To see the other types of publications on this topic, follow the link: Channel selectivity.

Journal articles on the topic 'Channel selectivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Channel selectivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Shian, Paul J. Focke, Kimberly Matulef, Xuelin Bian, Pierre Moënne-Loccoz, Francis I. Valiyaveetil, and Steve W. Lockless. "Ion-binding properties of a K+ channel selectivity filter in different conformations." Proceedings of the National Academy of Sciences 112, no. 49 (November 23, 2015): 15096–100. http://dx.doi.org/10.1073/pnas.1510526112.

Full text
Abstract:
K+ channels are membrane proteins that selectively conduct K+ ions across lipid bilayers. Many voltage-gated K+ (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K+ channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na+ or low [K+]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K+ ion binding to channels with an inactivated or conductive selectivity filter is different from K+ ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.
APA, Harvard, Vancouver, ISO, and other styles
2

Kelner, K. L. "Choosing Channel Selectivity." Science's STKE 2006, no. 361 (November 8, 2006): tw387. http://dx.doi.org/10.1126/stke.3612006tw387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mikušević, Vedrana, Marina Schrecker, Natalie Kolesova, Miyer Patiño-Ruiz, Klaus Fendler, and Inga Hänelt. "A channel profile report of the unusual K+ channel KtrB." Journal of General Physiology 151, no. 12 (October 17, 2019): 1357–68. http://dx.doi.org/10.1085/jgp.201912384.

Full text
Abstract:
KtrAB is a key player in bacterial K+ uptake required for K+ homeostasis and osmoadaptation. The system is unique in structure and function. It consists of the K+-translocating channel subunit KtrB, which forms a dimer in the membrane, and the soluble regulatory subunit KtrA, which attaches to the cytoplasmic side of the dimer as an octameric ring conferring Na+ and ATP dependency to the system. Unlike most K+ channels, KtrB lacks the highly conserved T(X)GYG selectivity filter sequence. Instead, only a single glycine residue is found in each pore loop, which raises the question of how selective the ion channel is. Here, we characterized the KtrB subunit from the Gram-negative pathogen Vibrio alginolyticus by isothermal titration calorimetry, solid-supported membrane–based electrophysiology, whole-cell K+ uptake, and ACMA-based transport assays. We found that, despite its simple selectivity filter, KtrB selectively binds K+ with micromolar affinity. Rb+ and Cs+ bind with millimolar affinities. However, only K+ and the poorly binding Na+ are efficiently translocated, based on size exclusion by the gating loop. Importantly, the physiologically required K+ over Na+ selectivity is provided by the channel’s high affinity for potassium, which interestingly results from the presence of the sodium ions themselves. In the presence of the KtrA subunit, sodium ions further decrease the Michaelis–Menten constant for K+ uptake from milli- to micromolar concentrations and increase the Vmax, suggesting that Na+ also facilitates channel gating. In conclusion, high binding affinity and facilitated K+ gating allow KtrAB to function as a selective K+ channel.
APA, Harvard, Vancouver, ISO, and other styles
4

Lam, Yee Ling, Weizhong Zeng, Mehabaw Getahun Derebe, and Youxing Jiang. "Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide–gated channels." Journal of General Physiology 146, no. 3 (August 17, 2015): 255–63. http://dx.doi.org/10.1085/jgp.201511431.

Full text
Abstract:
Calcium permeability and the concomitant calcium block of monovalent ion current (“Ca2+ block”) are properties of cyclic nucleotide–gated (CNG) channel fundamental to visual and olfactory signal transduction. Although most CNG channels bear a conserved glutamate residue crucial for Ca2+ block, the degree of block displayed by different CNG channels varies greatly. For instance, the Drosophila melanogaster CNG channel shows only weak Ca2+ block despite the presence of this glutamate. We previously constructed a series of chimeric channels in which we replaced the selectivity filter of the bacterial nonselective cation channel NaK with a set of CNG channel filter sequences and determined that the resulting NaK2CNG chimeras displayed the ion selectivity and Ca2+ block properties of the parent CNG channels. Here, we used the same strategy to determine the structural basis of the weak Ca2+ block observed in the Drosophila CNG channel. The selectivity filter of the Drosophila CNG channel is similar to that of most other CNG channels except that it has a threonine at residue 318 instead of a proline. We constructed a NaK chimera, which we called NaK2CNG-Dm, which contained the Drosophila selectivity filter sequence. The high resolution structure of NaK2CNG-Dm revealed a filter structure different from those of NaK and all other previously investigated NaK2CNG chimeric channels. Consistent with this structural difference, functional studies of the NaK2CNG-Dm chimeric channel demonstrated a loss of Ca2+ block compared with other NaK2CNG chimeras. Moreover, mutating the corresponding threonine (T318) to proline in Drosophila CNG channels increased Ca2+ block by 16 times. These results imply that a simple replacement of a threonine for a proline in Drosophila CNG channels has likely given rise to a distinct selectivity filter conformation that results in weak Ca2+ block.
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Jie, and Fred J. Sigworth. "Selectivity Changes during Activation of Mutant Shaker Potassium Channels." Journal of General Physiology 110, no. 2 (August 1, 1997): 101–17. http://dx.doi.org/10.1085/jgp.110.2.101.

Full text
Abstract:
Mutations of the pore-region residue T442 in Shaker channels result in large effects on channel kinetics. We studied mutations at this position in the backgrounds of NH2-terminal–truncated Shaker H4 and a Shaker -NGK2 chimeric channel having high conductance (Lopez, G.A., Y.N. Jan, and L.Y. Jan. 1994. Nature (Lond.). 367: 179–182). While mutations of T442 to C, D, H, V, or Y resulted in undetectable expression in Xenopus oocytes, S and G mutants yielded functional channels having deactivation time constants and channel open times two to three orders of magnitude longer than those of the parental channel. Activation time courses at depolarized potentials were unaffected by the mutations, as were first-latency distributions in the T442S chimeric channel. The mutant channels show two subconductance levels, 37 and 70% of full conductance. From single-channel analysis, we concluded that channels always pass through the larger subconductance state on the way to and from the open state. The smaller subconductance state is traversed in ∼40% of activation time courses. These states apparently represent kinetic intermediates in channel gating having voltage-dependent transitions with apparent charge movements of ∼1.6 e0. The fully open T442S chimeric channel has the conductance sequence Rb+ > NH4+ > K+. The opposite conductance sequence, K+ > NH4+ > Rb+, is observed in each of the subconductance states, with the smaller subconductance state discriminating most strongly against Rb+.
APA, Harvard, Vancouver, ISO, and other styles
6

Du, Xiaofei, Joao L. Carvalho-de-Souza, Cenfu Wei, Willy Carrasquel-Ursulaez, Yenisleidy Lorenzo, Naileth Gonzalez, Tomoya Kubota, et al. "Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia." Proceedings of the National Academy of Sciences 117, no. 11 (March 4, 2020): 6023–34. http://dx.doi.org/10.1073/pnas.1920008117.

Full text
Abstract:
Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the geneKCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) inKCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354Schannel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354Scells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354Schannel, but not the BKWTchannel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.
APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Jiangtao, Weizhong Zeng, and Youxing Jiang. "Tuning the ion selectivity of two-pore channels." Proceedings of the National Academy of Sciences 114, no. 5 (January 17, 2017): 1009–14. http://dx.doi.org/10.1073/pnas.1616191114.

Full text
Abstract:
Organellar two-pore channels (TPCs) contain two copies of aShaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 fromArabidopsis thaliana(AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+selectivity in mammalian TPCs.
APA, Harvard, Vancouver, ISO, and other styles
8

Gosselin-Badaroudine, Pascal, Adrien Moreau, Louis Simard, Thierry Cens, Matthieu Rousset, Claude Collet, Pierre Charnet, and Mohamed Chahine. "Biophysical characterization of the honeybee DSC1 orthologue reveals a novel voltage-dependent Ca2+ channel subfamily: CaV4." Journal of General Physiology 148, no. 2 (July 18, 2016): 133–45. http://dx.doi.org/10.1085/jgp.201611614.

Full text
Abstract:
Bilaterian voltage-gated Na+ channels (NaV) evolved from voltage-gated Ca2+ channels (CaV). The Drosophila melanogaster Na+ channel 1 (DSC1), which features a D-E-E-A selectivity filter sequence that is intermediate between CaV and NaV channels, is evidence of this evolution. Phylogenetic analysis has classified DSC1 as a Ca2+-permeable Na+ channel belonging to the NaV2 family because of its sequence similarity with NaV channels. This is despite insect NaV2 channels (DSC1 and its orthologue in Blatella germanica, BSC1) being more permeable to Ca2+ than Na+. In this study, we report the cloning and molecular characterization of the honeybee (Apis mellifera) DSC1 orthologue. We reveal several sequence variations caused by alternative splicing, RNA editing, and genomic variations. Using the Xenopus oocyte heterologous expression system and the two-microelectrode voltage-clamp technique, we find that the channel exhibits slow activation and inactivation kinetics, insensitivity to tetrodotoxin, and block by Cd2+ and Zn2+. These characteristics are reminiscent of CaV channels. We also show a strong selectivity for Ca2+ and Ba2+ ions, marginal permeability to Li+, and impermeability to Mg2+ and Na+ ions. Based on current ion channel nomenclature, the D-E-E-A selectivity filter, and the properties we have uncovered, we propose that DSC1 homologues should be classified as CaV4 rather than NaV2. Indeed, channels that contain the D-E-E-A selectivity sequence are likely to feature the same properties as the honeybee’s channel, namely slow activation and inactivation kinetics and strong selectivity for Ca2+ ions.
APA, Harvard, Vancouver, ISO, and other styles
9

Thompson, Jill, and Ted Begenisich. "Selectivity filter gating in large-conductance Ca2+-activated K+ channels." Journal of General Physiology 139, no. 3 (February 27, 2012): 235–44. http://dx.doi.org/10.1085/jgp.201110748.

Full text
Abstract:
Membrane voltage controls the passage of ions through voltage-gated K (Kv) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of Kv channels is well established, it is not clear if such a cytoplasmic gate exists in all K+ channels. Some studies on large-conductance, voltage- and Ca2+-activated K+ (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker “ball” peptide (BP) on BK channels with either K+ or Rb+ as the permeant ion. When tested in K+ solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb+ replaced K+ as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these Kv channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating.
APA, Harvard, Vancouver, ISO, and other styles
10

Dudev, Todor, and Carmay Lim. "Ion Selectivity Strategies of Sodium Channel Selectivity Filters." Accounts of Chemical Research 47, no. 12 (October 24, 2014): 3580–87. http://dx.doi.org/10.1021/ar5002878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yamagishi, Toshio, Ronald A. Li, Kate Hsu, Eduardo Marbán, and Gordon F. Tomaselli. "Molecular Architecture of the Voltage-Dependent Na Channel." Journal of General Physiology 118, no. 2 (July 30, 2001): 171–82. http://dx.doi.org/10.1085/jgp.118.2.171.

Full text
Abstract:
The permeation pathway of the Na channel is formed by asymmetric loops (P segments) contributed by each of the four domains of the protein. In contrast to the analogous region of K channels, previously we (Yamagishi, T., M. Janecki, E. Marban, and G. Tomaselli. 1997. Biophys. J. 73:195–204) have shown that the P segments do not span the selectivity region, that is, they are accessible only from the extracellular surface. The portion of the P-segment NH2-terminal to the selectivity region is referred to as SS1. To explore further the topology and functional role of the SS1 region, 40 amino acids NH2-terminal to the selectivity ring (10 in each of the P segments) of the rat skeletal muscle Na channel were substituted by cysteine and expressed in tsA-201 cells. Selected mutants in each domain could be blocked with high affinity by externally applied Cd2+ and were resistant to tetrodotoxin as compared with the wild-type channel. None of the externally applied sulfhydryl-specific methanethiosulfonate reagents modified the current through any of the mutant channels. Both R395C and R750C altered ionic selectivity, producing significant increases in K+ and NH4+ currents. The pattern of side chain accessibility is consistent with a pore helix like that observed in the crystal structure of the bacterial K channel, KcsA. Structure prediction of the Na channel using the program PHDhtm suggests an α helix in the SS1 region of each domain channel. We conclude that each of the P segments undergoes a hairpin turn in the permeation pathway, such that amino acids on both sides of the putative selectivity filter line the outer mouth of the pore. Evolutionary conservation of the pore helix motif from bacterial K channels to mammalian Na channels identifies this structure as a critical feature in the architecture of ion selective pores.
APA, Harvard, Vancouver, ISO, and other styles
12

Ling, B. N., C. F. Hinton, and D. C. Eaton. "Amiloride-sensitive sodium channels in rabbit cortical collecting tubule primary cultures." American Journal of Physiology-Renal Physiology 261, no. 6 (December 1, 1991): F933—F944. http://dx.doi.org/10.1152/ajprenal.1991.261.6.f933.

Full text
Abstract:
Patch-clamp methodology was applied to principal cell apical membranes of rabbit cortical collecting tubule (CCT) primary cultures grown on collagen supports in the presence of aldosterone (1.5 microM). The most frequently observed channel had a unit conductance of 3-5 pS, nonlinear current-voltage (I-V) relationship, Na permeability (PNa)-to-K permeability (PK) ratio greater than 19:1, and inward current at all applied potentials (Vapp) less than +80 mV (n = 41). Less frequently, an 8- to 10-pS channel with a linear I-V curve, PNa/PK less than 5:1, and inward current at Vapp less than +40 mV was also observed (n = 7). Luminal amiloride (0.75 microM) decreased the open probability (Po) for both of these channels. Mean open time for the high-selectivity Na+ channel was 2.1 +/- 0.5 s and for the low-selectivity Na+ channel was 50 +/- 12 ms. In primary cultures grown without aldosterone the high-selectivity Na+ channel was rarely observed (1 of 32 patches). Lastly, a 26- to 35-pS channel, nonselective for Na+ over K+, was not activated by cytoplasmic Ca2+ or voltage nor inhibited by amiloride (n = 17). We conclude that under specific growth conditions, namely permeable transporting supports and chronic mineralocorticoid hormone exposure, principal cell apical membranes of rabbit CCT primary cultures contain 1) both high-selectivity and low-selectivity, amiloride-inhibitable Na+ channels and 2) amiloride-insensitive, nonselective cation channels.
APA, Harvard, Vancouver, ISO, and other styles
13

Brettmann, Joshua B., Darya Urusova, Marco Tonelli, Jonathan R. Silva, and Katherine A. Henzler-Wildman. "Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel." Proceedings of the National Academy of Sciences 112, no. 50 (November 30, 2015): 15366–71. http://dx.doi.org/10.1073/pnas.1515965112.

Full text
Abstract:
Flux-dependent inactivation that arises from functional coupling between the inner gate and the selectivity filter is widespread in ion channels. The structural basis of this coupling has only been well characterized in KcsA. Here we present NMR data demonstrating structural and dynamic coupling between the selectivity filter and intracellular constriction point in the bacterial nonselective cation channel, NaK. This transmembrane allosteric communication must be structurally different from KcsA because the NaK selectivity filter does not collapse under low-cation conditions. Comparison of NMR spectra of the nonselective NaK and potassium-selective NaK2K indicates that the number of ion binding sites in the selectivity filter shifts the equilibrium distribution of structural states throughout the channel. This finding was unexpected given the nearly identical crystal structure of NaK and NaK2K outside the immediate vicinity of the selectivity filter. Our results highlight the tight structural and dynamic coupling between the selectivity filter and the channel scaffold, which has significant implications for channel function. NaK offers a distinct model to study the physiologically essential connection between ion conduction and channel gating.
APA, Harvard, Vancouver, ISO, and other styles
14

Liu, Shian, Xuelin Bian, and Steve W. Lockless. "Preferential binding of K+ ions in the selectivity filter at equilibrium explains high selectivity of K+ channels." Journal of General Physiology 140, no. 6 (November 12, 2012): 671–79. http://dx.doi.org/10.1085/jgp.201210855.

Full text
Abstract:
K+ channels exhibit strong selectivity for K+ ions over Na+ ions based on electrophysiology experiments that measure ions competing for passage through the channel. During this conduction process, multiple ions interact within the region of the channel called the selectivity filter. Ion selectivity may arise from an equilibrium preference for K+ ions within the selectivity filter or from a kinetic mechanism whereby Na+ ions are precluded from entering the selectivity filter. Here, we measure the equilibrium affinity and selectivity of K+ and Na+ ions binding to two different K+ channels, KcsA and MthK, using isothermal titration calorimetry. Both channels exhibit a large preference for K+ over Na+ ions at equilibrium, in line with electrophysiology recordings of reversal potentials and Ba2+ block experiments used to measure the selectivity of the external-most ion-binding sites. These results suggest that the high selectivity observed during ion conduction can originate from a strong equilibrium preference for K+ ions in the selectivity filter, and that K+ selectivity is an intrinsic property of the filter. We hypothesize that the equilibrium preference for K+ ions originates in part through the optimal spacing between sites to accommodate multiple K+ ions within the selectivity filter.
APA, Harvard, Vancouver, ISO, and other styles
15

Tsushima, Robert G., Ronald A. Li, and Peter H. Backx. "Altered Ionic Selectivity of the Sodium Channel Revealed by Cysteine Mutations within the Pore." Journal of General Physiology 109, no. 4 (April 1, 1997): 463–75. http://dx.doi.org/10.1085/jgp.109.4.463.

Full text
Abstract:
To explore the role of pore-lining amino acids in Na+ channel ion-selectivity, pore residues were replaced serially with cysteine in cloned rat skeletal muscle Na+ channels. Ionic selectivity was determined by measuring permeability and ionic current ratios of whole-cell currents in Xenopus oocytes. The rSkM1 channels displayed an ionic selectivity sequence Na+>Li+>NH4+>>K+>>Cs+ and were impermeable to divalent cations. Replacement of residues in domain IV showed significantly enhanced current and permeability ratios of NH4+ and K+, and negative shifts in the reversal potentials recorded in the presence of external Na+ solutions when compared to cysteine mutants in domains I, II, and III (except K1237C). Mutants in domain IV showed altered selectivity sequences: W1531C (NH4+>K+>Na+≥Li+≈Cs+), D1532C, and G1533C (Na+>Li+≥NH4+>K+>Cs+). Conservative replacement of the aromatic residue in domain IV (W1531) with phenylalanine or tyrosine retained Na+ selectivity of the channel while the alanine mutant (W1531A) reduced ion selectivity. A single mutation within the third pore forming region (K1237C) dramatically altered the selectivity sequence of the rSkM1 channel (NH4+>K+>Na+≥Li+≈Cs+) and was permeable to divalent cations having the selectivity sequence Ca2+≥Sr2+>Mg2+>Ba2+. Sulfhydryl modification of K1237C, W1531C or D1532C with methanethiosulfonate derivatives that introduce a positively charged ammonium group, large trimethylammonium moiety, or a negatively charged sulfonate group within the pore was ineffective in restoring Na+ selectivity to these channels. Selectivity of D1532C mutants could be largely restored by increasing extracellular pH suggesting altering the ionized state at this position influences selectivity. These data suggest that K1237 in domain III and W1531, D1532, and G1533 in domain IV play a critical role in determining the ionic selectivity of the Na+ channel.
APA, Harvard, Vancouver, ISO, and other styles
16

Yen, Michelle, and Richard S. Lewis. "Physiological CRAC channel activation and pore properties require STIM1 binding to all six Orai1 subunits." Journal of General Physiology 150, no. 10 (August 17, 2018): 1373–85. http://dx.doi.org/10.1085/jgp.201711985.

Full text
Abstract:
The binding of STIM1 to Orai1 controls the opening of store-operated CRAC channels as well as their extremely high Ca2+ selectivity. Although STIM1 dimers are known to bind directly to the cytosolic C termini of the six Orai1 subunits (SUs) that form the channel hexamer, the dependence of channel activation and selectivity on the number of occupied binding sites is not well understood. Here we address these questions using dimeric and hexameric Orai1 concatemers in which L273D mutations were introduced to inhibit STIM1 binding to specific Orai1 SUs. By measuring FRET between fluorescently labeled STIM1 and Orai1, we find that homomeric L273D mutant channels fail to bind STIM1 appreciably; however, the L273D SU does bind STIM1 and contribute to channel activation when located adjacent to a WT SU. These results suggest that STIM1 dimers can interact with pairs of neighboring Orai1 SUs. Surprisingly, a single L273D mutation within the Orai1 hexamer reduces channel open probability by ∼90%, triples the size of the single-channel current, weakens the Ca2+ binding affinity of the selectivity filter, and lowers the selectivity for Na+ over Cs+ in the absence of divalent cations. These findings reveal a surprisingly strong functional coupling between STIM1 binding and CRAC channel gating and pore properties. We conclude that under physiological conditions, all six Orai1 SUs of the native CRAC channel bind STIM1 to effectively open the pore and generate the signature properties of extremely low conductance and high ion selectivity.
APA, Harvard, Vancouver, ISO, and other styles
17

Yang, Lei, and Lawrence G. Palmer. "Determinants of selective ion permeation in the epithelial Na+ channel." Journal of General Physiology 150, no. 10 (August 22, 2018): 1397–407. http://dx.doi.org/10.1085/jgp.201812164.

Full text
Abstract:
The epithelial Na+ channel (ENaC) is a key transporter mediating and controlling Na+ reabsorption in many tight epithelia. A very high selectivity for Na+ over other cations, including K+, is a hallmark of this channel. This selectivity greatly exceeds that of the closely related acid-sensing channels (ASICs). Here, we assess the roles of two regions of the ENaC transmembrane pore in the determination of cation selectivity. Mutations of conserved amino acids with acidic side chains near the cytoplasmic end of the pore diminish macroscopic currents but do not decrease the selectivity of the channel for Na+ versus K+. In the WT channel, voltage-dependent block of Na+ currents by K+ or guanidinium+, neither of which have detectable conductance, suggests that these ions permeate only ∼20% of the transmembrane electric field. According to markers of the electric field determined by Zn2+ block of cysteine residues, the site of K+ block appears to be nearer to the extracellular end of the pore, close to a putative selectivity filter identified using site-directed mutations. To test whether differences in this part of the channel account for selectivity differences between ENaC and ASIC, we substitute amino acids in the three ENaC subunits with those present in the ASIC homotrimer. In this construct, Li:Na selectivity is altered from that of WT ENaC, but the high Na:K selectivity is maintained. We conclude that a different part of the pore may constitute the selectivity filter in the highly selective ENaC than in the less-selective ASIC channel.
APA, Harvard, Vancouver, ISO, and other styles
18

Yamashita, Megumi, Laura Navarro-Borelly, Beth A. McNally, and Murali Prakriya. "Orai1 Mutations Alter Ion Permeation and Ca2+-dependent Fast Inactivation of CRAC Channels: Evidence for Coupling of Permeation and Gating." Journal of General Physiology 130, no. 5 (October 29, 2007): 525–40. http://dx.doi.org/10.1085/jgp.200709872.

Full text
Abstract:
Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels is an essential trigger for lymphocyte activation and proliferation. The recent identification of Orai1 as a key CRAC channel pore subunit paves the way for understanding the molecular basis of Ca2+ selectivity, ion permeation, and regulation of CRAC channels. Previous Orai1 mutagenesis studies have indicated that a set of conserved acidic amino acids in trans membrane domains I and III and in the I–II loop (E106, E190, D110, D112, D114) are essential for the CRAC channel's high Ca2+ selectivity. To further dissect the contribution of Orai1 domains important for ion permeation and channel gating, we examined the role of these conserved acidic residues on pore geometry, properties of Ca2+ block, and channel regulation by Ca2+. We find that alteration of the acidic residues lowers Ca2+ selectivity and results in striking increases in Cs+ permeation. This is likely the result of enlargement of the unusually narrow pore of the CRAC channel, thus relieving steric hindrance for Cs+ permeation. Ca2+ binding to the selectivity filter appears to be primarily affected by changes in the apparent on-rate, consistent with a rate-limiting barrier for Ca2+ binding. Unexpectedly, the mutations diminish Ca2+-mediated fast inactivation, a key mode of CRAC channel regulation. The decrease in fast inactivation in the mutant channels correlates with the decrease in Ca2+ selectivity, increase in Cs+ permeability, and enlargement of the pore. We propose that the structural elements involved in ion permeation overlap with those involved in the gating of CRAC channels.
APA, Harvard, Vancouver, ISO, and other styles
19

Payandeh, Jian. "Crystallographic studies of voltage-gated sodium and calcium channels." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1488. http://dx.doi.org/10.1107/s2053273314085118.

Full text
Abstract:
Voltage-gated ion channels (VGICs) mediate electrical signaling within the nervous system and regulate a wide range of physiological processes. Voltage-gated sodium (Nav) channels are responsible for initiating action potentials and their rapid activation, sodium selectivity, and drug sensitivity are unique among VGICs. Nav channels are the molecular targets of drugs used in local anaesthesia and in the treatment of genetic and sporadic Nav channelopathies including inherited epilepsy, migraine, periodic paralysis, cardiac arrhythmia, and chronic pain syndromes. Recent crystal structures of a Nav channel from the bacterium Arcobacter butzleri (NavAb) have revealed surprising insights into the structural basis for voltage-dependent activation, sodium selectivity, drug block, and slow inactivation (1,2). The available structures of NavAb will be described alongside complementary functional and molecular dynamic studies. Distinct from Nav channels, the closely related voltage-gated calcium (Cav) channels initiate processes such as synaptic transmission, muscle contraction, and hormone secretion in response to membrane depolarization. Cav channels catalyze the rapid and highly selective influx of calcium ions into cells despite a 70-fold higher extracellular concentration of sodium. By grafting a Cav channel selectivity filter onto NavAb, crystallographic and functional analyses of the resulting CavAb channel will be described that have revealed a multi-ion selectivity filter which establishes a structural framework for understanding the mechanisms of ion selectivity and conductance in vertebrate Cav channels (3).
APA, Harvard, Vancouver, ISO, and other styles
20

Mita, Kenichiro, Takashi Sumikama, Masayuki Iwamoto, Yuka Matsuki, Kenji Shigemi, and Shigetoshi Oiki. "Conductance selectivity of Na+ across the K+ channel via Na+ trapped in a tortuous trajectory." Proceedings of the National Academy of Sciences 118, no. 12 (March 19, 2021): e2017168118. http://dx.doi.org/10.1073/pnas.2017168118.

Full text
Abstract:
Ion selectivity of the potassium channel is crucial for regulating electrical activity in living cells; however, the mechanism underlying the potassium channel selectivity that favors large K+ over small Na+ remains unclear. Generally, Na+ is not completely excluded from permeation through potassium channels. Herein, the distinct nature of Na+ conduction through the prototypical KcsA potassium channel was examined. Single-channel current recordings revealed that, at a high Na+ concentration (200 mM), the channel was blocked by Na+, and this blocking was relieved at high membrane potentials, suggesting the passage of Na+ across the channel. At a 2,000 mM Na+ concentration, single-channel Na+ conductance was measured as one-eightieth of the K+ conductance, indicating that the selectivity filter allows substantial conduit of Na+. Molecular dynamics simulations revealed unprecedented atomic trajectories of Na+ permeation. In the selectivity filter having a series of carbonyl oxygen rings, a smaller Na+ was distributed off-center in eight carbonyl oxygen-coordinated sites as well as on-center in four carbonyl oxygen-coordinated sites. This amphipathic nature of Na+ coordination yielded a continuous but tortuous path along the filter. Trapping of Na+ in many deep free energy wells in the filter caused slow elution. Conversely, K+ is conducted via a straight path, and as the number of occupied K+ ions increased to three, the concerted conduction was accelerated dramatically, generating the conductance selectivity ratio of up to 80. The selectivity filter allows accommodation of different ion species, but the ion coordination and interactions between ions render contrast conduction rates, constituting the potassium channel conductance selectivity.
APA, Harvard, Vancouver, ISO, and other styles
21

Keramidas, Angelo, Andrew J. Moorhouse, Kerrie D. Pierce, Peter R. Schofield, and Peter H. Barry. "Cation-selective Mutations in the M2 Domain of the Inhibitory Glycine Receptor Channel Reveal Determinants of Ion-Charge Selectivity." Journal of General Physiology 119, no. 5 (April 15, 2002): 393–410. http://dx.doi.org/10.1085/jgp.20028552.

Full text
Abstract:
Ligand-gated ion channel receptors mediate neuronal inhibition or excitation depending on their ion charge selectivity. An investigation into the determinants of ion charge selectivity of the anion-selective α1 homomeric glycine receptor (α1 glycine receptor [GlyR]) was undertaken using point mutations to residues lining the extra- and intracellular ends of the ion channel. Five mutant GlyRs were studied. A single substitution at the intracellular mouth of the channel (A-1′E GlyR) was sufficient to convert the channels to select cations over anions with PCl/PNa = 0.34. This result delimits the selectivity filter and provides evidence that electrostatic interactions between permeating ions and pore residues are a critical factor in ion charge selectivity. The P-2′Δ mutant GlyR retained its anion selectivity (PCl/PNa = 3.81), but it was much reduced compared with the wild-type (WT) GlyR (PCl/PNa = 27.9). When the A-1′E and the P-2′Δ mutations were combined (selectivity double mutant [SDM] GlyR), the relative cation permeability was enhanced (PCl/PNa = 0.13). The SDM GlyR was also Ca2+ permeable (PCa/PNa = 0.29). Neutralizing the extracellular mouth of the SDM GlyR ion channel (SDM+R19′A GlyR) produced a more Ca2+-permeable channel (PCa/PNa = 0.73), without drastically altering monovalent charge selectivity (PCl/PNa = 0.23). The SDM+R19′E GlyR, which introduces a negatively charged ring at the extracellular mouth of the channel, further enhanced Ca2+ permeability (PCa/PNa = 0.92), with little effect on monovalent selectivity (PCl/PNa = 0.19). Estimates of the minimum pore diameter of the A-1′E, SDM, SDM+R19′A, and SDM+R19′E GlyRs revealed that these pores are larger than the α1 GlyR, with the SDM-based GlyRs being comparable in diameter to the cation-selective nicotinic acetylcholine receptors. This result provides evidence that the diameter of the ion channel is also an important factor in ion charge selectivity.
APA, Harvard, Vancouver, ISO, and other styles
22

Bukauskas, Feliksas F., Angele Bukauskiene, and Vytas K. Verselis. "Conductance and Permeability of the Residual State of Connexin43 Gap Junction Channels." Journal of General Physiology 119, no. 2 (January 28, 2002): 171–86. http://dx.doi.org/10.1085/jgp.119.2.171.

Full text
Abstract:
We used cell lines expressing wild-type connexin43 and connexin43 fused with the enhanced green fluorescent protein (Cx43-EGFP) to examine conductance and perm-selectivity of the residual state of Cx43 homotypic and Cx43/Cx43-EGFP heterotypic gap junction channels. Each hemichannel in Cx43 cell–cell channel possesses two gates: a fast gate that closes channels to the residual state and a slow gate that fully closes channels; the transjunctional voltage (Vj) closes the fast gate in the hemichannel that is on the relatively negative side. Here, we demonstrate macroscopically and at the single-channel level that the I-V relationship of the residual state rectifies, exhibiting higher conductance at higher Vjs that are negative on the side of gated hemichannel. The degree of rectification increases when Cl− is replaced by Asp− and decreases when K+ is replaced by TEA+. These data are consistent with an increased anionic selectivity of the residual state. The Vj-gated channel is not permeable to monovalent positively and negatively charged dyes, which are readily permeable through the fully open channel. These data indicate that a narrowing of the channel pore accompanies gating to the residual state. We suggest that the fast gate operates through a conformational change that introduces positive charge at the cytoplasmic vestibule of the gated hemichannel, thereby producing current rectification, increased anionic selectivity, and a narrowing of channel pore that is largely responsible for reducing channel conductance and restricting dye transfer. Consequently, the fast Vj-sensitive gating mechanism can serve as a selectivity filter, which allows electrical coupling but limits metabolic communication.
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, Jason, Seung-Kuy Cha, Tie-Jun Sun, and Chou-Long Huang. "PIP2 Activates TRPV5 and Releases Its Inhibition by Intracellular Mg2+." Journal of General Physiology 126, no. 5 (October 17, 2005): 439–51. http://dx.doi.org/10.1085/jgp.200509314.

Full text
Abstract:
The transient receptor potential type V5 channel (TRPV5) is a Ca2+-selective TRP channel important for epithelial Ca2+ transport. Intracellular Mg2+ causes a fast voltage-dependent block of the TRPV5 channel by binding to the selectivity filter. Here, we report that intracellular Mg2+ binding to the selectivity filter of TRPV5 also causes a slower reversible conformational change leading to channel closure. We further report that PIP2 activates TRPV5. Activation of TRPV5 by PIP2 is independent of Mg2+. Yet, PIP2 decreases sensitivity of the channel to the Mg2+-induced slow inhibition. Mutation of aspartate-542, a critical Mg2+-binding site in the selectivity filter, abolishes Mg2+-induced slow inhibition. PIP2 has no effects on Mg2+-induced voltage-dependent block. Thus, PIP2 prevents the Mg2+-induced conformational change without affecting Mg2+ binding to the selectivity filter. Hydrolysis of PIP2 via receptor activation of phospholipase C sensitizes TRPV5 to the Mg2+-induced slow inhibition. These results provide a novel mechanism for regulation of TRP channels by phospholipase C–activating hormones via alteration of the sensitivity to intracellular Mg2+.
APA, Harvard, Vancouver, ISO, and other styles
24

Baker, Katherine, Duan Chen, and Wei Cai. "Investigating the Selectivity of KcsA Channel by an Image Charge Solvation Method (ICSM) in Molecular Dynamics Simulations." Communications in Computational Physics 19, no. 4 (April 2016): 927–43. http://dx.doi.org/10.4208/cicp.130315.310815a.

Full text
Abstract:
AbstractIn this paper, we study the selectivity of the potassium channel KcsA by a recently developed image-charge solvation method (ICSM) combined with molecular dynamics simulations. The hybrid solvation model in the ICSM is able to demonstrate atomistically the function of the selectivity filter of the KcsA channel when potassium and sodium ions are considered and their distributions inside the filter are simulated. Our study also shows that the reaction field effect, explicitly accounted for through image charge approximation in the ICSM model, is necessary in reproducing the correct selectivity property of the potassium channels.
APA, Harvard, Vancouver, ISO, and other styles
25

Labro, Alain J., D. Marien Cortes, Cholpon Tilegenova, and Luis G. Cuello. "Inverted allosteric coupling between activation and inactivation gates in K+ channels." Proceedings of the National Academy of Sciences 115, no. 21 (May 7, 2018): 5426–31. http://dx.doi.org/10.1073/pnas.1800559115.

Full text
Abstract:
The selectivity filter and the activation gate in potassium channels are functionally and structurally coupled. An allosteric coupling underlies C-type inactivation coupled to activation gating in this ion-channel family (i.e., opening of the activation gate triggers the collapse of the channel’s selectivity filter). We have identified the second Threonine residue within the TTVGYGD signature sequence of K+ channels as a crucial residue for this allosteric communication. A Threonine to Alanine substitution at this position was studied in three representative members of the K+-channel family. Interestingly, all of the mutant channels exhibited lack of C-type inactivation gating and an inversion of their allosteric coupling (i.e., closing of the activation gate collapses the channel’s selectivity filter). A state-dependent crystallographic study of KcsA-T75A proves that, on activation, the selectivity filter transitions from a nonconductive and deep C-type inactivated conformation to a conductive one. Finally, we provide a crystallographic demonstration that closed-state inactivation can be achieved by the structural collapse of the channel’s selectivity filter.
APA, Harvard, Vancouver, ISO, and other styles
26

Ahern, Christopher A., Jian Payandeh, Frank Bosmans, and Baron Chanda. "The hitchhiker’s guide to the voltage-gated sodium channel galaxy." Journal of General Physiology 147, no. 1 (December 28, 2015): 1–24. http://dx.doi.org/10.1085/jgp.201511492.

Full text
Abstract:
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
APA, Harvard, Vancouver, ISO, and other styles
27

Samanta, Priyanka, Yitang Wang, Shadi Fuladi, Jinjing Zou, Ye Li, Le Shen, Christopher Weber, and Fatemeh Khalili-Araghi. "Molecular determination of claudin-15 organization and channel selectivity." Journal of General Physiology 150, no. 7 (June 18, 2018): 949–68. http://dx.doi.org/10.1085/jgp.201711868.

Full text
Abstract:
Tight junctions are macromolecular structures that traverse the space between adjacent cells in epithelia and endothelia. Members of the claudin family are known to determine tight junction permeability in a charge- and size-selective manner. Here, we use molecular dynamics simulations to build and refine an atomic model of claudin-15 channels and study its transport properties. Our simulations indicate that claudin-15 forms well-defined channels for ions and molecules and otherwise “seals” the paracellular space through hydrophobic interactions. Ionic currents, calculated from simulation trajectories of wild-type as well as mutant channels, reflect in vitro measurements. The simulations suggest that the selectivity filter is formed by a cage of four aspartic acid residues (D55), contributed by four claudin-15 molecules, which creates a negative electrostatic potential to favor cation flux over anion flux. Charge reversal or charge ablation mutations of D55 significantly reduce cation permeability in silico and in vitro, whereas mutations of other negatively charged pore amino acid residues have a significantly smaller impact on channel permeability and selectivity. The simulations also indicate that water and small ions can pass through the channel, but larger cations, such as tetramethylammonium, do not traverse the pore. Thus, our model provides an atomic view of claudin channels, their transport function, and a potential three-dimensional organization of its selectivity filter.
APA, Harvard, Vancouver, ISO, and other styles
28

Garber, S. S., and C. Miller. "Single Na+ channels activated by veratridine and batrachotoxin." Journal of General Physiology 89, no. 3 (March 1, 1987): 459–80. http://dx.doi.org/10.1085/jgp.89.3.459.

Full text
Abstract:
Voltage-sensitive Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers in the presence of either of the alkaloid toxins veratridine (VT) or batrachotoxin (BTX). Both of these toxins are known to cause persistent activation of Na+ channels. With BTX as the channel activator, single channels remain open nearly all the time. Channels activated with VT open and close on a time scale of 1-10 s. Increasing the VT concentration enhances the probability of channel opening, primarily by increasing the rate constant of opening. The kinetics and voltage dependence of channel block by 21-sulfo-11-alpha-hydroxysaxitoxin are identical for VT and BTX, as is the ionic selectivity sequence determined by bi-ionic reversal potential (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). However, there are striking quantitative differences in open channel conduction for channels in the presence of the two activators. Under symmetrical solution conditions, the single channel conductance for Na+ is about twice as high with BTX as with VT. Furthermore, the symmetrical solution single channel conductances show a different selectivity for BTX (Na+ greater than Li+ greater than K+) than for VT (Na+ greater than K+ greater than Li+). Open channel current-voltage curves in symmetrical Na+ and Li+ are roughly linear, while those in symmetrical K+ are inwardly rectifying. Na+ currents are blocked asymmetrically by K+ with both BTX and VT, but the voltage dependence of K+ block is stronger with BTX than with VT. The results show that the alkaloid neurotoxins not only alter the gating process of the Na+ channel, but also affect the structure of the open channel. We further conclude that the rate-determining step for conduction by Na+ does not occur at the channel's "selectivity filter," where poorly permeating ions like K+ are excluded.
APA, Harvard, Vancouver, ISO, and other styles
29

Cucis, Pierre-Antoine, Christian Berger-Vachon, Hung Thaï-Van, Ruben Hermann, Stéphane Gallego, and Eric Truy. "Word Recognition and Frequency Selectivity in Cochlear Implant Simulation: Effect of Channel Interaction." Journal of Clinical Medicine 10, no. 4 (February 10, 2021): 679. http://dx.doi.org/10.3390/jcm10040679.

Full text
Abstract:
In cochlear implants (CI), spread of neural excitation may produce channel interaction. Channel interaction disturbs the spectral resolution and, among other factors, seems to impair speech recognition, especially in noise. In this study, two tests were performed with 20 adult normal-hearing (NH) subjects under different vocoded simulations. First, there was a measurement of word recognition in noise while varying the number of selected channels (4, 8, 12 or 16 maxima out of 20) and the degree of simulated channel interaction (“Low”, “Medium” and “High”). Then, there was an evaluation of spectral resolution function of the degree of simulated channel interaction, reflected by the sharpness (Q10dB) of psychophysical tuning curves (PTCs). The results showed a significant effect of the simulated channel interaction on word recognition but did not find an effect of the number of selected channels. The intelligibility decreased significantly for the highest degree of channel interaction. Similarly, the highest simulated channel interaction impaired significantly the Q10dB. Additionally, a strong intra-individual correlation between frequency selectivity and word recognition in noise was observed. Lastly, the individual changes in frequency selectivity were positively correlated with the changes in word recognition when the degree of interaction went from “Low” to “High”. To conclude, the degradation seen for the highest degree of channel interaction suggests a threshold effect on frequency selectivity and word recognition. The correlation between frequency selectivity and intelligibility in noise supports the hypothesis that PTCs Q10dB can account for word recognition in certain conditions. Moreover, the individual variations of performances observed among subjects suggest that channel interaction does not have the same effect on each individual. Finally, these results highlight the importance of taking into account subjects’ individuality and to evaluate channel interaction through the speech processor.
APA, Harvard, Vancouver, ISO, and other styles
30

Fahlke, Christoph. "Ion permeation and selectivity in ClC-type chloride channels." American Journal of Physiology-Renal Physiology 280, no. 5 (May 1, 2001): F748—F757. http://dx.doi.org/10.1152/ajprenal.2001.280.5.f748.

Full text
Abstract:
Voltage-gated anion channels are present in almost every living cell and have many physiological functions. Recently, a novel gene family encoding voltage-gated chloride channels, the ClC family, was identified. The knowledge of primary amino acid sequences has allowed for the study of these anion channels in heterologous expression systems and made possible the combination of site-directed mutagenesis and high-resolution electrophysiological measurements as a means of gaining insights into the molecular basis of channel function. This review focuses on one particular aspect of chloride channel function, the selective transport of anions through biological membranes. I will describe recent experiments using a combination of cellular electrophysiology, molecular genetics, and recombinant DNA technology to study the molecular basis of ion permeation and selection in ClC-type chloride channels. These novel tools have provided new insights into basic mechanisms underlying the function of these biologically important channels.
APA, Harvard, Vancouver, ISO, and other styles
31

Finol-Urdaneta, Rocio K., Yibo Wang, Ahmed Al-Sabi, Chunfeng Zhao, Sergei Y. Noskov, and Robert J. French. "Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy." Journal of General Physiology 143, no. 2 (January 13, 2014): 157–71. http://dx.doi.org/10.1085/jgp.201311037.

Full text
Abstract:
Striking structural differences between voltage-gated sodium (Nav) channels from prokaryotes (homotetramers) and eukaryotes (asymmetric, four-domain proteins) suggest the likelihood of different molecular mechanisms for common functions. For these two channel families, our data show similar selectivity sequences among alkali cations (relative permeability, Pion/PNa) and asymmetric, bi-ionic reversal potentials when the Na/K gradient is reversed. We performed coordinated experimental and computational studies, respectively, on the prokaryotic Nav channels NaChBac and NavAb. NaChBac shows an “anomalous,” nonmonotonic mole-fraction dependence in the presence of certain sodium–potassium mixtures; to our knowledge, no comparable observation has been reported for eukaryotic Nav channels. NaChBac’s preferential selectivity for sodium is reduced either by partial titration of its highly charged selectivity filter, when extracellular pH is lowered from 7.4 to 5.8, or by perturbation—likely steric—associated with a nominally electro-neutral substitution in the selectivity filter (E191D). Although no single molecular feature or energetic parameter appears to dominate, our atomistic simulations, based on the published NavAb crystal structure, revealed factors that may contribute to the normally observed selectivity for Na over K. These include: (a) a thermodynamic penalty to exchange one K+ for one Na+ in the wild-type (WT) channel, increasing the relative likelihood of Na+ occupying the binding site; (b) a small tendency toward weaker ion binding to the selectivity filter in Na–K mixtures, consistent with the higher conductance observed with both sodium and potassium present; and (c) integrated 1-D potentials of mean force for sodium or potassium movement that show less separation for the less selective E/D mutant than for WT. Overall, tight binding of a single favored ion to the selectivity filter, together with crucial inter-ion interactions within the pore, suggests that prokaryotic Nav channels use a selective strategy more akin to those of eukaryotic calcium and potassium channels than that of eukaryotic Nav channels.
APA, Harvard, Vancouver, ISO, and other styles
32

Cuppoletti, J., A. M. Baker, and D. H. Malinowska. "Cl- channels of the gastric parietal cell that are active at low pH." American Journal of Physiology-Cell Physiology 264, no. 6 (June 1, 1993): C1609—C1618. http://dx.doi.org/10.1152/ajpcell.1993.264.6.c1609.

Full text
Abstract:
HCl secretion across mammalian gastric parietal cell apical membrane may involve Cl- channels. H(+)-K(+)-ATPase-containing membranes isolated from gastric mucosa of histamine-stimulated rabbits were fused to planar lipid bilayers. Channels were recorded with symmetric 800 mM CsCl solutions, pH 7.4. A linear current-voltage (I-V) relationship was obtained, and conductance was 28 +/- 1 pS at 800 mM CsCl. Conductance was 6.9 +/- 2 pS at 150 mM CsCl. Reversal potential was +22 mV with a fivefold cis-trans CsCl concentration gradient, indicating that the channel was anion selective with a discrimination ratio of 6:1 for Cl- over Cs+. Anion selectivity of the channel was I- > Cl- > or = Br- > NO3-, and gluconate was impermeant. Channels obtained at pH 7.4 persisted when pH of medium bathing the trans side of the bilayer (pHtrans) was reduced to pH 3, without a change in conductance, linearity of I-V relationship, or ion selectivity. In contrast, asymmetric reduction of pH of medium bathing the cis side of the bilayer from 7.4 to 3 always resulted in loss of channel activity. At pH 7.4, open probability (Po) of the channel was voltage dependent, i.e., predominantly open at +80 mV but mainly closed at -80 mV. In contrast, with low pHtrans, channel Po at -80 mV was increased 3.5-fold. The Cl- channel was Ca2+ indifferent. In absence of ionophores, ion selectivity for support of H(+)-K(+)-ATPase activity and H+ transport was consistent with that exhibited by the channel and could be limited by substitution with NO3-, whereas maximal H(+)-K(+)-ATPase activity was indifferent to anion present, demonstrating that anion transport can be rate limiting. Cl- channels with similar characteristics (conductance, linear I-V relationship, and ion selectivity) were also present in H(+)-K(+)-ATPase-containing vesicles isolated from resting (cimetidine-treated) gastric mucosa, exhibiting at -80 mV a pH-independent approximately 3.5-fold lower Po than stimulated vesicle channels. At -80 mV, reduction of pHtrans increased Po of both resting and stimulated Cl- channels by five- to sixfold. Changing membrane potential from 0 to -80 mV across stimulated vesicles increased Cl- channel activity an additional 10-fold.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
33

Yan, Jiusheng, Qin Li, and Richard W. Aldrich. "Closed state-coupled C-type inactivation in BK channels." Proceedings of the National Academy of Sciences 113, no. 25 (June 13, 2016): 6991–96. http://dx.doi.org/10.1073/pnas.1607584113.

Full text
Abstract:
Ion channels regulate ion flow by opening and closing their pore gates. K+ channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel’s activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K+ together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K+ channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca2+]i) and recovered with depolarized membrane potentials or elevated [Ca2+]i. Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel’s normal closing may represent an early conformational stage of C-type inactivation.
APA, Harvard, Vancouver, ISO, and other styles
34

Ek-Vitorín, Jose F., and Janis M. Burt. "Quantification of gap junction selectivity." American Journal of Physiology-Cell Physiology 289, no. 6 (December 2005): C1535—C1546. http://dx.doi.org/10.1152/ajpcell.00182.2005.

Full text
Abstract:
Gap junctions, which are essential for functional coordination and homeostasis within tissues, permit the direct intercellular exchange of small molecules. The abundance and diversity of this exchange depends on the number and selectivity of the comprising channels and on the transjunctional gradient for and chemical character of the permeant molecules. Limited knowledge of functionally significant permeants and poor detectability of those few that are known have made it difficult to define channel selectivity. Presented herein is a multifaceted approach to the quantification of gap junction selectivity that includes determination of the rate constant for intercellular diffusion of a fluorescent probe (k2-DYE) and junctional conductance ( gj) for each junction studied, such that the selective permeability (k2-DYE/ gj) for dyes with differing chemical characteristics or junctions with differing connexin (Cx) compositions (or treatment conditions) can be compared. In addition, selective permeability can be correlated using single-channel conductance when this parameter is also measured. Our measurement strategy is capable of detecting 1) rate constants and selective permeabilities that differ across three orders of magnitude and 2) acute changes in that rate constant. Using this strategy, we have shown that 1) the selective permeability of Cx43 junctions to a small cationic dye varied across two orders of magnitude, consistent with the hypothesis that the various channel configurations adopted by Cx43 display different selective permeabilities; and 2) the selective permeability of Cx37 vs. Cx43 junctions was consistently and significantly lower.
APA, Harvard, Vancouver, ISO, and other styles
35

Langan, Patricia S., Venu Gopal Vandavasi, Wojciech Kopec, Brendan Sullivan, Pavel V. Afonne, Kevin L. Weiss, Bert L. de Groot, and Leighton Coates. "The structure of a potassium-selective ion channel reveals a hydrophobic gate regulating ion permeation." IUCrJ 7, no. 5 (July 25, 2020): 835–43. http://dx.doi.org/10.1107/s2052252520008271.

Full text
Abstract:
Protein dynamics are essential to function. One example of this is the various gating mechanisms within ion channels, which are transmembrane proteins that act as gateways into the cell. Typical ion channels switch between an open and closed state via a conformational transition which is often triggered by an external stimulus, such as ligand binding or pH and voltage differences. The atomic resolution structure of a potassium-selective ion channel named NaK2K has allowed us to observe that a hydrophobic residue at the bottom of the selectivity filter, Phe92, appears in dual conformations. One of the two conformations of Phe92 restricts the diameter of the exit pore around the selectivity filter, limiting ion flow through the channel, while the other conformation of Phe92 provides a larger-diameter exit pore from the selectivity filter. Thus, it can be concluded that Phe92 acts as a hydrophobic gate, regulating the flow of ions through the selectivity filter.
APA, Harvard, Vancouver, ISO, and other styles
36

Hackos, David H., and Juan I. Korenbrot. "Divalent Cation Selectivity Is a Function of Gating in Native and Recombinant Cyclic Nucleotide–gated Ion Channels from Retinal Photoreceptors." Journal of General Physiology 113, no. 6 (June 1, 1999): 799–818. http://dx.doi.org/10.1085/jgp.113.6.799.

Full text
Abstract:
The selectivity of Ca2+ over Na+ is ∼3.3-fold larger in cGMP-gated channels of cone photoreceptors than in those of rods when measured under saturating cGMP concentrations, where the probability of channel opening is 85–90%. Under physiological conditions, however, the probability of opening of the cGMP-gated channels ranges from its largest value in darkness of 1–5% to essentially zero under continuous, bright illumination. We investigated the ion selectivity of cGMP-gated channels as a function of cyclic nucleotide concentration in membrane patches detached from the outer segments of rod and cone photoreceptors and have found that ion selectivity is linked to gating. We determined ion selectivity relative to Na+ (PX/PNa) from the value of reversal potentials measured under ion concentration gradients. The selectivity for Ca2+ over Na+ increases continuously as the probability of channel opening rises. The dependence of PCa/PNa on cGMP concentration, in both rods and cones, is well described by the same Hill function that describes the cGMP dependence of current amplitude. At the cytoplasmic cGMP concentrations expected in dark-adapted intact photoreceptors, PCa/PNa in cone channels is ∼7.4-fold greater than that in rods. The linkage between selectivity and gating is specific for divalent cations. The selectivity of Ca2+ and Sr2+ changes with cGMP concentration, but the selectivity of inorganic monovalent cations, Cs+ and NH4+, and organic cations, methylammonium+ and dimethylammonium+, is invariant with cGMP. Cyclic nucleotide–gated channels in rod photoreceptors are heteromeric assemblies of α and β subunits. The maximal PCa/PNa of channels formed from α subunits of bovine rod channels is less than that of heteromeric channels formed from α and β subunits. In addition, Ca2+ is a more effective blocker of channels formed by α subunits than of channels formed by α and β subunits. The cGMP-dependent shift in divalent cation selectivity is a property of αβ channels and not of channels formed from α subunits alone.
APA, Harvard, Vancouver, ISO, and other styles
37

García-Giménez, Elena, Antonio Alcaraz, and Vicente M. Aguilella. "Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity." Biochemistry Research International 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/245786.

Full text
Abstract:
Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH). We extend here the characterization of the OmpF porin, a wide channel of the outer membrane ofE. coli,by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc.) that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.
APA, Harvard, Vancouver, ISO, and other styles
38

Wu, Wei, Frank B. Sachse, Alison Gardner, and Michael C. Sanguinetti. "Stoichiometry of altered hERG1 channel gating by small molecule activators." Journal of General Physiology 143, no. 4 (March 17, 2014): 499–512. http://dx.doi.org/10.1085/jgp.201311038.

Full text
Abstract:
Voltage-gated K+ channels are tetramers formed by coassembly of four identical or highly related subunits. All four subunits contribute to formation of the selectivity filter, the narrowest region of the channel pore which determines K+ selective conductance. In some K+ channels, the selectivity filter can undergo a conformational change to reduce K+ flux by a mechanism called C-type inactivation. In human ether-a-go-go–related gene 1 (hERG1) K+ channels, C-type inactivation is allosterically inhibited by ICA-105574, a substituted benzamide. PD-118057, a 2-(phenylamino) benzoic acid, alters selectivity filter gating to enhance open probability of channels. Both compounds bind to a hydrophobic pocket located between adjacent hERG1 subunits. Accordingly, a homotetrameric channel contains four identical activator binding sites. Here we determine the number of binding sites required for maximal drug effect and determine the role of subunit interactions in the modulation of hERG1 gating by these compounds. Concatenated tetramers were constructed to contain a variable number (zero to four) of wild-type and mutant hERG1 subunits, either L646E to inhibit PD-118057 binding or F557L to inhibit ICA-105574 binding. Enhancement of hERG1 channel current magnitude by PD-118057 and attenuated inactivation by ICA-105574 were mediated by cooperative subunit interactions. Maximal effects of the both compounds required the presence of all four binding sites. Understanding how hERG1 agonists allosterically modify channel gating may facilitate mechanism-based drug design of novel agents for treatment of long QT syndrome.
APA, Harvard, Vancouver, ISO, and other styles
39

Lawson, Kim. "Is there a Therapeutic Future for ‘Potassium Channel Openers’?" Clinical Science 91, no. 6 (December 1, 1996): 651–63. http://dx.doi.org/10.1042/cs0910651.

Full text
Abstract:
1. Potassium channels, which control cell electrical activity, are among the most regulated of all ion channels in biology. Promotion of activity in K+ channels by a wide range of physiological factors tends to stabilize cell function. 2. The discovery of synthetic molecules (e.g. cromakalim) that ‘directly’ open ATP-sensitive K+ channels has led to a new direction in pharmacology. ATP-sensitive K+ channel-opening properties have subsequently been demonstrated in a diverse range of chemical structures (synthetic and endogenous). 3. The existence of so many different subtypes of K+ channels has been an impetus in the search of new potassium channel openers with different channel selectivities and thus biological profiles. 4. The decrease in cell excitability following K+ channel opening implies a broad clinical potential in a number of pathological conditions for K+ channel openers. Preclinical and clinical evidence supports therapeutic roles of K+ channel openers in disorders of a wide range of biological cells. 5. Although lack of selectivity of current compounds remains a major hurdle, advances in K+ channel openers and K+ channel pharmacology are encouraging. Differences already observed in the pharmacology of K+ channel openers are important factors for the development of second-generation compounds, when tissue selectivity is sought. 6. The availability of subtype-selective K+ channel openers will facilitate detailed study, through a combined effort of electrophysiology, functional pharmacology and molecular biology, leading to focused therapeutic approaches for defined pathological conditions.
APA, Harvard, Vancouver, ISO, and other styles
40

Roux, Benoît. "Ion channels and ion selectivity." Essays in Biochemistry 61, no. 2 (May 9, 2017): 201–9. http://dx.doi.org/10.1042/ebc20160074.

Full text
Abstract:
Specific macromolecular transport systems, ion channels and pumps, provide the pathways to facilitate and control the passage of ions across the lipid membrane. Ion channels provide energetically favourable passage for ions to diffuse rapidly and passively according to their electrochemical potential. Selective ion channels are essential for the excitability of biological membranes: the action potential is a transient phenomenon that reflects the rapid opening and closing of voltage-dependent Na+-selective and K+-selective channels. One of the most critical functional aspects of K+ channels is their ability to remain highly selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Permeation through the K+ channel selectivity filter is believed to proceed as a ‘knockon’ mechanism, in which 2–3 K+ ions interspersed by water molecules move in a single file. Permeation through the comparatively wider and less selective Na+ channels also proceeds via a loosely coupled knockon mechanism, although the ions do not need to be fully dehydrated. While simple structural concepts are often invoked to rationalize the mechanism of ion selectivity, a deeper analysis shows that subtle effects play an important role in these flexible dynamical structures.
APA, Harvard, Vancouver, ISO, and other styles
41

Oberwinkler, Johannes, Annette Lis, Klaus M. Giehl, Veit Flockerzi, and Stephan E. Philipp. "Alternative Splicing Switches the Divalent Cation Selectivity of TRPM3 Channels." Journal of Biological Chemistry 280, no. 23 (April 11, 2005): 22540–48. http://dx.doi.org/10.1074/jbc.m503092200.

Full text
Abstract:
TRPM3 is a poorly understood member of the large family of transient receptor potential (TRP) ion channels. Here we describe five novel splice variants of TRPM3, TRPM3α1–5. These variants are characterized by a previously unknown amino terminus of 61 residues. The differences between the five variants arise through splice events at three different sites. One of these splice sites might be located in the pore region of the channel as indicated by sequence alignment with other, better-characterized TRP channels. We selected two splice variants, TRPM3α1 and TRPM3α2, that differ only in this presumed pore region and analyzed their biophysical characteristics after heterologous expression in human embryonic kidney 293 cells. TRPM3α1 as well as TRPM3α2 induced a novel, outwardly rectifying cationic conductance that was tightly regulated by intracellular Mg2+. However, these two variants are highly different in their ionic selectivity. Whereas TRPM3α1-encoded channels are poorly permeable for divalent cations, TRPM3α2-encoded channels are well permeated by Ca2+ and Mg2+. Additionally, we found that currents through TRPM3α2 are blocked by extracellular monovalent cations, whereas currents through TRPM3α1 are not. These differences unambiguously show that TRPM3 proteins constitute a pore-forming channel subunit and localize the position of the ion-conducting pore within the TRPM3 protein. Although the ionic selectivity of ion channels has traditionally been regarded as rather constant for a given channel-encoding gene, our results show that alternative splicing can be a mechanism to produce channels with very different selectivity profiles.
APA, Harvard, Vancouver, ISO, and other styles
42

Shin, Yeon-Kyun. "Mg2+ Channel Selectivity Probed by EPR." Structure 18, no. 7 (July 2010): 759–60. http://dx.doi.org/10.1016/j.str.2010.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hermsmeyer, Kent, and Koichi Miyagawa. "Novel concepts in Ca2+ channel selectivity." Journal of Hypertension 15 (1997): S5—S10. http://dx.doi.org/10.1097/00004872-199715033-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Stroud, Robert M., Peter Nollert, Larry J. W. Miercke, William E. C. Harries, and Joe O'Connell. "Encoding Selectivity of a Transmembrane Channel." Scientific World JOURNAL 2 (2002): 111. http://dx.doi.org/10.1100/tsw.2002.52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shapiro, M. S., and T. E. DeCoursey. "Selectivity and gating of the type L potassium channel in mouse lymphocytes." Journal of General Physiology 97, no. 6 (June 1, 1991): 1227–50. http://dx.doi.org/10.1085/jgp.97.6.1227.

Full text
Abstract:
Type l voltage-gated K+ channels in murine lymphocytes were studied under voltage clamp in cell-attached patches and in the whole-cell configuration. The kinetics of activation of whole-cell currents during depolarizing pulses could be fit by a single exponential after an initial delay. Deactivation upon repolarization of both macroscopic and microscopic currents was mono-exponential, except in Rb-Ringer or Cs-Ringer solution in which tail currents often displayed "hooks," wherein the current first increased or remained constant before decaying. In some cells type l currents were contaminated by a small component due to type n K+ channels, which deactivate approximately 10 times slower than type l channels. Both macroscopic and single channel currents could be dissected either kinetically or pharmacologically into these two K+ channel types. The ionic selectivity and conductance of type l channels were studied by varying the internal and external permeant ion. With 160 mM K+ in the cell, the relative permeability calculated from the reversal potential with the Goldman-Hodgkin-Katz equation was K+ (identical to 1.0) greater than Rb+ (0.76) greater than NH4+ = Cs+ (0.12) much greater than Na+ (less than 0.004). Measured 30 mV negative to the reversal potential, the relative conductance sequence was quite different: NH4+ (1.5) greater than K+ (identical to 1.0) greater than Rb+ (0.5) greater than Cs+ (0.06) much greater than Na+, Li+, TMA+ (unmeasurable). Single channel current rectification resembled that of the whole-cell instantaneous I-V relation. Anomalous mole-fraction dependence of the relative permeability PNH4/PK was observed in NH4(+)-K+ mixtures, indicating that the type l K+ channel is a multi-ion pore. Compared with other K+ channels, lymphocyte type l K+ channels are most similar to "g12" channels in myelinated nerve.
APA, Harvard, Vancouver, ISO, and other styles
46

Qu, Wei, Andrew J. Moorhouse, Meenak Chandra, Kerrie D. Pierce, Trevor M. Lewis, and Peter H. Barry. "A Single P-loop Glutamate Point Mutation to either Lysine or Arginine Switches the Cation–Anion Selectivity of the CNGA2 Channel." Journal of General Physiology 127, no. 4 (March 13, 2006): 375–89. http://dx.doi.org/10.1085/jgp.200509378.

Full text
Abstract:
Cyclic nucleotide-gated (CNG) channels play a critical role in olfactory and visual transduction. Site-directed mutagenesis and inside-out patch-clamp recordings were used to investigate ion permeation and selectivity in two mutant homomeric rat olfactory CNGA2 channels expressed in HEK293 cells. A single point mutation of the negatively charged pore loop (P-loop) glutamate (E342) to either a positively charged lysine or arginine resulted in functional channels, which consistently responded to cGMP, although the currents were generally extremely small. The concentration–response curve of the lysine mutant channel was very similar to that of wild-type (WT) channels, suggesting no major structural alteration to the mutant channels. Reversal potential measurements, during cytoplasmic NaCl dilutions, showed that the lysine and the arginine mutations switched the selectivity of the channel from cations (PCl/PNa = 0.07 [WT]) to anions (PCl/PNa = 14 [Lys] or 10 [Arg]). Relative anion permeability sequences for the two mutant channels, measured with bi-ionic substitutions, were NO3− > I− > Br− > Cl− > F− > acetate−, the same as those obtained for anion-selective GABA and glycine channels. The mutant channels also seem to have an extremely small single-channel conductance, measured using noise analysis of about 1–2 pS, compared to a WT value of about 29 pS. The results showed that it is predominantly the charge of the E342 residue in the P-loop, rather than the pore helix dipoles, which controls the cation–anion selectivity of this channel. However, the outward rectification displayed by both mutant channels in symmetrical NaCl solutions suggests that the negative ends of the pore helix dipoles may play a role in reducing the outward movement of Cl− ions through these anion-selective channels. These results have potential implications for the determinants of anion–cation selectivity in the large family of P-loop–containing channels.
APA, Harvard, Vancouver, ISO, and other styles
47

Consiglio, Joseph F., Payam Andalib, and Stephen J. Korn. "Influence of Pore Residues on Permeation Properties in the Kv2.1 Potassium Channel. Evidence for a Selective Functional Interaction of K+ with the Outer Vestibule." Journal of General Physiology 121, no. 2 (February 1, 2003): 111–24. http://dx.doi.org/10.1085/jgp.20028756.

Full text
Abstract:
The Kv2.1 potassium channel contains a lysine in the outer vestibule (position 356) that markedly reduces open channel sensitivity to changes in external [K+]. To investigate the mechanism underlying this effect, we examined the influence of this outer vestibule lysine on three measures of K+ and Na+ permeation. Permeability ratio measurements, measurements of the lowest [K+] required for interaction with the selectivity filter, and measurements of macroscopic K+ and Na+ conductance, were all consistent with the same conclusion: that the outer vestibule lysine in Kv2.1 interferes with the ability of K+ to enter or exit the extracellular side of the selectivity filter. In contrast to its influence on K+ permeation properties, Lys 356 appeared to be without effect on Na+ permeation. This suggests that Lys 356 limited K+ flux by interfering with a selective K+ binding site. Combined with permeation studies, results from additional mutagenesis near the external entrance to the selectivity filter indicated that this site was located external to, and independent from, the selectivity filter. Protonation of a naturally occurring histidine in the same outer vestibule location in the Kv1.5 potassium channel produced similar effects on K+ permeation properties. Together, these results indicate that a selective, functional K+ binding site (e.g., local energy minimum) exists in the outer vestibule of voltage-gated K+ channels. We suggest that this site is the location of K+ hydration/dehydration postulated to exist based on the structural studies of KcsA. Finally, neutralization of position 356 enhanced outward K+ current magnitude, but did not influence the ability of internal K+ to enter the pore. These data indicate that in Kv2.1, exit of K+ from the selectivity filter, rather than entry of internal K+ into the channel, limits outward current magnitude. We discuss the implications of these findings in relation to the structural basis of channel conductance in different K+ channels.
APA, Harvard, Vancouver, ISO, and other styles
48

Bourke, J. R., K. C. Abel, G. J. Huxham, O. Sand, and S. W. Manley. "Sodium channel heterogeneity in the apical membrane of porcine thyroid epithelial cells." Journal of Endocrinology 149, no. 1 (April 1996): 101–8. http://dx.doi.org/10.1677/joe.0.1490101.

Full text
Abstract:
Abstract Porcine thyroid epithelial cells cultured as a monolayer with their apical membranes facing the medium are known to absorb Na+ and secrete Cl−. Two types of Na+ channels were found in cell-attached patches of apical membrane. A low conductance Na+ channel (conductance g=4 picosiemens (pS)) remained open for seconds and showed a high selectivity for Na+ compared with K+. In contrast, a high conductance Na+ channel (g=10 pS) flickered rapidly and had reduced selectivity. Both types of Na+ channel became more prevalent when the cells were exposed to Na+-free medium, though only the high conductance channel increased in prevalence on addition of prostaglandin E2, a stimulator of adenylate cyclase which increases Na+ absorption in this cultured epithelium. Two minority types of channel were also found: a non-selective small conductance cation channel which had been reported previously, and an intermediate conductance channel found only in Na+-free medium. It was concluded that passage of Na+ across the apical membrane of thyroid cells is mediated by typical epithelial Na+ channels, but that the two types of channel are differentially regulated. Journal of Endocrinology (1996) 149, 101–108
APA, Harvard, Vancouver, ISO, and other styles
49

Furini, Simone, and Carmen Domene. "Ion-triggered selectivity in bacterial sodium channels." Proceedings of the National Academy of Sciences 115, no. 21 (May 7, 2018): 5450–55. http://dx.doi.org/10.1073/pnas.1722516115.

Full text
Abstract:
Since the availability of the first crystal structure of a bacterial Na+ channel in 2011, understanding selectivity across this family of membrane proteins has been the subject of intense research efforts. Initially, free energy calculations based on molecular dynamics simulations revealed that although sodium ions can easily permeate the channel with their first hydration shell almost intact, the selectivity filter is too narrow for efficient conduction of hydrated potassium ions. This steric view of selectivity was subsequently questioned by microsecond atomic trajectories, which proved that the selectivity filter appears to the permeating ions as a highly degenerate, liquid-like environment. Although this liquid-like environment looks optimal for rapid conduction of Na+, it seems incompatible with efficient discrimination between similar ion species, such as Na+ and K+, through steric effects. Here extensive molecular dynamics simulations, combined with Markov state model analyses, reveal that at positive membrane potentials, potassium ions trigger a conformational change of the selectivity toward a nonconductive metastable state. It is this transition of the selectivity filter, and not steric effects, that prevents the outward flux of K+ at positive membrane potentials. This description of selectivity, triggered by the nature of the permeating ions, might have implications on the current understanding of how ion channels, and in particular bacterial Na+ channels, operate at the atomic scale.
APA, Harvard, Vancouver, ISO, and other styles
50

Yue, Lixia, Betsy Navarro, Dejian Ren, Arnolt Ramos, and David E. Clapham. "The Cation Selectivity Filter of the Bacterial Sodium Channel, NaChBac." Journal of General Physiology 120, no. 6 (November 11, 2002): 845–53. http://dx.doi.org/10.1085/jgp.20028699.

Full text
Abstract:
The Bacillus halodurans voltage-gated sodium-selective channel (NaChBac) (Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001b. Science. 294:2372–2375), is an ideal candidate for high resolution structural studies because it can be expressed in mammalian cells and its functional properties studied in detail. It has the added advantage of being a single six transmembrane (6TM) orthologue of a single repeat of mammalian voltage-gated Ca2+ (CaV) and Na+ (NaV) channels. Here we report that six amino acids in the pore domain (LESWAS) participate in the selectivity filter. Replacing the amino acid residues adjacent to glutamatic acid (E) by a negatively charged aspartate (D; LEDWAS) converted the Na+-selective NaChBac to a Ca2+- and Na+-permeant channel. When additional aspartates were incorporated (LDDWAD), the mutant channel resulted in a highly expressing voltage-gated Ca2+-selective conductance.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography