Academic literature on the topic 'Cesàro spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cesàro spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cesàro spaces"
İnce, H. G. "Cesàro wedge and weak Cesàro wedge FK-spaces." Czechoslovak Mathematical Journal 52, no. 1 (March 2002): 141–54. http://dx.doi.org/10.1023/a:1021731623254.
Full textLeśnik, Karol, and Lech Maligranda. "Abstract Cesàro spaces. Duality." Journal of Mathematical Analysis and Applications 424, no. 2 (April 2015): 932–51. http://dx.doi.org/10.1016/j.jmaa.2014.11.023.
Full textStempak, Krzysztof. "Cesàro averaging operators." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 124, no. 1 (1994): 121–26. http://dx.doi.org/10.1017/s030821050002922x.
Full textAstashkin, Sergey V., Karol Lesnik, and Lech Maligranda. "Isomorphic Structure of Cesàro and Tandori Spaces." Canadian Journal of Mathematics 71, no. 03 (January 9, 2019): 501–32. http://dx.doi.org/10.4153/cjm-2017-055-8.
Full textAstashkin, Sergei V., and Lech Maligranda. "Structure of Cesàro function spaces." Indagationes Mathematicae 20, no. 3 (September 2009): 329–79. http://dx.doi.org/10.1016/s0019-3577(10)00002-9.
Full textAstashkin, S. V. "On Subspaces of Cesàro Spaces." Siberian Mathematical Journal 58, no. 6 (November 2017): 952–58. http://dx.doi.org/10.1134/s0037446617060040.
Full textAstashkin, S. V., and L. Maligranda. "Geometry of Cesàro function spaces." Functional Analysis and Its Applications 45, no. 1 (March 2011): 64–68. http://dx.doi.org/10.1007/s10688-011-0007-8.
Full textLeśnik, Karol, and Lech Maligranda. "Abstract Cesàro Spaces. Optimal Range." Integral Equations and Operator Theory 81, no. 2 (December 20, 2014): 227–35. http://dx.doi.org/10.1007/s00020-014-2203-4.
Full textCurbera, Guillermo P., and Werner J. Ricker. "Abstract Cesàro spaces: Integral representations." Journal of Mathematical Analysis and Applications 441, no. 1 (September 2016): 25–44. http://dx.doi.org/10.1016/j.jmaa.2016.03.074.
Full textAl Alam, Ihab, Loïc Gaillard, Georges Habib, Pascal Lefèvre, and Fares Maalouf. "Essential norm of Cesàro operators on L and Cesàro spaces." Journal of Mathematical Analysis and Applications 467, no. 2 (November 2018): 1038–65. http://dx.doi.org/10.1016/j.jmaa.2018.07.038.
Full textDissertations / Theses on the topic "Cesàro spaces"
Gaillard, Loïc. "Espaces de Müntz, plongements de Carleson, et opérateurs de Cesàro." Thesis, Artois, 2017. http://www.theses.fr/2017ARTO0406/document.
Full textFor a sequence ⋀ = (λn) satisfying the Müntz condition Σn 1/λn < +∞ and for p ∈ [1,+∞), we define the Müntz space Mp⋀ as the closed subspace of Lp([0, 1]) spanned by the monomials yn : t ↦ tλn. The space M∞⋀ is defined in the same way as a subspace of C([0, 1]). When the sequence (λn + 1/p)n is lacunary with a large ratio, we prove that the sequence of normalized Müntz monomials (gn) in Lp is (1 + ε)-isometric to the canonical basis of lp. In the case p = +∞, the monomials (yn) form a sequence which is (1 + ε)-isometric to the summing basis of c. These results are asymptotic refinements of a well known theorem for the lacunary sequences. On the other hand, for p ∈ [1, +∞), we investigate the Carleson measures for Müntz spaces, which are defined as the Borel measures μ on [0; 1) such that the embedding operator Jμ,p : Mp⋀ ⊂ Lp(μ) is bounded. When ⋀ is lacunary, we prove that if the (gn) are uniformly bounded in Lp(μ), then for any q > p, the measure μ is a Carleson measure for Mq⋀. These questions are closely related to the behaviour of μ in the neighborhood of 1. Wealso find some geometric conditions about the behaviour of μ near the point 1 that ensure the compactness of Jμ,p, or its membership to some thiner operator ideals. More precisely, we estimate the approximation numbers of Jμ,p in the lacunary case and we even obtain some equivalents for particular lacunary sequences ⋀. At last, we show that the essentialnorm of the Cesàro-mean operator Γp : Lp → Lp coincides with its norm, which is p'. This result is also valid for the Cesàro sequence operator. We introduce some Müntz subspaces of the Cesàro function spaces Cesp, for p ∈ [1, +∞]. We show that the value of the essential norm of the multiplication operator TΨ is ∥Ψ∥∞ in the Cesàaro spaces. In the Müntz-Cesàrospaces, the essential norm of TΨ is equal to |Ψ(1)|
Cesar, de Albuquerque Richers Georgia Priscylla [Verfasser], and Marcus [Akademischer Betreuer] Magnor. "Visual Analysis of High-Dimensional Spaces / Georgia Priscylla Cesar de Albuquerque Richers ; Betreuer: Marcus Magnor." Braunschweig : Technische Universität Braunschweig, 2014. http://d-nb.info/117582092X/34.
Full textCintra, Sonia Maria de Araujo. "Relações espaciotemporais na obra poética de Cesário Verde: fragmentação e busca de totalidade." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/8/8150/tde-23112009-145427/.
Full textFrom the analysis of the space-time relations en the poem O Sentimento dum Ocidental we want to demonstrate that the poetic work of Cesário Verde is constructed by an incessant process of fragmentation and search for totality. Its cohesion shows, in a synthetic way, a world view and it constitutes a summary of the cesarian problematic, considering not only the poems of this phase or specific cycle, but the whole of his poetry. These two functions, cohesion and problematic, reveal the prevalence of the poetic unity of Cesário, despite its apparent thematic diversity and originality of style which presents some impressionist traces. Taking into consideration the differences of context, the process above mentioned reflects the crisis we live nowadays. Even though the contemporary crisis shows itself in a different manner, we can perceive some of its roots already expressed in Cesários verses, what admits an approaching between Literature and Geography
Books on the topic "Cesàro spaces"
Malkowsky, Eberhard. Darstellungs- und Toeplitzsätze für die verallgemeinerten Cesàro-Folgenräume. Giessen: Selbstverlag des Mathematischen Instituts, 1985.
Find full textIl tempo-dolore: Per una fenomenologia della percezione temporale in Cesare Pavese. Abano Terme, Padova: Francisci, 1985.
Find full textRusi, Michela. Il tempo-dolore: Per una fenomenologia della percezione temporale in Cesare Pavese. Abano Terme, Padova: Francisci, 1985.
Find full textGérard, Trottet, ed. Coronal physics from radio and space observations: Proceedings of the CESRA Workshop, held at Nouan le Fuzelier, France, 3-7 June 1996. Berlin: Springer, 1997.
Find full textTrottet, Gerard. Coronal Physics from Radio and Space Observations: Proceedings of the Cesra Workshop, Held at Nouan Le Fuzelier, France, 3-7 June 1996 (Lecture Notes in Physics). Springer-Verlag Telos, 1997.
Find full textBook chapters on the topic "Cesàro spaces"
Astashkin, Sergey V. "Rademacher Functions in the Cesàro Type Spaces." In The Rademacher System in Function Spaces, 469–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47890-2_15.
Full textDai, Feng, and Yuan Xu. "Projection Operators and Cesàro Means in L P Spaces." In Springer Monographs in Mathematics, 213–39. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6660-4_9.
Full textManna, Atanu, and P. D. Srivastava. "Some Geometric Properties of Generalized Cesàro–Musielak–Orlicz Sequence Spaces." In Mathematics and Computing 2013, 283–95. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1952-1_19.
Full textKumam, Poom, Somyot Plubtieng, and Phayap Katchang. "A New Viscosity Cesàro Mean Approximation Method for a General System of Finite Variational Inequalities and Fixed Point Problems in Banach Spaces." In Lecture Notes in Electrical Engineering, 419–34. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7684-5_29.
Full textParida, P., S. K. Paikray, and B. B. Jena. "Tauberian Theorems for Statistical Cesàro Summability of Function of Two Variables over a Locally Convex Space." In Recent Advances in Intelligent Information Systems and Applied Mathematics, 779–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34152-7_60.
Full textBo-Er, Wu, Liu Yu-Qiang, and Lee Peng-Yee. "The Second Duals of the Nonabsolute Cesaro Sequence Spaces." In North-Holland Mathematics Studies, 285–90. Elsevier, 1988. http://dx.doi.org/10.1016/s0304-0208(08)71345-8.
Full textMcCormick, John P. "The Passion of Duke Valentino." In Reading Machiavelli, 21–44. Princeton University Press, 2018. http://dx.doi.org/10.23943/princeton/9780691183503.003.0002.
Full textConference papers on the topic "Cesàro spaces"
LIN, JING. "THE BLOCH TYPE SPACES VIA THE CESÀRO MEANS." In Proceedings of the 13th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773159_0013.
Full textYouyen, Saard, and Suthep Suantai. "On the H-property and rotundity of Cesàro direct sums of Banach spaces." In Function Spaces VIII. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc79-0-20.
Full textPérez-Ayúcar, Miguel, Michel Breitfellner, Manuel Castillo, and Donald R. Merritt. "The CESAR education initiative." In 15th International Conference on Space Operations. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2340.
Full textZHANGJIAN, HU,. "EXTENDED CESÀRO OPERATORS ON THE BLOCH SPACE IN THE UNIT BALL OF CN." In Proceedings of a Satellite Conference to the International Congress of Mathematicians in Beijing 2002. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702500_0014.
Full textÖztürk, Seda. "Some compactness tests in Banach spaces by Cesaro means of Fourier coefficients." In ADVANCEMENTS IN MATHEMATICAL SCIENCES: Proceedings of the International Conference on Advancements in Mathematical Sciences. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930495.
Full textWheeler, Wayne A., Roberta Ewart, and Joseph Betser. "Cyber Enhanced Space Operations (CESO)- From Frameworks to Enterprise Evolution." In AIAA SPACE 2016. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-5474.
Full textToverud, Morten, Per Atle Våland, and Roar Skogstro̸m. "The Cesar computer architecture: A programmable array processor for space applications." In The earth and space science information system (ESSIS). AIP, 1993. http://dx.doi.org/10.1063/1.44457.
Full text