Contents
Academic literature on the topic 'Chaleur – Transmission – Modèles mathématiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chaleur – Transmission – Modèles mathématiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chaleur – Transmission – Modèles mathématiques"
DUCROT, C., J. CABARET, S. TOUZEAU, D. ABRIAL, C. JACOB, H. QUIQUAMPOIX, J. GROSCLAUDE, and L. GRUNER. "Epidémiologie de la tremblante et de l’Encéphalopathie Spongiforme Bovine en France." INRAE Productions Animales 17, HS (December 20, 2004): 67–76. http://dx.doi.org/10.20870/productions-animales.2004.17.hs.3630.
Full textDissertations / Theses on the topic "Chaleur – Transmission – Modèles mathématiques"
Bazin, Antoine. "Modélisation numérique du retour de chaleur post-arrêt dans une turbine à gaz." Master's thesis, Université Laval, 2013. http://hdl.handle.net/20.500.11794/25410.
Full textHeat soak-back is a phenomenon observed in many thermal applications including internal combustion engines. Post shutdown studies of these systems, particularly gas turbines, have shown that a massive heat wave could diffuse in the engine causing potential damage. As moving parts in the engine immobilize, heat diffuses freely from hotter to colder sections, including cavities such as the combustor. Primarily composed of free convection, the heat front in the combustor may cause premature coking in the top dead center injectors as the buoyant hot air tends to reach the upper section of the combustor. The following investigation implies computational fluid dynamics (CFD) simulation in order to predict the thermal behaviour and magnitude of this soak-back phenomenon inside a modified can combustor test rig and its potential consequences on the fuel delivery system. The numerical model will eventually be validated using experimentations with this combustor equipped with complementary thermal accumulation masses.
Parhizkar, Masoumeh. "Modelling coupled surface water-groundwater flow and heat transport in a catchment in a discontinuous permafrost zone in Umiujaq, Northern Québec." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66690.
Full textGroundwater systems are expected to respond to climate change in a complex way. In cold regions, simulating the effect of climate change requires a state-of-the-art integrated hydrologic model. In this research, a fully coupled 3D numerical model has been developed to simulate groundwater-surface water flow and heat transport in a 2-km² catchment in Umiujaq, Nunavik (northern Quebec), Canada. The catchment is located in a discontinuous permafrost zone. It contains a lower aquifer, consisting of a thick coarse-grained glaciofluvial layer, overlain by a frost-susceptible silty marine unit and a perched upper aquifer. Detailed field investigations have been carried out to characterize the catchment, including its hydraulic and thermal properties and the subsurface geology. Three different calibration methods using the inverse calibration code PEST were used to calibrate the 3D flow model against measured hydraulic heads, assuming a fixed distribution of low hydraulic conductivity for discontinuous permafrost blocks. Heat transfer was not considered for this calibration. Results showed that using simplified calibration methods, such as the zoning method, is not efficient in this study area, which is highly heterogeneous. Using a more detailed calibration, such as the pilot-points method of PEST, gave a better fit to observed values. However, the computational time was significantly higher. In subsequent simulations, which included heat transport, different approaches for assigning initial temperatures during model spin-up were investigated. Results show that including the spin-up process in the simulations produces more realistic simulated temperatures. Furthermore, the spin-up improves the model fit to deeper subsurface temperatures because areas of the subsurface below the depth where seasonal surface temperature variations penetrate require longer simulation times to reach equilibrium with the applied boundary conditions. Applying the annual average surface temperature as the boundary condition to the heat transport simulation provided a better fit to observed values in the summer compared to winter. During winter, because of different snow thicknesses throughout the catchment, using a uniform surface temperature results in a poor fit to observed values. v Simulations show that warm water entering the subsurface increases the subsurface temperature in the recharge areas. As groundwater flows through the subsurface, it loses thermal energy. Therefore, discharging water is cooler than recharging water. This causes the rate of temperature rise to be lower in discharge areas than in recharge areas. The modelling results have helped provide insights into 3D simulation of coupled water flowheat transfer processes. Furthermore, it will help users of cryo-hydrogeological models in understanding effective parameters in development and calibration of model to develop their own site-specific models.
Arnault, Axel. "Simulation et optimisation de l'intégration de matériaux à changement de phase dans une zone thermique." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28549/28549.pdf.
Full textRahimi, Mohammad. "Modélisation de l'effet du couvert de neige sur les transferts thermiques sol-atmosphère." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27410.
Full textThis work focused on the modeling of the effect of a seasonal snow cover on the thermal behavior of large engineering structures built in the northern regions, and its application for structures built with materials of large porometry. Nowadays, the presence of snow is often neglected in thermal numerical simulations, except for investigating the phenomenon of avalanches or production of water after snowmelt in the mountainous regions, while using conceptual models or very detailed models based on physics. In the industry, modeling a large structure by detailed models have two principals drawback. First, because of large numbers of partial differential equations and parameters, which are sometimes difficult to estimate. The introduction of snow as a medium in the computational domain also imposes great challenges for the continuous simulations for consecutive years, because seasonal snow is present only a few months a year and the domain representing the snow must be removed after melting. In this regard, the main objective of this research is to develop a new tool for the modeling of snow thermal effect on geotechnical structure continuously for several years that can also be applied in simple practical cases. For this, transfers of the heat and mass in snow are first studied to identify the most important transfer modes that significantly affect soil temperature. Then, a numerical tool using the FlexPDE software has been established to model the heat transfer by conduction and convection between soil, snow and atmosphere continuously over the entire year. This tool also considers the effect of snow (close or open boundary) on the air convection in the coarse granular materials, the rain effect and the water phase change in the energy balance of the snow cover. This tool uses the surface energy balance as the Neumann boundary condition for temperature. The tool is also served for thermal analysis of an embankment dam and demonstrates the presence of convection cells and the influence of the air convection on the heat extraction of foundation. Another purposes of this research is to establish a simple and accurate model of thermal conductivity for all types of snow, including artificially manipulated and compacted snow. Most of the existing model of the snow’s thermal conductivity are developed through regression techniques which have the drawback of not respecting the physical limits of snow. To integrate these physical limits in a simple model, the relative thermal conductivity concept is used in this study. This model is verified with published data and further validated with the results of the tests performed in the laboratory of Laval University. The proposed model estimates the thermal conductivity of all types of snow with great reliability.
N'zi, Yoboué Guillaume. "Élaboration d'une plate-forme de calculs numériques d'un modèle d'état à la base d'une approche phénoménologique : cas d'un four rotatif de clinker." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30553/30553.pdf.
Full textThis study develops a mathematical platform going from the establishment of a knowledge database to the setting up of an adaptive model. This has required a new approach of modeling of the clinker rotary kiln (CRK). Thus, a state model of distributed parameter systems, based on physico-chemical phenomena, was designed using partial differential equations. The model structure is based on three state variables which are: the gas, clinker temperatures and the clinker mass distributions, and are elaborated with the help of heat, pressure and mass balance equations. The model parameters are defined by the functions of three state variables. Moreover, the resulting state model, decomposed into five phenomenological zones of CRK, is used as a first step to define a set of Operating Functions (OFs). These OFs has also been decomposed into longitudinal distribution of CRK to replace the constant, unknown or unmeasured parameters. We develop an identification procedure based on phenomenological and dimensional analysis where the identification of operational functions (model parameters) was performed from a stationary state of the CRK. Once the restores state variables have been evaluated, the desired input (which is treated as the control of the CRK) can be more easily found by the proposed model than by simple trial and error. Moreover, the fact that the computation time, to estimate-calibrate the OFs above-mentioned, is very short, then this dynamic computation works faster than real-time. In summary, the cooperation and coordination in real-time between industrial computers and the CRK allows for an adaptable model, where each specific set of the OFs must be analyzed by its accuracy.
Villemure, Charles. "Optimisation à l'aide d'algorithmes génétiques d'un stratifié poreux soumis à un flux thermique en convection naturelle." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24394/24394.pdf.
Full textBendouma, Mathieu. "Systèmes d’isolation thermique par l’extérieur : études expérimentales et numériques des transferts de chaleur et d’humidité." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS485/document.
Full textExternal thermal insulation (ETI) is an interesting technical solution for improving the energy performance of the building sector. However, ETI may change the hygrothermal balance of the envelope and affect its durability, especially with regard to moisture. With this in mind, a first work consisted in studying the hygrothermal behavior of three systems of ETI set on a hollow concrete block wall in the laboratory: an ETICS system (wet process) and two systems under cladding (dry process), with one of them composed with bio-based materials (wood wool and cellulose wadding). Experiments in a bi-climatic enclosure, combined with numerical simulations of coupled heat and mass transfers, made it possible to apprehend the hygrothermal behavior of these renovated walls at different stages: during the installation of ETI solutions, in "normal" use and under conditions leading to risks of condensation. The results of the ETICS system show the important role of the glue and the difficulty to understand numerically its behavior. The results of the cladding systems underline the interest of using bio-based materials under hazardous conditions, but also the sensitivity of numerical simulations to the hydric properties of hygroscopic materials. A second study on the in situ analysis of a cladding ETI system highlighted the absence of major risks related to humidity during the two years studied. In addition, the simulation / experiment comparison highlighted the important role played by the ventilated air
Bélanger, Jean. "Caractérisation des transferts hygrothermiques dans une enveloppe de bâtiment en bois par la résolution d'un problème inverse par l'optimisation des propriétés physiques des matériaux." Master's thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69706.
Full textManin, Lionel. "Modèles de comportement multiniveaux pour la Conception Mécanique Assistée par Ordinateur : application à la prévision du comportement thermique de transmissions de puissance par engrenages." Lyon, INSA, 1999. http://theses.insa-lyon.fr/publication/1999ISAL0019/these.pdf.
Full textThe aim of Computer Aided Design in mechanics is to design products with a maximum constraints integrated in the design process. The main aim is to predict as closest as possible the mechanism behavior in order to optimize its design. Numerical modeling provides results in several fields (static's, dynamics, thermal behavior…), in this work, we have considered the thermal behavior of a system at its preliminary design step. The actual trends of saving weight in order to increase efficiency reduce the heat dissipation capacity and consequently create a rise of the mean operating temperatures which must be integrated in the design process. The application in this work deals with the thermal behavior prediction of power gearing transmissions. The originality of this work comes from the simultaneous application of global and local approaches. First, a bibliographical study has been done in order to set down the bases of the work, and to make a census of the different existing approaches and modeling studies of the thermal problem in power gearing transmissions. Then, a methodology of thermal behavior modeling of a generic power gearing transmission has been developed. A global thermal model has been achieved using the thermal network method; it is composed of local models defined for each technological class of elements. Experiments on industrial test bench were carried out in order to validate the numerical approach. Finally, the established procedures were applied in order to provide thermal behavior prediction in several cases for mechanical design
Wardag, Alam Rahman Khan. "Hydrodynamic and heat transfer study in corrugated wall bubbling fluidized bed experiments and CFD simulations." Doctoral thesis, Université Laval, 2013. http://hdl.handle.net/20.500.11794/24626.
Full textWith the endeavor of approaching an ideal allothermal gasifier, recently our group proposed a reactor concept of allothermal cyclic multi-compartment bubbling fluidized beds for biomass gasification with steam. The concept consisted of multiple intercalated parallelepipedic slim gasification and combustion compartments to enhance unit heat integration and thermal efficiency while preventing contact between flue gas and syngas to generate a N2-free high-quality biosyngas. However, the efficiency of contacting between gas and particles in bubbling fluidized beds is dictated to a large extent by the bubble dynamics which impacts mixing, heat and mass transfers. Literature showed that the decrease in clearance between flat walls for slim fluidization enclosures or in diameter for cylindrical vessels would make fluidized beds very sensitive to wall effects and prone to operate in slug flow regime. Since the occurrence of slugging in multi-compartment slim beds could reduce their thermal and chemical efficiency, the objective of current work was to devise suitable strategies in treating the incipient bubbles to suppress the slugging behavior of bed. By considering the effect of walls on bubble growth, we recently employed corrugated plates as separating walls in slim multi-compartment gas solid fluidized beds. Thorough analyses of bubble dynamics and wall-to-bed heat transfer in flat- (FWBFB) and corrugated- (CWBFB) wall bubbling fluidized beds were performed for a variety of wall declinations and operating conditions covering a range of corrugation angles (θ=120o, 90o), average inter-wall clearances (C), initial rest bed heights (Hi) and ratios of gas superficial velocity to minimum bubbling velocity, Ug/Umb. It was observed that gas flowrate required to achieve the incipient bubbling condition was lower in case of CWBFB. A network of neck (minimum clearance) and hip (maximum clearance) locations in CWBFB also promoted bubbles breakup, higher bubble frequency, lower bubble rise velocity and thus all converging into a better gas distribution. CWBFB offered stable gas-solid fluidization operation and lower transport disengagement height as compared to FWBFB. During the experimental work, digital image analysis technique and fast response heat flux probes were employed to study the effects of operating and geometrical parameters on bubble dynamics and wall-to-bed heat transfer. Two artificial neural network correlations valid both for FWBFB and CWBFB were recommended for the estimation of bubble frequency and size (equivalent diameter). Full 3-D transient Euler-Euler CFD simulations with kinetic theory of granular flow were also carried out which helped shaping an understanding of the effects of corrugated walls on increasing the drag force on particles in the converging-diverging high-pressure zones in corrugated walls. The dynamic fluctuations in the simulated solid phase volume fraction, granular temperature and granular pressure were monitored to determine their standard deviations. These revealed notable shifts in the fluidization regime by replacing flat walls with corrugated walls and further revealed that necks were responsible for inception of instabilities as compared to hips. Time averaged contours of simulated gas volume fraction corroborated with experimental findings that CWBFB offered better gas distribution as compared to FWBFB. Axial profiles of simulated time averaged solid volume fraction and granular temperature showed that CWBFB significantly reduced the transport disengagement height as compared to FWBFB.
Books on the topic "Chaleur – Transmission – Modèles mathématiques"
Milner, R. Communicating and mobile systems: The [symbol for pi]-calculus. New York: Cambridge University Press, 1999.
Find full textPerlick, Volker. Ray Optics, Fermat's Principle, and Applications to General Relativity. Springer, 2000.
Find full text