Academic literature on the topic 'Chaos expansion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chaos expansion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chaos expansion"
Rahman, Sharif. "A Spline Chaos Expansion." SIAM/ASA Journal on Uncertainty Quantification 8, no. 1 (January 2020): 27–57. http://dx.doi.org/10.1137/19m1239702.
Full textSEPAHVAND, K., S. MARBURG, and H. J. HARDTKE. "UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION." International Journal of Applied Mechanics 02, no. 02 (June 2010): 305–53. http://dx.doi.org/10.1142/s1758825110000524.
Full textGaspard, P. "Quantization of Chaos: -Expansion Theory." Progress of Theoretical Physics Supplement 116 (May 16, 2013): 59–106. http://dx.doi.org/10.1143/ptp.116.59.
Full textYin, Shengwen, Xiaohan Zhu, and Xiang Liu. "A Novel Sparse Polynomial Expansion Method for Interval and Random Response Analysis of Uncertain Vibro-Acoustic System." Shock and Vibration 2021 (September 23, 2021): 1–15. http://dx.doi.org/10.1155/2021/1125373.
Full textCrestaux, Thierry, Olivier Le Maıˆtre, and Jean-Marc Martinez. "Polynomial chaos expansion for sensitivity analysis." Reliability Engineering & System Safety 94, no. 7 (July 2009): 1161–72. http://dx.doi.org/10.1016/j.ress.2008.10.008.
Full textGayrard, Emeline, Cédric Chauvière, Hacène Djellout, and Pierre Bonnet. "MODELING EXPERIMENTAL DATA WITH POLYNOMIALS CHAOS." Probability in the Engineering and Informational Sciences 34, no. 1 (August 14, 2018): 14–26. http://dx.doi.org/10.1017/s026996481800030x.
Full textShao, Hua, Yuming Shi, and Hao Zhu. "Strong Li–Yorke Chaos for Time-Varying Discrete Dynamical Systems with A-Coupled-Expansion." International Journal of Bifurcation and Chaos 25, no. 13 (December 15, 2015): 1550186. http://dx.doi.org/10.1142/s0218127415501862.
Full textBriand, Philippe, and Céline Labart. "Simulation of BSDEs by Wiener chaos expansion." Annals of Applied Probability 24, no. 3 (June 2014): 1129–71. http://dx.doi.org/10.1214/13-aap943.
Full textPaffrath, M., and U. Wever. "Adapted polynomial chaos expansion for failure detection." Journal of Computational Physics 226, no. 1 (September 2007): 263–81. http://dx.doi.org/10.1016/j.jcp.2007.04.011.
Full textCooper, Fred, John Dawson, Salman Habib, Yuval Kluger, Dawn Meredith, and Harvey Shepard. "Semiquantum chaos and the large N expansion." Physica D: Nonlinear Phenomena 83, no. 1-3 (May 1995): 74–97. http://dx.doi.org/10.1016/0167-2789(94)00251-k.
Full textDissertations / Theses on the topic "Chaos expansion"
Szepietowska, Katarzyna. "POLYNOMIAL CHAOS EXPANSION IN BIO- AND STRUCTURAL MECHANICS." Thesis, Bourges, INSA Centre Val de Loire, 2018. http://www.theses.fr/2018ISAB0004/document.
Full textThis thesis presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the repair of ventral hernias. Many uncertainties appear in the modelling of the implant-abdominal wall system. The probabilistic approach proposed in this thesis enables these uncertainties to be propagated to the output of the model and the investigation of their respective influences. The regression-based polynomial chaos expansion method is used here. However, the accuracy of such non-intrusive methods depends on the number and location of sampling points. Finding a universal method to achieve a good balance between accuracy and computational cost is still an open question so different approaches are investigated in this thesis in order to choose an efficient method. Global sensitivity analysis is used to investigate the respective influences of input uncertainties on the variation of the outputs of different models. The uncertainties are propagated to the implant-abdominal wall models in order to draw some conclusions important for further research. Using the expertise acquired from biomechanical models, modelling of historic timber joints and simulations of their mechanical behaviour is undertaken. Such an investigation is important owing to the need for efficient planning of repairs and renovation of buildings of historical value
Aït-Simmou, Abderrahmane. "Filtrage non-linéaire et expansion en chaos de Wiener /." Thèse, Trois-Rivières : Université du Québec à Trois-Rivières, 2002. http://www.uqtr.ca/biblio/notice/tablemat/03-2246353TM.html.
Full textAït-Simmou, Abderrahmane. "Filtrage non-linéaire et expansion en chaos de Wiener." Thèse, Université du Québec à Trois-Rivières, 2002. http://depot-e.uqtr.ca/3992/1/000102224.pdf.
Full textNydestedt, Robin. "Application of Polynomial Chaos Expansion for Climate Economy Assessment." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223985.
Full textInom klimatekonomi används integrated assessment models (IAMs) för att förutspå hur klimatförändringar påverkar ekonomin. Dessa IAMs modellerar komplexa interaktioner mellan geofysiska och mänskliga system för att kunna kvantifiera till exempel kostnaden för den ökade koldioxidhalten på planeten, i.e. Social Cost of Carbon (SCC). Detta representerar den ekonomiska kostnaden som motsvaras av utsläppet av ett ton koldioxid. Faktumet att både de geofysiska och ekonomiska submodulerna är stokastiska gör att SCC-uppskattningar varierar mycket även inom väletablerade IAMs som PAGE och DICE. Variationen grundar sig i skillnader inom modellerna men också från att val av sannolikhetsfördelningar för de stokastiska variablerna skiljer sig. Eftersom IAMs ofta är formulerade som optimeringsproblem leder dessutom osäkerheterna till höga beräkningskostnader. I denna uppsats introduceras en ny IAM, FAIR/DICE, som är en diskret tids hybrid av DICE och FAIR. Den utgör en potentiell förbättring av DICE eftersom klimat- och kolmodulerna i FAIR även behandlar återkoppling från klimatmodulen till kolmodulen. FAIR/DICE är analyserad med hjälp av Polynomial Chaos Expansions (PCEs), ett alternativ till Monte Carlo-metoder. Med hjälp av PCEs kan de osäkerheter projiceras på stokastiska polynomrum vilket har fördelen att beräkningskostnader reduceras men nackdelen att lagringskraven ökar. Detta eftersom många av beräkningarna kan sparas från första simuleringen av systemet, dessutom kan statistik extraheras direkt från PCE koefficienterna utan behov av sampling. FAIR/DICE systemet projiceras med hjälp av PCEs där en osäkerhet är introducerad via equilibrium climate sensitivity (ECS), vilket i sig är ett värde på hur känsligt klimatet är för koldioxidförändringar. ECS modelleras med hjälp av en fyra-parameters Beta sannolikhetsfördelning. Avslutningsvis jämförs resultat i medelvärde och varians mellan PCE implementationen av FAIR/DICE och en Monte Carlo-baserad referens, därefter ges förslag på framtida utvecklingsområden.
Luo, Wuan Hou Thomas Y. "Wiener chaos expansion and numerical solutions of stochastic partial differential equations /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05182006-173710.
Full textPrice, Darryl Brian. "Estimation of Uncertain Vehicle Center of Gravity using Polynomial Chaos Expansions." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/33625.
Full textMaster of Science
Cattell, Simon. "A Wiener chaos based approach to stability analysis of stochastic shear flows." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289421.
Full textSong, Chen [Verfasser], and Vincent [Akademischer Betreuer] Heuveline. "Uncertainty Quantification for a Blood Pump Device with Generalized Polynomial Chaos Expansion / Chen Song ; Betreuer: Vincent Heuveline." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252406/34.
Full textLangewisch, Dustin R. "Application of the polynomial chaos expansion to multiphase CFD : a study of rising bubbles and slug flow." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92097.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 157-167).
Part I of this thesis considers subcooled nucleate boiling on the microscale, focusing on the analysis of heat transfer near the Three-Phase (solid, liquid, and vapor) contact Line (TPL) region. A detailed derivation of one representative TPL model is presented. From this work, it was ultimately concluded that heat transfer in the vicinity of the TPL is rather unimportant in the overall quantification of nucleate boiling heat transfer; despite the extremely high heat fluxes that are attainable, it is limited to a very small region so the net heat transfer from this region is comparatively small. It was further concluded that many of the so-called microlayer heat transfer models appearing in the literature are actually models for TPL heat transfer; these models do not model the experimentally observed microlayer. This portion of the project was terminated early, however, in order to focus on the application of advanced computational uncertainty quantification methods to computational multiphase fluid dynamics (Part II). Part II discusses advanced uncertainty quantification (UQ) methods for long-running numerical models, namely computational multiphase fluid dynamics (CMFD) simulations. We consider the problem of how to efficiently propagate uncertainties in the model inputs (e.g., fluid properties, such as density, viscosity, etc.) through a computationally demanding model. The challenge is chiefly a matter of economics-the long run-time of these simulations limits the number of samples that one can reasonably obtain (i.e., the number of times the simulation can be run). Chapter 2 introduces the generalized Polynomial Chaos (gPC) expansion, which has shown promise for reducing the computational cost of performing UQ for a large class of problems, including heat transfer and single phase, incompressible flow simulations; example applications are demonstrated in Chapter 2. One of main objectives of this research was to ascertain whether this promise extends to realm of CMFD applications, and this is the topic of Chapters 3 and 4; Chapter 3 covers the numerical simulation of a single bubble rising in a quiescent liquid bath. The pertinent quantities from these simulations are the terminal velocity of the bubble and terminal bubble shape. the simulations were performed using the open source gerris flow solver. A handful of test cases were performed to validate the simulation results against available experimental data and numerical results from other authors; the results from gerris were found to compare favorably. Following the validation, we considered two uncertainty quantifications problems. In the first problem, the viscosity of the surrounding liquid is modeled as a uniform random variable and we quantify the resultant uncertainty in the bubbles terminal velocity. The second example is similar, except the bubble's size (diameter) is modeled as a log-normal random variable. In this case, the Hermite expansion is seen to converge almost immediately; a first-order Hermite expansion computed using 3 model evaluations is found to capture the terminal velocity distribution almost exactly. Both examples demonstrate that NISP can be successfully used to efficiently propagate uncertainties through CMFD models. Finally, we describe a simple technique to implement a moving reference frame in gerris. Chapter 4 presents an extensive study of the numerical simulation of capillary slug flow. We review existing correlations for the thickness of the liquid film surrounding a Taylor bubble and the pressure drop across the bubble. Bretherton's lubrication analysis, which yields analytical predictions for these quantities when inertial effects are negligible and Ca[beta] --> o, is considered in detail. In addition, a review is provided of film thickness correlations that are applicable for high Cab or when inertial effects are non-negligible. An extensive computational study was undertaken with gerris to simulate capillary slug flow under a variety of flow conditions; in total, more than two hundred simulations were carried out. The simulations were found to compare favorably with simulations performed previously by other authors using finite elements. The data from our simulations have been used to develop a new correlation for the film thickness and bubble velocity that is generally applicable. While similar in structure to existing film thickness correlations, the present correlation does not require the bubble velocity to be known a priori. We conclude with an application of the gPC expansion to quantify the uncertainty in the pressure drop in a channel in slug flow when the bubble size is described by a probability distribution. It is found that, although the gPC expansion fails to adequately quantify the uncertainty in field quantities (pressure and velocity) near the liquid-vapor interface, it is nevertheless capable of representing the uncertainty in other quantities (e.g., channel pressure drop) that do not depend sensitively on the precise location of the interface.
by Dustin R. Langewisch.
Ph. D.
Koehring, Andrew. "The application of polynomial response surface and polynomial chaos expansion metamodels within an augmented reality conceptual design environment." [Ames, Iowa : Iowa State University], 2008.
Find full textBooks on the topic "Chaos expansion"
Nicolay, David. Asymptotic Chaos Expansions in Finance. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6506-4.
Full text(Editor), Michele Carter, Robh Ruppel (Illustrator), Tony DiTerlizzi (Illustrator), Rob Lazzaretti (Illustrator), Dana Knutson (Illustrator), and Robin Raab (Illustrator), eds. Planes of Chaos (Advanced Dungeons & Dragons, 2nd Edition: Planescape, Campaign Expansion/2603). Wizards of the Coast, 1994.
Find full textChristian, Houdré, Pérez-Abreu Víctor, and Workshop on Multiple Wiener-Itô and Their Applications (1992 : Centro de Investigación en Matemáticas), eds. Chaos expansions, multiple Wiener-Itô integrals and their applications. Boca Raton, FL: CRC Press, 1994.
Find full textPeccati, Giovanni, and Matthias Reitzner. Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic Geometry. Springer, 2016.
Find full textPeccati, Giovanni, and Matthias Reitzner. Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic Geometry. Springer, 2018.
Find full textOrkaby, Asher. Beyond the Arab Cold War. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190618445.001.0001.
Full textLeitch, Thomas, ed. The Oxford Handbook of Adaptation Studies. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199331000.001.0001.
Full textBook chapters on the topic "Chaos expansion"
Yokoyama, Tadashi. "Improving the Classical Expansion of the Disturbing Function." In From Newton to Chaos, 99–102. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1085-1_8.
Full textWang, Chuanfu, and Qun Ding. "Camellia Key Expansion Algorithm Based on Chaos." In Advances in Intelligent Systems and Computing, 210–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48499-0_26.
Full textRozovsky, Boris L., and Sergey V. Lototsky. "Chaos Expansion for Linear Stochastic Evolution Systems." In Stochastic Evolution Systems, 279–314. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94893-5_8.
Full textLevajković, Tijana, and Hermann Mena. "Equations Involving Malliavin Derivative: A Chaos Expansion Approach." In Pseudo-Differential Operators and Generalized Functions, 199–216. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14618-8_14.
Full textUstunel, A. S., and M. Zakai. "The Wiener Chaos Expansion of Certain Radon-Nikodym Derivatives." In Stochastic Analysis and Related Topics, 365–69. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0373-5_10.
Full textChikhaoui, K., N. Kacem, N. Bouhaddi, and M. Guedri. "Uncertainty Propagation Combining Robust Condensation and Generalized Polynomial Chaos Expansion." In Model Validation and Uncertainty Quantification, Volume 3, 225–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15224-0_24.
Full textMarchi, Mariapia, Enrico Rigoni, Rosario Russo, and Alberto Clarich. "Percentile via Polynomial Chaos Expansion: Bridging Robust Optimization with Reliability." In EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII, 57–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49325-1_3.
Full textVibe, Alexander, and Nicole Marheineke. "Wiener Chaos Expansion for an Inextensible Kirchhoff Beam Driven by Stochastic Forces." In Progress in Industrial Mathematics at ECMI 2016, 761–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63082-3_112.
Full textHu, Junjun, S. Lakshmivarahan, and John M. Lewis. "Quantification of Forecast Uncertainty and Data Assimilation Using Wiener’s Polynomial Chaos Expansion." In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III), 141–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43415-5_7.
Full textZhao, Huan, and Zhenghong Gao. "Uncertainty-Based Design Optimization of NLF Airfoil Based on Polynomial Chaos Expansion." In Lecture Notes in Electrical Engineering, 1576–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_126.
Full textConference papers on the topic "Chaos expansion"
Mohammed, V. Anis, and S. T. G. Raghukanth. "Uncertainty Quantification Using Wiener Chaos Expansion." In 5th International Congress on Computational Mechanics and Simulation. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1139-3_455.
Full textWatanabe, Shinzo. "Martingale Representation Theorem and Chaos Expansion." In Proceedings of the 5th Ritsumeikan International Symposium. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774637_0007.
Full textXiong, Fenfen, Bin Xue, Zhang Yan, and Shuxing Yang. "Polynomial chaos expansion based robust design optimization." In 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE). IEEE, 2011. http://dx.doi.org/10.1109/icqr2mse.2011.5976745.
Full textCodecasa, Lorenzo, and Luca Di Rienzo. "Stochastic thermal modeling by polynomial chaos expansion." In 2013 19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). IEEE, 2013. http://dx.doi.org/10.1109/therminic.2013.6675234.
Full textNovák, Lukáš, Miroslav Vořechovský, and Václav Sadílek. "ADAPTIVE SEQUENTIAL SAMPLING FOR POLYNOMIAL CHAOS EXPANSION." In 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Athens: Institute of Research and Development for Computational Methods in Engineering Sciences (ICMES), 2021. http://dx.doi.org/10.7712/120221.8038.18955.
Full textChen, Guangsong, Linfang Qian, Jia Ma, and Lei Ji. "A new efficient adaptive polynomial chaos expansion metamodel." In 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2015. http://dx.doi.org/10.1109/aim.2015.7222702.
Full textPettit, Chris, and Philip Beran. "Polynomial Chaos Expansion Applied to Airfoil Limit Cycle Oscillations." In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1691.
Full textMuhlpfordt, Tillmann, Timm Faulwasser, and Veit Hagenmeyer. "Solving stochastic AC power flow via polynomial chaos expansion." In 2016 IEEE Conference on Control Applications (CCA). IEEE, 2016. http://dx.doi.org/10.1109/cca.2016.7587824.
Full textFrick, Eduard, Jan B. Preibisch, Christian Seifert, Marko Lindner, and Christian Schuster. "Variability analysis of via crosstalk using polynomial chaos expansion." In 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO). IEEE, 2017. http://dx.doi.org/10.1109/nemo.2017.7964272.
Full textPreibisch, Jan B., Piero Triverio, and Christian Schuster. "Sensitivity analysis of via impedance using polynomial chaos expansion." In 2015 IEEE 19th Workshop on Signal and Power Integrity (SPI). IEEE, 2015. http://dx.doi.org/10.1109/sapiw.2015.7237386.
Full textReports on the topic "Chaos expansion"
Jakeman, John, Fabian Franzelin, Akil Narayan, Michael Eldred, and Dirk Pflueger. Polynomial chaos expansions for dependent random variables. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1762354.
Full text