Academic literature on the topic 'Cesàro operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cesàro operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cesàro operators"
Stempak, Krzysztof. "Cesàro averaging operators." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 124, no. 1 (1994): 121–26. http://dx.doi.org/10.1017/s030821050002922x.
Full textBernardis, A. L., R. Crescimbeni, and F. J. Martín-Reyes. "Multilinear Cesàro maximal operators." Journal of Mathematical Analysis and Applications 397, no. 1 (January 2013): 191–204. http://dx.doi.org/10.1016/j.jmaa.2012.07.037.
Full textGalaz Fontes, Fernando, and Francisco Javier Solís. "Iterating the Cesàro operators." Proceedings of the American Mathematical Society 136, no. 06 (February 14, 2008): 2147–53. http://dx.doi.org/10.1090/s0002-9939-08-09197-1.
Full textLeón-Saavedra, F., A. Piqueras-Lerena, and J. B. Seoane-Sepúlveda. "Orbits of Cesàro type operators." Mathematische Nachrichten 282, no. 5 (April 16, 2009): 764–73. http://dx.doi.org/10.1002/mana.200610769.
Full textLacruz, Miguel, Fernando León-Saavedra, Srdjan Petrovic, and Omid Zabeti. "Extended eigenvalues for Cesàro operators." Journal of Mathematical Analysis and Applications 429, no. 2 (September 2015): 623–57. http://dx.doi.org/10.1016/j.jmaa.2015.04.028.
Full textCostakis, George, and Demetris Hadjiloucas. "Somewhere dense Cesàro orbits and rotations of Cesàro hypercyclic operators." Studia Mathematica 175, no. 3 (2006): 249–69. http://dx.doi.org/10.4064/sm175-3-4.
Full textAl Alam, Ihab, Loïc Gaillard, Georges Habib, Pascal Lefèvre, and Fares Maalouf. "Essential norm of Cesàro operators on L and Cesàro spaces." Journal of Mathematical Analysis and Applications 467, no. 2 (November 2018): 1038–65. http://dx.doi.org/10.1016/j.jmaa.2018.07.038.
Full textRaj, Kuldip, Suruchi Pandoh, and Seema Jamwal. "Composition Operators on Cesàro Function Spaces." Journal of Function Spaces 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/501057.
Full textAndersen, Kenneth F. "Cesàro averaging operators on Hardy spaces." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 126, no. 3 (1996): 617–24. http://dx.doi.org/10.1017/s0308210500022939.
Full textSangal, Priyanka, and A. Swaminathan. "Geometric Properties of Cesàro Averaging Operators." Journal of Complex Analysis 2017 (November 28, 2017): 1–9. http://dx.doi.org/10.1155/2017/6584584.
Full textDissertations / Theses on the topic "Cesàro operators"
Gaillard, Loïc. "Espaces de Müntz, plongements de Carleson, et opérateurs de Cesàro." Thesis, Artois, 2017. http://www.theses.fr/2017ARTO0406/document.
Full textFor a sequence ⋀ = (λn) satisfying the Müntz condition Σn 1/λn < +∞ and for p ∈ [1,+∞), we define the Müntz space Mp⋀ as the closed subspace of Lp([0, 1]) spanned by the monomials yn : t ↦ tλn. The space M∞⋀ is defined in the same way as a subspace of C([0, 1]). When the sequence (λn + 1/p)n is lacunary with a large ratio, we prove that the sequence of normalized Müntz monomials (gn) in Lp is (1 + ε)-isometric to the canonical basis of lp. In the case p = +∞, the monomials (yn) form a sequence which is (1 + ε)-isometric to the summing basis of c. These results are asymptotic refinements of a well known theorem for the lacunary sequences. On the other hand, for p ∈ [1, +∞), we investigate the Carleson measures for Müntz spaces, which are defined as the Borel measures μ on [0; 1) such that the embedding operator Jμ,p : Mp⋀ ⊂ Lp(μ) is bounded. When ⋀ is lacunary, we prove that if the (gn) are uniformly bounded in Lp(μ), then for any q > p, the measure μ is a Carleson measure for Mq⋀. These questions are closely related to the behaviour of μ in the neighborhood of 1. Wealso find some geometric conditions about the behaviour of μ near the point 1 that ensure the compactness of Jμ,p, or its membership to some thiner operator ideals. More precisely, we estimate the approximation numbers of Jμ,p in the lacunary case and we even obtain some equivalents for particular lacunary sequences ⋀. At last, we show that the essentialnorm of the Cesàro-mean operator Γp : Lp → Lp coincides with its norm, which is p'. This result is also valid for the Cesàro sequence operator. We introduce some Müntz subspaces of the Cesàro function spaces Cesp, for p ∈ [1, +∞]. We show that the value of the essential norm of the multiplication operator TΨ is ∥Ψ∥∞ in the Cesàaro spaces. In the Müntz-Cesàrospaces, the essential norm of TΨ is equal to |Ψ(1)|
Boggarapu, Pradeep. "Mixed Norm Estimates in Dunkl Setting and Chaotic Behaviour of Heat Semigroups." Thesis, 2014. http://etd.iisc.ernet.in/handle/2005/2958.
Full textBooks on the topic "Cesàro operators"
Convegno nazionale Due storici e operatori culturali del 1700: il pievese Cesare Orlandi e il bovese Domenico Alagna (2006 Città della Pieve, Italy; Perugia, Italy; Reggio di Calabria, Italy; Bova, Italy). Due storici e operatori culturali del 1700: Il pievese Cesare Orlandi e il bovese Domenico Alagna : atti del Convegno nazionale, Città della Pieve, Perugia, Reggio Calabria, Bova (19-23 giugno 2006). Soveria Mannelli: Rubbettino, 2010.
Find full textBook chapters on the topic "Cesàro operators"
Dai, Feng, and Yuan Xu. "Boundedness of Projection Operators and Cesàro Means." In Springer Monographs in Mathematics, 189–211. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6660-4_8.
Full textDai, Feng, and Yuan Xu. "Projection Operators and Cesàro Means in L P Spaces." In Springer Monographs in Mathematics, 213–39. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6660-4_9.
Full textJanas, Jan, and Serguei Naboko. "Asymptotics of Generalized Eigenvectors for Unbounded Jacobi Matrices with Power-like Weights, Pauli Matrices Commutation Relations and Cesaro Averaging." In Differential Operators and Related Topics, 165–86. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8403-7_14.
Full textConference papers on the topic "Cesàro operators"
CHANG, DER-CHEN, ROBERT GILBERT, and GANG WANG. "A NOTE ON GENERALIZED CESÀRO OPERATORS." In Proceedings of the International Conference to Celebrate Robert P Gilbert's 70th Birthday. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704405_0015.
Full textNEUMANN, MICHAEL M. "SPECTRAL PROPERTIES OF CESÀRO-LIKE OPERATORS." In Proceedings of the Second International School. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708441_0007.
Full textMiller, V. G. "The Cesàro and related operators, a survey." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-14.
Full textZHANGJIAN, HU,. "EXTENDED CESÀRO OPERATORS ON THE BLOCH SPACE IN THE UNIT BALL OF CN." In Proceedings of a Satellite Conference to the International Congress of Mathematicians in Beijing 2002. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702500_0014.
Full textPérez-Ayúcar, Miguel, Michel Breitfellner, Manuel Castillo, and Donald R. Merritt. "The CESAR education initiative." In 15th International Conference on Space Operations. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2340.
Full textMunukutla, Sastry S., Robert P. M. Craven, and Michael R. Coffey. "Performance Monitoring of Coal-Fired Units in Real-Time." In ASME 2009 Power Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/power2009-81113.
Full textWheeler, Wayne A., Roberta Ewart, and Joseph Betser. "Cyber Enhanced Space Operations (CESO)- From Frameworks to Enterprise Evolution." In AIAA SPACE 2016. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-5474.
Full textCarpiceci, Marco, and Fabio Colonnese. "Le mura di Leonardo. I rilievi del 1502." In FORTMED2020 - Defensive Architecture of the Mediterranean. Valencia: Universitat Politàcnica de València, 2020. http://dx.doi.org/10.4995/fortmed2020.2020.11363.
Full text