Academic literature on the topic 'CFST arches'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CFST arches.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CFST arches"

1

Shi, Jun, Kangkang Yang, Kaikai Zheng, Jiyang Shen, Guangchun Zhou, and Yanxia Huang. "AN INVESTIGATION INTO WORKING BEHAVIOR CHARACTERISTICS OF PARABOLIC CFST ARCHES APPLYING STRUCTURAL STRESSING STATE THEORY." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 25, no. 3 (March 7, 2019): 215–27. http://dx.doi.org/10.3846/jcem.2019.8102.

Full text
Abstract:
This paper conducts the experimental and simulative analysis of stressing state characteristics for parabolic concretefilled steel tubular (CFST) arches undergoing vertical loads. The measured stain data is firstly modeled as the generalized strain energy density (GSED) to describe structural stressing state mode. Then, the normalized GSED sum Ej,norm at each load Fj derives the Ej,norm-Fj curve reflecting the stressing state characteristics of CFST arches. Furthermore, the Mann-Kendall criterion is adopted to detect the stressing state change of the CFST arch during its load-bearing process, leading to the revelation of a vital stressing state leap characteristic according to the natural law from quantitative change to qualitative change of a system. The revealed qualitative leap characteristic updates the existing definition of the CFST arch’s failure load. Finally, the accurate formula is derived to predict the failure/ultimate loads of CFST arches. Besides, a method of numerical shape function is proposed to expand the limited strain data for further analysis of the stressing state submodes. The GSED-based analysis of structural stressing state opens a new way to recognize the unseen working behavior characteristics of arch structures and the updated failure load could contribute to the improvement on the structural design codes.
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Wei, and Da Gang Lu. "In-Plane Creep Stability Design of Concrete Filled Steel Tubular Arches Using Inverse Reliability Method." Applied Mechanics and Materials 351-352 (August 2013): 1601–4. http://dx.doi.org/10.4028/www.scientific.net/amm.351-352.1601.

Full text
Abstract:
An inverse first order reliability method (FORM) is presented to solve the safety factors for the in-plane creep stability of concrete filled steel tubular (CFST) arches. In the inverse analysis, the safety factors with or without considering the time-dependent behavior of concrete are introduced into limit state equations for the in-plane stability design of CFST arches. For different target reliability indices and steel ratios, the time-independent and time-dependent safety factors are solved. The results show that the inverse FORM is of good efficiency and applicability. The target reliability indices have little effect on the safety factors for the creep stability of CFST arches. The effects of steel ratios are significant which should be considered in design. For the commonly used steel ratios of CFST arches, the in-plane safety factors for creep stability range from 1.17 to 1.43.
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, Kai, Yong Lin Pi, Wei Gao, and Mark A. Bradford. "Finite Element Model for Analysis of Time-Dependent Behaviour of Concrete-Filled Steel Tubular Arches." Applied Mechanics and Materials 553 (May 2014): 606–11. http://dx.doi.org/10.4028/www.scientific.net/amm.553.606.

Full text
Abstract:
This paper presents a finite element model for the linear and nonlinear analysis of time-dependent behaviour of concrete-filled steel tubular (CFST) arches. It is known when a CFST arch is subjected to a sustained load, the visco-elastic effects of creep in the concrete core will result in significant increases of the deformations and internal forces in the long-term. In this paper, a finite element model is developed using the age-adjusted effective modulus method to describe the creep behaviour of the concrete core. The finite element results of long-term displacement and stress redistribution agree very well with their analytical counterparts. The finite element model is then used to compare the linear and nonlinear results for the long-term behaviour of shallow CFST arches. It is demonstrated that the linear analysis underestimates the long-term deformations and internal force significantly and that to predict the time-dependent behaviour shallow CFST arches accurately, the nonlinear analysis is essential.
APA, Harvard, Vancouver, ISO, and other styles
4

Mei, Yuchun, Xiuming Li, Weiteng Li, Ning Yang, Yuhua Zhang, and Shuo Zhang. "Bearing properties and influence laws of concrete-filled steel tubular arches for underground mining roadway support." Science and Engineering of Composite Materials 27, no. 1 (March 26, 2020): 73–88. http://dx.doi.org/10.1515/secm-2020-0008.

Full text
Abstract:
AbstractThe concrete-filled steel tubular (CFST) arch is a new high-strength support form for a mine roadway in deep/soft rock stratum; however, the bearing characteristics have not been clearly elucidated for scientifically guiding field applications. Numerical simulation tests with 15 schemes shaped as a ‘half circle with two straight legs’ and 10 schemes shaped as a circle were conducted, and the main responses of the numerical model were verified by performing the laboratory tests to evaluate the basic CFST structures and global CFST arches. The bearing and failure behaviors of the CFST arches were studied, and the influence laws, in terms of the arch shape, size and lateral pressure coefficient λ, were further investigated. The results show that the bearing capacity of a circular arch is significantly higher than that of a straight-leg arch under a uniform load. Furthermore, the bearing capacity of the circular arch decreases considerably with the increase in the arch size or λ. In addition, the bearing capacity of a straight-leg arch decreases with the increase in the leg height and arch size; however, it first increases and later decreases with the increase in λ. The failure modes of all the arches correspond to the instability at the extreme point caused by the strength deterioration, except in the case of a circular arch under a uniform pressure, the failure mode of which corresponds to the instability at the branch points. Finally, the recommendations for the field practice are proposed and verified.
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Jing, and Bao Chun Chen. "Finite Element Analysis of Ultimate Load-Carrying Capacity of CFST-CSW Arches." Advanced Materials Research 163-167 (December 2010): 1910–15. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.1910.

Full text
Abstract:
In order to better understand the behavior of CFST-CSW arch, experiment on two hingeless CFST-CSW arches are described in this paper, subjected to in-plane symmetrical and asymmetrical loading respectively. The experiment yield important information regarding the manifestation of the limit state and also afford an opportunity to verify finite element modeling techniques for use in a parametric study. The parametric study reveals that the load-carrying capacity is influenced by many factors including the rise-to-span ratio, slenderness ratio, loading cases and material properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Lei, and Ke Lei. "Preliminary Design and Cross-Sectional Form Study of Closed-Type Concrete-Filled Steel Tube Support for Traffic Tunnel." Symmetry 12, no. 8 (August 17, 2020): 1368. http://dx.doi.org/10.3390/sym12081368.

Full text
Abstract:
In view of the structural form and common construction methods of traffic tunnels, the bearing performance of the closed-type CFST support designed for traffic tunnels is studied. The closed-type CFST support, which consist of a CFST girder with external shotcrete, is improved from the CFST support used in mine roadways. The reasonable cross-sectional form of closed-type CFST support is analyzed by the FEM. The closed-type CFST support is mainly composed of CFST arches, a shotcrete layer, sleeves, and blind flanges. The post-buckling analysis of the closed-type CFST circular arch members using circular-shaped, rectangular-shaped, triangular-shaped, and trapezoidal-shaped steel tubes is implemented. The result shows that the closed-type CFST support has better performance than the traditional tunnel support. The study also found that for closed-type CFST support, the triangular-shaped steel tube section has the highest bearing capacity, stiffness, and steel utilization rate, which is the preferred cross-sectional form. The bearing capacity of the circular-shaped steel tube section is acceptable. Moreover, the circular-shaped steel tubes are more convenient to obtain and process, so it is also an optional cross-sectional form. The square-shaped and trapezoidal-shaped steel tube sections have neither performance advantages nor economic efficiency, so these two forms are not recommended.
APA, Harvard, Vancouver, ISO, and other styles
7

Bradford, Mark Andrew, and Yong-Lin Pi. "Geometric Nonlinearity and Long-Term Behavior of Crown-Pinned CFST Arches." Journal of Structural Engineering 141, no. 8 (August 2015): 04014190. http://dx.doi.org/10.1061/(asce)st.1943-541x.0001163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Wei. "Time-dependent reliability analysis for out-plane stability of CFST arches." IOP Conference Series: Earth and Environmental Science 531 (July 31, 2020): 012068. http://dx.doi.org/10.1088/1755-1315/531/1/012068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sheng, Ye. "Experimental Study on In-Plane Behavior of CFST Arch with New-Type Dumbbell-Shaped Section." Advanced Materials Research 255-260 (May 2011): 1198–203. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.1198.

Full text
Abstract:
The weakness of traditional dumbbell-shaped section is that when concrete is filled into the web space, great stress is likely to produce cracks in the weld sealing between steel tube and web plates. In order to avoid this condition, a new-type dumbbell-shaped section is proposed. Experiments on concrete filled steel tubular (CFST) model arches with new-type dumbbell-shaped section have been carried out, concentrated loading at crown and L/4 section respectively. The result indicated that the new-type CFST arch has good elastic-plastic behavior and high strength, no local buckling appeared during the whole loading process, its in-plane mechanic behavior is similar with that of the CFST arch with single-tube. The dual nonlinear finite element calculation model is set up for the model arch, by means of this model the load-deflection curves during the loading process and the ultimate load-carrying capacity is analyzed.
APA, Harvard, Vancouver, ISO, and other styles
10

Rajeev, Shilpa, Deepak John Peter, and M. V. Varkey. "Study of Concrete Filled Steel Tubular Arch Bridge: A Review." Applied Mechanics and Materials 857 (November 2016): 261–66. http://dx.doi.org/10.4028/www.scientific.net/amm.857.261.

Full text
Abstract:
In many developed countries, concrete filled steel tubular arch bridges are being constructed for roads and railway lines. The CFST arch bridges use steel tubular arches with self consolidating concrete pumped inside and the steel tube provides confinement to the concrete infill. Also, these concrete filled steel tubes have enhanced ductility, better seismic performance, aesthetic quality, lesser consumption of materials and self weight, speedy construction and small vibrations according to studies conducted earlier. Due to the presence of steel tube, local buckling of arch is delayed and reduces the ingress of moisture when exposed to harsh environmental conditions. This paper aims to find the seismic performance of CFST arch bridges in terms of seismic output and deformation when compared to conventional bridges being currently constructed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "CFST arches"

1

Bouras, Yanni. "Thermal Stability of Concrete and Concrete-Filled Steel Tubular Arches." Thesis, 2020. https://vuir.vu.edu.au/40990/.

Full text
Abstract:
The stability of arches is a classical mechanics and pragmatic engineering problem that has been extensively studied by many researchers over the years. Despite the comprehensive construction and research of arches throughout history, their complex behaviour still presents a challenge to engineers and ensures they are the subject of continual investigation. The problem of arch stability is of contemporary relevance due to the surging popularity of concrete-filled steel tubular (CFST) arch bridges. Hence, due to the inherent complex structural function of arches when coupled with the increasing construction of CFST arches, research into the response and stability of CFST arches under all possible environmental conditions is necessitated. However, investigations into the effects of extreme temperatures on concrete and CFST arches have not been conducted. This thesis presents a comprehensive analytical and numerical investigation into the stability of circular concrete and CFST arches subjected to combined mechanical and thermal loading. Original models are derived for the non-linear prebuckling and buckling analysis including closed-form solutions for the in-plane elastic buckling loads of concrete and CFST arches, and non-discretisation mechanically-based numerical models for their elastic and inelastic analysis prebuckling analysis. Additionally, a numerical methodology to determine the elastic flexural-torsional buckling loads of CFST arches is proposed. Furthermore, a novel fractional viscoelastic creep law is developed for concrete at elevated temperatures in order to analyse the significance of basic creep strain on thermal response and stability boundaries. The fractional-derivative creep law proves to be a robust and compact method of modelling basic creep strain under stress and temperature varying conditions. Finite difference schemes are employed to numerically approximate the fractional derivative and incorporate basic creep into the prebuckling and stability analyses. Finite Element (FE) models are developed to verify the derived models and to also investigate the inelastic buckling strength and fire performance of concrete and CFST arches. The findings of this study provide a detailed understanding of the fundamental thermomechanical behaviour and failure modes of concrete and CFST arches. Consequently, engineers may utilise the results detailed herein to assess and improve the fire resistance of concrete and CFST arch structures. Additionally, the developed creep law has widespread application in the analysis of concrete structures under elevated temperatures. The proposed inelastic numerical models also provide efficient tools for the analysis of other structures such as steel arches and beams.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "CFST arches"

1

Wei, Jiangang, Zhitao Xie, Qingxiong Wu, Baochun Chen, and Jianchun Ping. "Experimental Study on the Spatial Mechanical Behavior of CFST X-Shaped Arches Subjected to Non-directional Loads." In Structural Integrity, 378–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29227-0_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Geng, Yue, Gianluca Ranzi, Yu-yin Wang, Raymond Ian Gilbert, and Sumei Zhang. "State-of-the-art review on the time-dependent behaviour of composite steel-concrete columns." In Time-dependent behaviour and design of composite steel-concrete structures, 83–109. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/sed018.ch5.

Full text
Abstract:
<p>This chapter presents a state-of-the-art review of the time-dependent behaviour of composite columns. The first part of the chapter outlines the available typologies and advantages of composite columns. This is followed by an overview of the time-dependent response of concrete (specific to composite columns) and an introduction to concrete confinement. The main part of the chapter is devoted to the state-of-the-art review on how concrete time effects influence the long-term and ultimate behaviour of concrete-filled steel tube (CFST) columns, and on the combined effects produced by sustained loading and chloride corrosion on CFST columns. The review then deals with the long-term behaviour of concrete-filled double skin tube (CFDST) and encased composite columns. The final parts of the chapter provide a review of the time-dependent differential axial shortening (DAS) in vertical components of multi-storey buildings and on the long-term response of arch bridges.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Bradford, M., and Y. Pi. "Time-dependent response of three-hinged CFST arches." In Tubular Structures XV, 139–45. CRC Press, 2015. http://dx.doi.org/10.1201/b18410-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, W., and D. Lu. "Reliability analysis for stability bearing capacity of CFST arches." In Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, 5265–70. CRC Press, 2014. http://dx.doi.org/10.1201/b16387-764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, W., and D. Lu. "Time-dependent reliability analysis of CFST arches for out-plane stability considering concrete creep." In Life-Cycle of Civil Engineering Systems, 465–69. CRC Press, 2014. http://dx.doi.org/10.1201/b17618-66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, W., and D. Lu. "Time-dependent reliability analysis of CFST arches for in-plane stability considering concrete creep." In Bridge Maintenance, Safety, Management and Life Extension, 237–42. CRC Press, 2014. http://dx.doi.org/10.1201/b17063-30.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "CFST arches"

1

Pi, Y. L., M. A. Bradford, and W. Gao. "Creep Analysis of CFST Arches Accounting for Uncertainty of Creep and Shrinkage." In 7th International Conference on Steel and Aluminium Structures. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-9247-0_rp036-icsas11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tu, Bing, and Jielian Zheng. "Innovative Technologies for Construction of the Pingnan Third Bridge." In IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/nanjing.2022.2055.

Full text
Abstract:
<p>The main bridge of the Pingnan Third Bridge is a half-through concrete-filled steel tubular (CFST) arch bridge with a world-largest effective span of 560 m. Due to the significant breakthrough in span and the adverse environmental features of construction site, many technological difficulties were encountered in construction of the Pingnan Third Bridge. Accordingly, systematic innovative technologies on design, construction, material and management of large-span CFST arch bridges were proposed, and fairly remarkable technological and economic benefits were achieved in this bridge. Meanwhile, considering the proposed technologies have solved several key general bottlenecks of extra-large arch bridges, especially CFST arch bridges, the technologies can also be good references for other similar bridges in the future.</p>
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography