. "Bahan Bakar Padat dari Sisa Kempa Biji Bintaro (Cerbera Manghas L)." Jurnal IPTEK 3, no. 1 (April 4, 2019): 166–71. http://dx.doi.org/10.31543/jii.v3i1.131.

Full text
Abstract:
Pada saat ini tanaman bintaro(Cerbera manghas L.)  dipergunakan sebagai tanaman hias dan peneduh jalan. Dengan kadar minyak berkisar antara 40 sampai 60%, tanaman bintaro merupakan salah satu tanaman potensial penghasil minyak nabati yang dapat dijadikan sebagai bahan bakar. Pengambilan dan pengempaan minyak ini menghasilkan bungkil biji yang dapat dimanfaatkan sebagai alternatif bahan bakar padat. Tujuan penelitian ini adalah untuk mengetahui potensi pemanfaatan limbah produksi minyak bintaro dengan metode densifikasi sebagai bahan bakar yang memiliki nilai mutu sesuai dengan SNI No. 1/6235/2000 dan mempelajari pengaruh komposisi campuran: cake bintaro, serbuk kayu dan perekat terhadap kualitas briket. Briket bungkil bintaro yang di hasilkan menunjukkan nilai kalor berkisar antara 4365,408 kCal/kg – 5253,276 kCal/kg dengan fixed carbon berkiar antara 10,41% - 17,42%. Briket dengan kadar perekat 5% dengan komposisi bahan 80 gram cake bintaro dan 20 gram serbuk kayu memberikan hasil yang terbaik dilihat dari nilai kalor yang dihasilkan adalah 5253,276 kCal/kg dan fixed carbon yang di hasilkan adalah 17,42 %. Dari uji pembakaran briket yang dihasilkan warna nyala api kuning- jingga, asap yang banyak dan menyengat
APA, Harvard, Vancouver, ISO, and other styles
19

Barguil, Y., C. Maillaud, M. Chèze, C. Bonnet, F. Garcia, N. Lebouvier, E. Hnawia, and M. Nour. "Intoxications par Cerbera manghas L. durant l’année 2016 en Nouvelle-Calédonie." Toxicologie Analytique et Clinique 29, no. 2 (May 2017): S38. http://dx.doi.org/10.1016/j.toxac.2017.03.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Xu, Lingli, Liyan Zeng, Baowen Liao, and Yang Zhong. "Microsatellite markers for a mangrove species, Cerbera manghas, from South China." Conservation Genetics Resources 6, no. 1 (November 6, 2013): 45–48. http://dx.doi.org/10.1007/s12686-013-0071-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Musdja, Muhammad Yanis, Markhamatul Aeni, and Ira Djajanegara. "COMPARISON OF ANTIBACTERIAL ACTIVITIES LEAVES EXTRACTS OF CERBERA MANGHAS AND LEAVES EXTRACTS OF AZADIRACHTA INDICA AGAINST KLEBSIELLA PNEUMONIAE." Asian Journal of Pharmaceutical and Clinical Research 11, no. 15 (October 3, 2018): 51. http://dx.doi.org/10.22159/ajpcr.2018.v11s3.30030.

Full text
Abstract:
Objective: This study aims to determine the potential of neem (Azadirachta indica, Juss) leaves and sea mango (Cerbera manghas, Linn.) leaves against Klebsiella pneumonia. Methods: Hexane and methanol extracts of neem leaves (A. indica, Juss) and hexane and butanol extracts of sea mango leaves (C. manghas, Linn.) were tested antibacterial against K. pneumonia using paper disc and dilution methods, measured the inhibition zone diameter, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as a comparison used ampicillin.Results: The MIC values for the butanol extract and hexane extract of sea mango leaves against K. pneumoniae were 1.124276 and 1.45958 mg/mL, respectively. While the MBC value of both of them had the same value, i.e. 2 mg/ml. The hexane and methanol extracts of neem leaves did not have potentially against the growth of K. pneumonia. Conclusion: Based on the results of this study have been obtained, that extracts butanol and hexane extract of leaves of sea mango (C. manghas, Linn.) have antibacterial activity strong enough against K. pneumonia, where, extracts butanol leaves of sea mango has antibacterial activity that is more powerful than the extract hexane leaf sea mango, while the methanol extract and hexane extracts of neem (A. indica, Juss) leaves have weak activity against K. pneumonia.
APA, Harvard, Vancouver, ISO, and other styles
22

Abe, Fumiko, Tatsuo Yamauchi, and Alfred S. C. Wan. "Sesqui-, sester- and trilignans from stems of Cerbera manghas and C. odollam." Phytochemistry 27, no. 11 (January 1988): 3627–31. http://dx.doi.org/10.1016/0031-9422(88)80780-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yamauchi, Tatsuo, Fumiko Abe, and Alfred S. C. Wan. "10-O-benzoyltheveside and 10-dehydrogeniposide from the leaves of Cerbera manghas." Phytochemistry 29, no. 7 (January 1990): 2327–28. http://dx.doi.org/10.1016/0031-9422(90)83063-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ong, H. L., K. W. Kam, A. M. Islam, L. Bautista-Patacsil, and A. R. Villagracia. "Flexural and thermal properties of biocomposites from Cerbera manghas L. and polypropylene." IOP Conference Series: Earth and Environmental Science 765, no. 1 (May 1, 2021): 012050. http://dx.doi.org/10.1088/1755-1315/765/1/012050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chang, Leng Chee, Joell J. Gills, Krishna P. L. Bhat, Lumonadio Luyengi, Norman R. Farnsworth, John M. Pezzuto, and A. Douglas Kinghorn. "Activity-guided isolation of constituents of Cerbera manghas with antiproliferative and antiestrogenic activities." Bioorganic & Medicinal Chemistry Letters 10, no. 21 (November 2000): 2431–34. http://dx.doi.org/10.1016/s0960-894x(00)00477-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zikri, A., Erlinawati, PL Sutini, M. Agus, and S. Fathona. "Biodiesel Production from Bintaro (Cerbera Manghas L) Seeds with Potassium Hydroxide as Catalyst." Journal of Physics: Conference Series 1500 (April 2020): 012084. http://dx.doi.org/10.1088/1742-6596/1500/1/012084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liao, Miao, Xue-Fen Wei, Hai-Ping Ding, and Guang-Da Tang. "The complete chloroplast genome of the highly poisonous plant Cerbera manghas L. (Apocynaceae)." Mitochondrial DNA Part B 5, no. 3 (July 2, 2020): 3102–3. http://dx.doi.org/10.1080/23802359.2020.1794994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Prajitno, Danawati Hari, Achmad Roesyadi, Muhammad Al-Muttaqii, and Lenny Marlinda. "Hydrocracking of Non-edible Vegetable Oils with Co-Ni/HZSM-5 Catalyst to Gasoil Containing Aromatics." Bulletin of Chemical Reaction Engineering & Catalysis 12, no. 3 (October 28, 2017): 318. http://dx.doi.org/10.9767/bcrec.12.3.799.318-328.

Full text
Abstract:
Biofuel has been considered as one of the environmentally friendly energy sources to substitute fossil fuel derived from non-edible vegetable oil. This research aims to investigate the effect of the non-edible vegetable oil composition on a specific hydrocarbons distribution contained in biofuel and the aromatics formation through hydrocracking reaction with the Co-Ni/HZSM-5 catalyst. The formation of aromatics from non-edible vegetable oils, such as: Cerbera manghas, rubber seed, and sunan candlenut oils, containing saturated, mono- and polyunsaturated fatty acids is presented. The hydrocracking reaction was carried out in a pressure batch reactor, a reaction temperature of 350 oC for 2 h, reactor pressure of 15 bar after flowing H2 for 1 hour, and a catalyst/oil ratio of 1 g/200 mL. Liquid hydrocarbon product was analyzed by gas chromatography-mass spectrometry. Based on the GC-MS analysis, hydrocracking on three different oils indicated that polyunsaturated fatty acids were required to produce relatively high aromatics content. The sunan candlenut oil can be converted to gasoil range hydrocarbons containing a small amount of aromatic through hydrocracking reaction. Meanwhile, the aromatics in liquid product from hydrocracking of Cerbera manghas and rubber seed oils were not found. Copyright © 2017 BCREC Group. All rights reserved.Received: 21st November 2016; Revised: 9th May 2017; Accepted: 20th May 2017; Available online: 27th October 2017; Published regularly: December 2017How to Cite: Prajitno, D.H., Roesyadi, A., Al-Muttaqii, M., Marlinda, L. (2017). Hydrocracking of Non-edible Vegetable Oils with Co-Ni/HZSM-5 Catalyst to Gasoil Containing Aromatics. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3):318-328 (doi:10.9767/bcrec.12.3.799.318-328)
APA, Harvard, Vancouver, ISO, and other styles
29

Hossain, Md Anwar, Md Amirul Islam, Suman Sarker, Mushfiqur Rahman, and Md Afjalus Siraj. "ASSESSMENT OF PHYTOCHEMICAL AND PHARMACOLOGICAL PROPERTIES OF ETHANOLIC EXTRACT OF CERBERA MANGHAS L. LEAVES." International Research Journal of Pharmacy 4, no. 5 (May 28, 2013): 120–23. http://dx.doi.org/10.7897/2230-8407.04524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rani, Indah Mawar. "UJI BAKTERI PELARUT FOSFAT DAN PENGHASIL IAA PADA MOL BUAH BINTARO (Cerbera manghas L)." Florea : Jurnal Biologi dan Pembelajarannya 4, no. 2 (November 23, 2017): 11. http://dx.doi.org/10.25273/florea.v4i2.1752.

Full text
Abstract:
<p><em>MOL contains superior microorganisms as decomposers activators of organic materials that can be used as plants fertilizer. The microorganisms that was contained in MOL was commercial biological agents. One way to get commercial biological agents was to look for potential bacteria that have a function as biofertilizer. The objective of this study was to screen for indigenous bacteria from MOL Bintaro fruit (Cerbera manghas L) that plays a role in the manufacture of biological fertilizers. The stages of this study were MOL making and sampling, sampling and bacterial screening by doing isolation and purification, continued by phosphate solvent bacteria test and IAA screening producing bacteria, then bacteria identification morphologically. The result of isolation and purification found that there were 35 kinds of bacteria from two samples of MOL Sample 1 was treated as 3 kg of Bintaro fruit and it was found that there were 18 bacteria. Furthermore, sample 2 was treated as 1.5 kg of Bintaro fruit and got 17 kinds of bacteria. The result of bacteria solvent screening found 7 isolates. The isolated bacteria that had the greatest solubility of phosphate were MBSD 6 with P isolated solvent index was 0.7 cm. The screening results of IAA-producing bacteria showed that MBSD 7 produced the highest IAA was 37.36 ppm and MBSP18 produced the lowest isolates was 6.27 ppm.</em></p>
APA, Harvard, Vancouver, ISO, and other styles
31

Widakdo, Danang Sudarso Widya Prakoso Joyo, and Shinta Setiadevi. "Respon Hama Ulat Buah Melon terhadap Aplikasi Pestisida Nabati Buah Bintaro (Cerbera manghas L.) pada Berbagai Konsentrasi." Agrotechnology Research Journal 1, no. 2 (December 14, 2017): 48. http://dx.doi.org/10.20961/agrotechresj.v1i2.18894.

Full text
Abstract:
<p>Hama ulat buah yang sering dijumpai petani melon yaitu serangan hama ulat serta residu pestisida kimiawi yang tinggi. Pemakaian pestisida kimia dengan biaya tinggi, tidak ramah lingkungan sehingga sulit mendapatkan buah melon organik. Pengendalian hama ulat buah dengan menggunakan pestisida nabati menjadi salah satu alternatif, yaitu buah bintaro (<em>Cerbera manghas</em>) yang mengandung senyawa golongan alkaloid yang bersifat toksik, repellent<em>. </em>Hasil penelitian ini menunjukkan bahwa penggunaan pestisida nabati larutan ekstrak buah bintaro mampu mengendalikan populasi hama ulat buah melon. Hal ini dibuktikan dengan semakin menurunnya populasi hama ulat buah melon dengan semakin tingginya konsentrasi pestisida nabati ekstrak buah bintaro.</p>
APA, Harvard, Vancouver, ISO, and other styles
32

Wulandari, Khoiriyanti, and Mei Ahyanti. "Efektivitas Ekstrak Biji Bintaro (Cerbera manghas) sebagai Larvasida Hayati pada Larva Aedes aegypti Instar III." Jurnal Kesehatan 9, no. 2 (September 30, 2018): 218. http://dx.doi.org/10.26630/jk.v9i2.889.

Full text
Abstract:
<p>Dengue Hemorrhagic Fever (DHF) or Dengue Hemorrhagic Fever (DHF) is a disease caused by a virus which is very dangerous because it can cause the patient to die within a few days. Bandar Lampung city itself is a dengue endemic area. According to data from the Lampung Provincial Health Office, in 2015, from 15 there were 2,996 deaths in 31 people. The study aimed to knowing the effectiveness of bintaro seed extract (Cerbera manghas) as larvacide in III instars Aedes aegypti larvacides experimental research with post test only control group design. The sampling method was purposive sampling. Independent variables were bintaro seed extract (dose and time), the dependent variable was Aedes aegypti larvAedes The results showed that from 5 types of doses with 5 repetitions, the death result of Aedes aegypti larvae with a dose of 0% had no mortality, a dose of 0.1% with an average of 12.55, a dose of 0.5% with an average of 15.15 , 1% dose with an average of 18.20, a dose of 1.5% with an average of 22.15, and a dose of 2% with an average of 25. At the time of contact, the death result of the larvae was found with an average 6-hour contact time. an average of 8.70, 12 hours with an average of 14.13, 24 hours with an average of 18.37 and 48 hours with an average of 20.83. According to the results of statistical tests, the most effective effect of bintaro seed extract dosage is at a dose of 1.5% and contact time of 6 hours.<strong></strong></p>
APA, Harvard, Vancouver, ISO, and other styles
33

Hendra, Djeni, Armi Wulanawati, Kamela Gustina, and Heru Satrio Wibisono. "PEMANFAATAN ARANG AKTIF CANGKANG BUAH BINTARO (Cerbera manghas) SEBAGAI ADSORBEN PADA PENINGKATAN KUALITAS AIR MINUM." Jurnal Penelitian Hasil Hutan 33, no. 3 (September 30, 2015): 181–91. http://dx.doi.org/10.20886/jphh.2015.33.3.181-191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hendra, Djeni, Armi Wulanawati, Kamela Gustina, and Heru Satrio Wibisono. "PEMANFAATAN ARANG AKTIF CANGKANG BUAH BINTARO (Cerbera manghas) SEBAGAI ADSORBEN PADA PENINGKATAN KUALITAS AIR MINUM." Jurnal Penelitian Hasil Hutan 33, no. 3 (September 2015): 181–91. http://dx.doi.org/10.20886/jphh.v33i3.918.181-191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, Leng Chee, Joell J. Gills, Krishna P. L. Bhat, Lumonadio Luyengi, Norman R. Farnsworth, John M. Pezzuto, and A. Douglas Kinghorn. "ChemInform Abstract: Activity-Guided Isolation of Constituents of Cerbera manghas with Antiproliferative and Antiestrogenic Activities." ChemInform 32, no. 6 (February 6, 2001): no. http://dx.doi.org/10.1002/chin.200106157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lai, Y. J., J. C. Tsai, W. S. Liu, and H. I. Lam. "Extracts of Cerbera manghas L. effectively inhibit the growth of glioblastoma cells and their stemloids." Annals of Oncology 29 (October 2018): viii128—viii129. http://dx.doi.org/10.1093/annonc/mdy273.382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Santoso, R. E., N. Fitriana, M. Carolina, F. C. Dewi, and Sumari. "Effect H2SO4 and Zymomonas mobilis concentration to bioethanol production by bintaro fruit (cerbera manghas) substrate." IOP Conference Series: Earth and Environmental Science 105 (January 2018): 012076. http://dx.doi.org/10.1088/1755-1315/105/1/012076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Haryanta, Dwi, and Elika Joeniarti. "UJI POTENSI EKSTRAK DAUN BINTARO (Cerbera manghas) SEBAGAI INSEKTISIDA BOTANI TERHADAP HAMA Spodoptera litura F." Agrin 25, no. 1 (July 3, 2021): 10. http://dx.doi.org/10.20884/1.agrin.2021.25.1.567.

Full text
Abstract:
Tanaman bintaro berpotensi sebagai bahan insektisida botani. Kajian tentang pemanfaatan daun bintaro untuk pengendalian hama belum banyak dilakukan. Penelitian ini bertujuan untuk mengetahui pengaruh ekstrak daun bintaro terhadap biologi serangga Spodoptera litura, sehingga dapat diketahui peluang pemanfaatannya untuk mengendalikan populasi hama tersebut di lapangan. Penelitian menggunakan Rancangan Acak Lengkap (RAL) dengan perlakuan tunggal berupa konsentrasi ekstrak daun bintaro yaitu, 0% (kontrol); 2,5%; 5,0%; 7,5%; 10%; dan 12,5%. Penelitian dilakukan melalui beberapa tahap di antaranya pembuatan ekstrak daun bintaro, pemeliharaan ulat grayak, dan uji kemanjuran ekstrak daun bintaro. Parameter pengamatan meliputi mortalitas hama, umur stadia, dan jumlah konsumsi pakan.Hasil penelitian menunjukkan bahwa ekstrak daun bintaroberpengaruh terhadap mortalitas serangga S. lituraF., memperpanjang masa stadia larva, mempersingkat masa stadia pupa, menurunkan persentase keberhasilan larva menjadi pupa, menurunkan kualitas imago, dan tidak berpengaruh terhadap selera makan.Kata kunci: biologi serangga, daun bintaro, insektisida botani, ulat grayak
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Guo-Fei, Yue-Wei Guo, Bo Feng, Liang Li, Cai-Guo Huang, and Bing-Hua Jiao. "Tanghinigenin from seeds of Cerbera manghas L. induces apoptosis in human promyelocytic leukemia HL-60 cells." Environmental Toxicology and Pharmacology 30, no. 1 (July 2010): 31–36. http://dx.doi.org/10.1016/j.etap.2010.03.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sittadewi, Euthalia Hanggari. "PENENTUAN JENIS VEGETASI LOKAL UNTUK PERLINDUNGAN TEBING SUNGAI SIAK DENGAN DESAIN EKO - ENGINEERING TANPA TURAP." Jurnal Teknologi Lingkungan 11, no. 2 (December 2, 2016): 189. http://dx.doi.org/10.29122/jtl.v11i2.1202.

Full text
Abstract:
Eco – engineering without civil’s construction design for the Siak riverside’s protection can be applied at the part of river has riverside’s weak damaged. The riverside’s protection system with eco – engineering without civil’s construction as the effort to make stronger the riverside with vegetation components. The used of local vegetation is the best choice for eco – engineering system. The identification of vegetation on the Siak river’s corridor as long as desa Merempan Hilir to choose the plants to make the eco – engineering withoutcivil construction’s design has been done. Some kind of plants have been choosen i.e :rumput teki (Cyperus rotundus), rumput kumpai (Hymenachne acutigluma) rumput akar wangi (Vetiveria zizanioides), karangkunan (Ipomea carnea), bambu kuning (Bambusa vulgaris), pandan (Pandanus, sp), bintaro (Cerbera manghas), rengas (Gluta renghas),kempas (Koompassia malaccensis), jawi – jawi (Ficus, sp) and meranti (Shorea, sp).Key words : desain eko – engineering tanpa turap, perlindungan tebing, tanaman lokal
APA, Harvard, Vancouver, ISO, and other styles
41

Aini, Afrida Nur, Muhammad Al-Muttaqii, Achmad Roesyadi, and Firman Kurniawansyah. "Kinerja Katalis Ni-Cu/HZSM-5 dalam Pembuatan Biogasoil dari Minyak Bintaro (Cerbera Manghas) dengan Proses Hydrocracking." BERKALA SAINSTEK 8, no. 3 (August 5, 2020): 84. http://dx.doi.org/10.19184/bst.v8i3.17937.

Full text
Abstract:
Catalytic cracking dan hydroprocessing merupakan dua proses yang digunakan untuk mengubah minyak nabati menjadi biofuel, gabungan dari kedua proses tersebut dinamakan reaksi hydrocracking. Minyak bintaro yang bersifat non-edibleoil serta memiliki kadar minyak cukup banyak yakni sebesar 35-50% dapat direkomendasikan sebagai salah satu sumber minyak nabati yang dapat diolah menjadi biogasoil. Penambahan logam nikel (Ni) dan tembaga (Cu) ialah untuk memperoleh yield yang lebih baik daripada menggunakan satu jenis katalis. Preparasi katalis dilakukan dengan menggunakan metode incipient wetness impregnation. Variabel loading support HZSM-5 yang digunakan sebesar 5% dan 10%, serta ratio logam Ni-Cu yaitu 1:1. Katalis Ni-Cu/HZSM-5 dianalisa menggunakan BET, EDX, dan XRD untuk mengetahui karakteristik katalis. Selanjutnya proses hydrocracking dilakukan dengan mencampurkan 2 gram katalis Ni- Cu/HZSM-5 dan 250 ml minyak bintaro ke dalam reaktor batch berpengaduk pada suhu reaksi 375 ̊C selama 2 jam. Produk cair (biofuel) yang dihasilkan dari proses hydrocracking dianalisa menggunakan GC-MS untuk mengetahui komposisi hidrokarbon. Rute reaksi yang mendominasi dalam penelitian ini ialah reaksi dekarbinolasi dan dekarboksilasi. Hal itu terlihat dari komposisi hidrokarbon terbanyak dari produk biogsoil yang dihasilkan ialah C15 dan C17. Hasil dari penelitian diperoleh Ni-Cu/HZSM-5 dengan loading 5% dan ratio logam 1:1 optimum digunakan pada proses hydrocracking minyak bintaro untuk menghasilkan biogasoil dengan yield sebesar 82,7%.
APA, Harvard, Vancouver, ISO, and other styles
42

Febriana, Ida, Zurohaina Zurohaina, and Sahrul Effendy. "PERBANDINGAN NILAI BAKAR BRIKET BATUBARA DAN BRIKET ARANG (CAMPURAN CANGKANG BINTARO (Cerbera Manghas) DAN BAMBU BETUNG (Dendrocalamus Asper)." TEKNIKA: Jurnal Teknik 6, no. 1 (June 30, 2019): 1. http://dx.doi.org/10.35449/teknika.v6i1.99.

Full text
Abstract:
Charcoal briquettes are smokeless fuels which are a type of solid fuel whose fly substance is made low enough so that the smoke generated on its utilization will not interfere with health. In this study charcoal briquettes were made from bintaro shell waste and betung bamboo using tapioca flour adhesives. This study aims to obtain the best quality sub-bituminous coal briquettes and coal briquettes. In this study the carbonization temperature used was 400ᵒC and the composition of raw materials for bintaro shells and betung bamboo was 50:50, the composition of raw materials for sub-bituminous coal and straw 90:10. The method used in this research is experiment or experimental method, with fuel value collection using ASTM D5865-03 standard. The results obtained from this study are for charcoal briquettes with 4000C carbonization temperature Inherent Moisture value of 1.91%, ash 2.29%, volatile matter 23.79%, fixed carbon 72.01% and calorific value 5878.7 kal / gr, and for coal briquettes obtained value Inherent Moisture 0.52%, ash 4.42%, volatile matter 17.98%, fixed carbon 77.08% and calorific value 7152.6 kal / gr. The fuel value of coal briquettes is greater than that of charcoal briquettes, but the combustion value of charcoal briquettes includes a good calorific value as an alternative energy source, and is in accordance with the SNI standard of 5000 kal / gr, even close to the Japanese standard 6000 cal / gr. Keywords: Bintaro, briquette, calorific value
APA, Harvard, Vancouver, ISO, and other styles
43

Sutapa, I. Wayan, Rosmawaty, and Heni Ropa. "Non-edible Oil of Cerbera manghas L. Seed From Seram Island - Maluku as Oil Source of Biodiesel Production." Journal of Physics: Conference Series 1341 (October 2019): 032001. http://dx.doi.org/10.1088/1742-6596/1341/3/032001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Muslihat and Desita Salbiah. "UJI BEBERAPA KONSENTRASI EKSTRAK TEPUNG DAUN BINTARO (Cerbera manghas L.) TERHADAP HAMA PENGGEREK TONGKOL JAGUNG MANIS (Helicoverpa armigera Hubner)." DINAMIKA PERTANIAN 36, no. 1 (July 29, 2020): 21–28. http://dx.doi.org/10.25299/dp.2020.vol36(1).5364.

Full text
Abstract:
ABSTRACT The main pest that often attacks sweet corn crops is Helicoverpa armigera Hubner and causes damage. Pest control can be done using botanical insecticide bintaro plants (Cerbera manghas L.) The aim of this research was to get an effective concentration of bintaro leaf flour extract against of Helicoverpa armigera Hubner. The research was carried out experimentally at the Laboratory of Plant Pests, Agricultural Faculty, University of Riau, by using a completely randomized design (CRD) with four treatments and five replications. The treatments consisted of the several levels of concentration of bintaro leaf flour extract, 40 g.l-1 water, 60 g.l-1 water, 80 g.l-1 water and 100 g.l-1 water. The parameters observed were initial time of death (hours), lethal time 50 (hours), and total mortality (%). The results showed that bintaro leaf extract with a concentration of 80 g.l-1 water was an effective concentration to control H. armigera pests which could cause a total mortality of 82% with an initial death of 15,4 hours after application and lethal time 50 (LT50) 57,4 hours after application. Keywords: Helicoverpa armigera Hubner, Bintaro plants, Botanical insecticide
APA, Harvard, Vancouver, ISO, and other styles
45

Jeong, Hye Yoon, Gi-Ho Sung, Ji Hye Kim, Ju Young Yoon, Yanyan Yang, Jae Gwang Park, Shi Hyoung Kim, et al. "Syk and Src are major pharmacological targets of a Cerbera manghas methanol extract with kaempferol-based anti-inflammatory activity." Journal of Ethnopharmacology 151, no. 2 (February 2014): 960–69. http://dx.doi.org/10.1016/j.jep.2013.12.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhao, Qian, Yuewei Guo, Bo Feng, Liang Li, Caiguo Huang, and Binghua Jiao. "Neriifolin from seeds of Cerbera manghas L. induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells." Fitoterapia 82, no. 5 (July 2011): 735–41. http://dx.doi.org/10.1016/j.fitote.2011.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Marlinda, Lenny, Muhammad Al Muttaqii, and Achmad Roesyadi. "Production of Biofuel by Hydrocracking of Cerbera Manghas Oil Using Co-Ni/HZSM-5 Catalyst : Effect of Reaction Temperature." Journal of Pure and Applied Chemistry Research 5, no. 3 (September 1, 2016): 189–95. http://dx.doi.org/10.21776/ub.jpacr.2016.005.03.254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Aini, Afrida Nur, Muhammad Al-Muttaqii, Achmad Roesyadi, and Firman Kurniawansyah. "Performance of Ni-Cu/HZSM-5 Catalyst in Hydrocracking Process to Produce Biofuel from Cerbera manghas Oil." Key Engineering Materials 884 (May 2021): 149–56. http://dx.doi.org/10.4028/www.scientific.net/kem.884.149.

Full text
Abstract:
Catalytic cracking and hydroprocessing are two processes used to convert vegetable oil into biofuel, the combination of the two processes is called the hydrocracking reaction. Bintaro oil which is non-edible oil and has a considerable oil content of 35-50% can be recommended as a source of vegetable oil that can be processed into biogasoil. Catalyst preparation was carried out using the incipient wetness impregnation method. The loading support variable HZSM-5 used is 5% and 10%, and the Ni-Cu metal ratio is 1: 2. Ni-Cu / HZSM-5 catalyst was analyzed using BET, EDX, and XRD to determine the characteristics of the catalyst. Furthermore, the hydrocracking process was carried out by mixing 2 grams of Ni-Cu / HZSM-5 catalyst and 250 ml of Bintaro oil into a stirred batch reactor at a reaction temperature of 375 °C for 2 hours. The liquid product (biofuel) produced from the hydrocracking process was analyzed using GC-MS to determine the hydrocarbon composition. The reaction routes that dominate in this study are the decarbonylation and decarboxylation reactions. This can be seen from the largest hydrocarbon composition of the biofuel products that are C15 and C17. The highest value of biofuel selectivity was obtained by loading support at 5%, namely 0.6% gasoline, 5.4% kerosene, and 92.6% gasoil.
APA, Harvard, Vancouver, ISO, and other styles
49

Carlier, Jérémy, Jérôme Guitton, Fabien Bévalot, Laurent Fanton, and Yvan Gaillard. "The principal toxic glycosidic steroids in Cerbera manghas L. seeds: Identification of cerberin, neriifolin, tanghinin and deacetyltanghinin by UHPLC–HRMS/MS, quantification by UHPLC–PDA-MS." Journal of Chromatography B 962 (July 2014): 1–8. http://dx.doi.org/10.1016/j.jchromb.2014.05.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chung, Chung Yi, Pei Ling Chung, Hwa Sheng Gau, Ting Lun Huang, Wen Liang Lai, and Shao Wei Liao. "Evaluation of the Sulfur Dioxide Pollution Tolerance of Sidewalk Plants." Advanced Materials Research 955-959 (June 2014): 797–801. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.797.

Full text
Abstract:
Air pollution tolerance index (APTI) is used by landscapers to select plant species tolerant to air pollution. The present study evaluated APTI for selected ten common plant species, which were fumigated with 40 ppb sulfur dioxide (SO2) gas for 210 days. The APTI is used by landscapers to select plant species tolerant to air pollution. In order to develop the usefulness of plants as indicators requires an appropriate selection of plant species, which is of utmost importance in specific situations. Four biochemical parameters, including ascorbic acid content, leaf extract pH, total leaf chlorophyll, and leaf relative water content were used to develop an APTI. The results showed that plants have the potential to serve as excellent quantitative and qualitative indices of pollution. Since biomonitoring of plants is an important tool by which to evaluate the impact of air pollution on plants, Diospyros maritime is a good selection as an index of SO2 pollution. The order of tolerance in SO2 as Diospyros maritime > Diospyros discolor > Decusscarpus nagi > Cerbera manghas > Delonix regia > Melia azedarach > Machilus zuihoensis > Ficus sepitca > Erythrina variegate > Messerschmidia argentea.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography