Dissertations / Theses on the topic 'Chaos expansion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 dissertations / theses for your research on the topic 'Chaos expansion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Szepietowska, Katarzyna. "POLYNOMIAL CHAOS EXPANSION IN BIO- AND STRUCTURAL MECHANICS." Thesis, Bourges, INSA Centre Val de Loire, 2018. http://www.theses.fr/2018ISAB0004/document.
Full textThis thesis presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the repair of ventral hernias. Many uncertainties appear in the modelling of the implant-abdominal wall system. The probabilistic approach proposed in this thesis enables these uncertainties to be propagated to the output of the model and the investigation of their respective influences. The regression-based polynomial chaos expansion method is used here. However, the accuracy of such non-intrusive methods depends on the number and location of sampling points. Finding a universal method to achieve a good balance between accuracy and computational cost is still an open question so different approaches are investigated in this thesis in order to choose an efficient method. Global sensitivity analysis is used to investigate the respective influences of input uncertainties on the variation of the outputs of different models. The uncertainties are propagated to the implant-abdominal wall models in order to draw some conclusions important for further research. Using the expertise acquired from biomechanical models, modelling of historic timber joints and simulations of their mechanical behaviour is undertaken. Such an investigation is important owing to the need for efficient planning of repairs and renovation of buildings of historical value
Aït-Simmou, Abderrahmane. "Filtrage non-linéaire et expansion en chaos de Wiener /." Thèse, Trois-Rivières : Université du Québec à Trois-Rivières, 2002. http://www.uqtr.ca/biblio/notice/tablemat/03-2246353TM.html.
Full textAït-Simmou, Abderrahmane. "Filtrage non-linéaire et expansion en chaos de Wiener." Thèse, Université du Québec à Trois-Rivières, 2002. http://depot-e.uqtr.ca/3992/1/000102224.pdf.
Full textNydestedt, Robin. "Application of Polynomial Chaos Expansion for Climate Economy Assessment." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223985.
Full textInom klimatekonomi används integrated assessment models (IAMs) för att förutspå hur klimatförändringar påverkar ekonomin. Dessa IAMs modellerar komplexa interaktioner mellan geofysiska och mänskliga system för att kunna kvantifiera till exempel kostnaden för den ökade koldioxidhalten på planeten, i.e. Social Cost of Carbon (SCC). Detta representerar den ekonomiska kostnaden som motsvaras av utsläppet av ett ton koldioxid. Faktumet att både de geofysiska och ekonomiska submodulerna är stokastiska gör att SCC-uppskattningar varierar mycket även inom väletablerade IAMs som PAGE och DICE. Variationen grundar sig i skillnader inom modellerna men också från att val av sannolikhetsfördelningar för de stokastiska variablerna skiljer sig. Eftersom IAMs ofta är formulerade som optimeringsproblem leder dessutom osäkerheterna till höga beräkningskostnader. I denna uppsats introduceras en ny IAM, FAIR/DICE, som är en diskret tids hybrid av DICE och FAIR. Den utgör en potentiell förbättring av DICE eftersom klimat- och kolmodulerna i FAIR även behandlar återkoppling från klimatmodulen till kolmodulen. FAIR/DICE är analyserad med hjälp av Polynomial Chaos Expansions (PCEs), ett alternativ till Monte Carlo-metoder. Med hjälp av PCEs kan de osäkerheter projiceras på stokastiska polynomrum vilket har fördelen att beräkningskostnader reduceras men nackdelen att lagringskraven ökar. Detta eftersom många av beräkningarna kan sparas från första simuleringen av systemet, dessutom kan statistik extraheras direkt från PCE koefficienterna utan behov av sampling. FAIR/DICE systemet projiceras med hjälp av PCEs där en osäkerhet är introducerad via equilibrium climate sensitivity (ECS), vilket i sig är ett värde på hur känsligt klimatet är för koldioxidförändringar. ECS modelleras med hjälp av en fyra-parameters Beta sannolikhetsfördelning. Avslutningsvis jämförs resultat i medelvärde och varians mellan PCE implementationen av FAIR/DICE och en Monte Carlo-baserad referens, därefter ges förslag på framtida utvecklingsområden.
Luo, Wuan Hou Thomas Y. "Wiener chaos expansion and numerical solutions of stochastic partial differential equations /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05182006-173710.
Full textPrice, Darryl Brian. "Estimation of Uncertain Vehicle Center of Gravity using Polynomial Chaos Expansions." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/33625.
Full textMaster of Science
Cattell, Simon. "A Wiener chaos based approach to stability analysis of stochastic shear flows." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289421.
Full textSong, Chen [Verfasser], and Vincent [Akademischer Betreuer] Heuveline. "Uncertainty Quantification for a Blood Pump Device with Generalized Polynomial Chaos Expansion / Chen Song ; Betreuer: Vincent Heuveline." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252406/34.
Full textLangewisch, Dustin R. "Application of the polynomial chaos expansion to multiphase CFD : a study of rising bubbles and slug flow." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92097.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 157-167).
Part I of this thesis considers subcooled nucleate boiling on the microscale, focusing on the analysis of heat transfer near the Three-Phase (solid, liquid, and vapor) contact Line (TPL) region. A detailed derivation of one representative TPL model is presented. From this work, it was ultimately concluded that heat transfer in the vicinity of the TPL is rather unimportant in the overall quantification of nucleate boiling heat transfer; despite the extremely high heat fluxes that are attainable, it is limited to a very small region so the net heat transfer from this region is comparatively small. It was further concluded that many of the so-called microlayer heat transfer models appearing in the literature are actually models for TPL heat transfer; these models do not model the experimentally observed microlayer. This portion of the project was terminated early, however, in order to focus on the application of advanced computational uncertainty quantification methods to computational multiphase fluid dynamics (Part II). Part II discusses advanced uncertainty quantification (UQ) methods for long-running numerical models, namely computational multiphase fluid dynamics (CMFD) simulations. We consider the problem of how to efficiently propagate uncertainties in the model inputs (e.g., fluid properties, such as density, viscosity, etc.) through a computationally demanding model. The challenge is chiefly a matter of economics-the long run-time of these simulations limits the number of samples that one can reasonably obtain (i.e., the number of times the simulation can be run). Chapter 2 introduces the generalized Polynomial Chaos (gPC) expansion, which has shown promise for reducing the computational cost of performing UQ for a large class of problems, including heat transfer and single phase, incompressible flow simulations; example applications are demonstrated in Chapter 2. One of main objectives of this research was to ascertain whether this promise extends to realm of CMFD applications, and this is the topic of Chapters 3 and 4; Chapter 3 covers the numerical simulation of a single bubble rising in a quiescent liquid bath. The pertinent quantities from these simulations are the terminal velocity of the bubble and terminal bubble shape. the simulations were performed using the open source gerris flow solver. A handful of test cases were performed to validate the simulation results against available experimental data and numerical results from other authors; the results from gerris were found to compare favorably. Following the validation, we considered two uncertainty quantifications problems. In the first problem, the viscosity of the surrounding liquid is modeled as a uniform random variable and we quantify the resultant uncertainty in the bubbles terminal velocity. The second example is similar, except the bubble's size (diameter) is modeled as a log-normal random variable. In this case, the Hermite expansion is seen to converge almost immediately; a first-order Hermite expansion computed using 3 model evaluations is found to capture the terminal velocity distribution almost exactly. Both examples demonstrate that NISP can be successfully used to efficiently propagate uncertainties through CMFD models. Finally, we describe a simple technique to implement a moving reference frame in gerris. Chapter 4 presents an extensive study of the numerical simulation of capillary slug flow. We review existing correlations for the thickness of the liquid film surrounding a Taylor bubble and the pressure drop across the bubble. Bretherton's lubrication analysis, which yields analytical predictions for these quantities when inertial effects are negligible and Ca[beta] --> o, is considered in detail. In addition, a review is provided of film thickness correlations that are applicable for high Cab or when inertial effects are non-negligible. An extensive computational study was undertaken with gerris to simulate capillary slug flow under a variety of flow conditions; in total, more than two hundred simulations were carried out. The simulations were found to compare favorably with simulations performed previously by other authors using finite elements. The data from our simulations have been used to develop a new correlation for the film thickness and bubble velocity that is generally applicable. While similar in structure to existing film thickness correlations, the present correlation does not require the bubble velocity to be known a priori. We conclude with an application of the gPC expansion to quantify the uncertainty in the pressure drop in a channel in slug flow when the bubble size is described by a probability distribution. It is found that, although the gPC expansion fails to adequately quantify the uncertainty in field quantities (pressure and velocity) near the liquid-vapor interface, it is nevertheless capable of representing the uncertainty in other quantities (e.g., channel pressure drop) that do not depend sensitively on the precise location of the interface.
by Dustin R. Langewisch.
Ph. D.
Koehring, Andrew. "The application of polynomial response surface and polynomial chaos expansion metamodels within an augmented reality conceptual design environment." [Ames, Iowa : Iowa State University], 2008.
Find full textMühlpfordt, Tillmann [Verfasser], and V. [Akademischer Betreuer] Hagenmeyer. "Uncertainty Quantification via Polynomial Chaos Expansion – Methods and Applications for Optimization of Power Systems / Tillmann Mühlpfordt ; Betreuer: V. Hagenmeyer." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1203211872/34.
Full textYadav, Vaibhav. "Novel Computational Methods for Solving High-Dimensional Random Eigenvalue Problems." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4927.
Full textScott, Karen Mary Louise. "Practical Analysis Tools for Structures Subjected to Flow-Induced and Non-Stationary Random Loads." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/38686.
Full textPh. D.
El, Moçayd Nabil. "La décomposition en polynôme du chaos pour l'amélioration de l'assimilation de données ensembliste en hydraulique fluviale." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/17862/1/El_Mocayd_Nabil.pdf.
Full textFajraoui, Noura. "Analyse de sensibilité globale et polynômes de chaos pour l'estimation des paramètres : application aux transferts en milieu poreux." Phd thesis, Université de Strasbourg, 2014. http://tel.archives-ouvertes.fr/tel-01019528.
Full textSegui, Vasquez Bartolomé. "Modélisation dynamique des systèmes disque aubes multi-étages : Effets des incertitudes." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00961270.
Full textSvobodová, Miriam. "Dynamika soustav těles s neurčitostním modelem vzájemné vazby." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-418197.
Full textGhannoum, Abir. "EDSs réfléchies en moyenne avec sauts et EDSs rétrogrades de type McKean-Vlasov : étude théorique et numérique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM068.
Full textThis thesis is devoted to the theoretical and numerical study of two main subjects in the context of stochastic differential equations (SDEs): mean reflected SDEs with jumps and McKean-Vlasov backward SDEs.The first part of my thesis establishes the propagation of chaos for the mean reflected SDEs with jumps. First, we study the existence and uniqueness of a solution. Then, we develop a numerical scheme based on the particle system. Finally, we obtain the rate of convergence of this scheme.The second part of my thesis studies the McKean-Vlasov backward SDEs. In this case, we prove the existence and uniqueness of a solution for such equations. Then, thanks to the Wiener chaos expansion, we provide a numerical approximation. Moreover, the convergence rate of this approximation is also determined.The third part of my thesis proposes another type of simulation for the McKean-Vlasov backward SDEs. Due to the approximation of Brownian motion by a scaled random walk, we develop a numerical scheme and we get its convergence rate.In addition, a few numerical examples in these three parts are given to illustrate the efficiency of our schemes and their convergence rates stated by the theoretical results
Ene, Simon. "Analys av osäkerheter vid hydraulisk modellering av torrfåror." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448369.
Full textHydraulic modelling is an important tool when measures for dry river stretches are assessed. The modelling is however always affected by uncertainties and if these are big the simulation results from the models could become unreliable. It may therefore be important to present its simulation results together with the uncertainties. This study addresses various types of uncertainties that may affect the simulation results from hydraulic models. In addition, sensitivity analysis is conducted where a proportion of the uncertainty in the simulation result is attributed to the various input variables that are included. The parameters included in the analysis are terrain model resolution, hydraulic model mesh resolution, inflow to the model and Manning’s roughness coefficient. The object studied in this paper was a dry river stretch located downstream of Sandforsdammen in the river of Skellefteälven, Sweden. The software TELEMAC-MASCARET was used to perform all hydraulic simulations for this thesis. To analyze the uncertainties related to the resolution for the terrain model and the mesh a qualitative approach was used. Several simulations were run where all parameters except those linked to the resolution were fixed. The simulation results were illustrated through individual rasters, profiles, sections and rasters that showed the differences between different simulations. The results of the analysis showed that a low resolution for terrain models and meshes can lead to uncertainties locally where there are higher water velocities and where there are big variations in the geometry. However, no significant effects could be discerned on a larger scale. Separately, quantitative uncertainty and sensitivity analyzes were performed for the simulation results, water depth and water velocity for the dry river stretch. The input parameters that were assumed to have the biggest impact were the inflow to the model and Manning's roughness coefficient. Other model input parameters were fixed. Through scripts created in the programming language Python together with the library OpenTURNS, a large sample of possible combinations for the size of inflow and Manning's roughness coefficient was created. All combinations were assumed to fully cover the uncertainty of the input parameters. After using the sample for simulation, the uncertainty of the simulation results could also be described. Uncertainty analyses were conducted through both classical calculation of statistical moments and through Polynomial Chaos Expansion. A sensitivity analysis was then conducted through Polynomial Chaos Expansion where Sobol's sensitivity indices were calculated for the inflow and Manning's M at each control point. The analysis showed that there were relatively large uncertainties for both the water depth and the water velocity. The inflow had the greatest impact on the uncertainties while Manning's M was insignificant in comparison, apart from one area in the model where its impact increased.
Kouassi, Attibaud. "Propagation d'incertitudes en CEM. Application à l'analyse de fiabilité et de sensibilité de lignes de transmission et d'antennes." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC067/document.
Full textNowadays, most EMC analyzes of electronic or electrical devices are based on deterministic approaches for which the internal and external models’ parameters are supposed to be known and the uncertainties on models’ parameters are taken into account on the outputs by defining very large security margins. But, the disadvantage of such approaches is their conservative character and their limitation when dealing with the parameters’ uncertainties using appropriate stochastic modeling (via random variables, processes or fields) is required in agreement with the goal of the study. In the recent years, this probabilistic approach has been the subject of several researches in the EMC community. The work presented here is a contribution to these researches and has a dual purpose : (1) develop a probabilistic methodology and implement the associated numerical tools for the reliability and sensitivity analyzes of the electronic devices and systems, assuming stochastic modeling via random variables; (2) extend this study to stochastic modeling using random processes and random fields through a prospective analysis based on the resolution of the telegrapher equations (partial derivative equations) with random coefficients. The first mentioned probabilistic approach consists in computing the failure probability of an electronic device or system according to a given criteria and in determining the relative importance of each considered random parameter. The methods chosen for this purpose are adaptations to the EMC framework of methods developed in the structural mechanics community for uncertainty propagation studies. The failure probabilities computation is performed using two type of methods: the ones based on an approximation of the limit state function associated to the failure criteria, and the Monte Carlo methods based on the simulation of the model’s random variables and the statistical estimation of the target failure probabilities. In the case of the sensitivity analysis, a local approach and a global approach are retained. All these methods are firstly applied to academic EMC problems in order to illustrate their interest in the EMC field. Next, they are applied to transmission lines problems and antennas problems closer to reality. In the prospective analysis, more advanced resolution methods are proposed. They are based on spectral approaches requiring the polynomial chaos expansions and the Karhunen-Loève expansions of random processes and random fields considered in the models. Although the first numerical tests of these methods have been hopeful, they are not presented here because of lack of time for a complete analysis
Mulani, Sameer B. "Uncertainty Quantification in Dynamic Problems With Large Uncertainties." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28617.
Full textPh. D.
Huehne, Florian. "Levy processes and chaos expansions in finance." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531826.
Full textPédèches, Laure. "Stochastic models for collective motions of populations." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30083/document.
Full textIn this thesis, stochastic dynamics modelling collective motions of populations, one of the most mysterious type of biological phenomena, are considered. For a system of N particle-like individuals, two kinds of asymptotic behaviours are studied: ergodicity and flocking properties, in long time, and propagation of chaos, when the number N of agents goes to infinity. Cucker and Smale, deterministic, mean-field kinetic model for a population without a hierarchical structure is the starting point of our journey: the fist two chapters are dedicated to the understanding of various stochastic dynamics it inspires, with random noise added in different ways. The third chapter, an attempt to improve those results, is built upon the cluster expansion method, a technique from statistical mechanics. Exponential ergodicity is obtained for a class of non-Markovian process with non-regular drift. In the final part, the focus shifts onto a stochastic system of interacting particles derived from Keller and Segel 2-D parabolic-elliptic model for chemotaxis. Existence and weak uniqueness are proven
Alhajj, Chehade Hicham. "Geosynthetic-Reinforced Retaining Walls-Deterministic And Probabilistic Approaches." Thesis, Université Grenoble Alpes, 2021. http://www.theses.fr/2021GRALI010.
Full textThe aim of this thesis is to assess the seismic internal stability of geosynthetic reinforced soil retaining walls. The work first deals with deterministic analyses and then focus on probabilistic ones. In the first part of this thesis, a deterministic model, based on the upper bound theorem of limit analysis, is proposed for assessing the reinforced soil wall safety factor or the required reinforcement strength to stabilize the structure. A spatial discretization technique is used to generate the rotational failure surface and give the possibility of considering heterogeneous backfills and/or to represent the seismic loading by the pseudo-dynamic approach. The cases of dry, unsaturated and saturated soils are investigated. Additionally, the crack presence in the backfill soils is considered. This deterministic model gives rigorous results and is validated by confrontation with existing results from the literature. Then, in the second part of the thesis, this deterministic model is used in a probabilistic framework. First, the uncertain input parameters are modeled using random variables. The considered uncertainties involve the soil shear strength parameters, seismic loading and reinforcement strength parameters. The Sparse Polynomial Chaos Expansion that consists of replacing the time expensive deterministic model by a meta-model, combined with Monte Carlo Simulations is considered as the reliability method to carry out the probabilistic analysis. Random variables approach neglects the soil spatial variability since the soil properties and the other uncertain input parameters, are considered constant in each deterministic simulation. Therefore, in the last part of the manuscript, the soil spatial variability is considered using the random field theory. The SIR/A-bSPCE method, a combination between the dimension reduction technique, Sliced Inverse Regression (SIR) and an active learning sparse polynomial chaos expansion (A-bSPCE), is implemented to carry out the probabilistic analysis. The total computational time of the probabilistic analysis, performed using SIR-SPCE, is significantly reduced compared to directly running classical probabilistic methods. Only the soil strength parameters are modeled using random fields, in order to focus on the effect of the spatial variability on the reliability results
Braun, Mathias. "Reduced Order Modelling and Uncertainty Propagation Applied to Water Distribution Networks." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0050/document.
Full textWater distribution systems are large, spatially distributed infrastructures that ensure the distribution of potable water of sufficient quantity and quality. Mathematical models of these systems are characterized by a large number of state variables and parameter. Two major challenges are given by the time constraints for the solution and the uncertain character of the model parameters. The main objectives of this thesis are thus the investigation of projection based reduced order modelling techniques for the time efficient solution of the hydraulic system as well as the spectral propagation of parameter uncertainties for the improved quantification of uncertainties. The thesis gives an overview of the mathematical methods that are being used. This is followed by the definition and discussion of the hydraulic network model, for which a new method for the derivation of the sensitivities is presented based on the adjoint method. The specific objectives for the development of reduced order models are the application of projection based methods, the development of more efficient adaptive sampling strategies and the use of hyper-reduction methods for the fast evaluation of non-linear residual terms. For the propagation of uncertainties spectral methods are introduced to the hydraulic model and an intrusive hydraulic model is formulated. With the objective of a more efficient analysis of the parameter uncertainties, the spectral propagation is then evaluated on the basis of the reduced model. The results show that projection based reduced order models give a considerable benefit with respect to the computational effort. While the use of adaptive sampling resulted in a more efficient use of pre-calculated system states, the use of hyper-reduction methods could not improve the computational burden and has to be explored further. The propagation of the parameter uncertainties on the basis of the spectral methods is shown to be comparable to Monte Carlo simulations in accuracy, while significantly reducing the computational effort
Blatman, Géraud. "Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis." Clermont-Ferrand 2, 2009. https://tel.archives-ouvertes.fr/tel-00440197.
Full textKassir, Wafaa. "Approche probabiliste non gaussienne des charges statiques équivalentes des effets du vent en dynamique des structures à partir de mesures en soufflerie." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1116/document.
Full textIn order to estimate the equivalent static wind loads, which produce the extreme quasi-static and dynamical responses of structures submitted to random unsteady pressure field induced by the wind effects, a new probabilistic method is proposed. This method allows for computing the equivalent static wind loads for structures with complex aerodynamic flows such as stadium roofs, for which the pressure field is non-Gaussian, and for which the dynamical response of the structure cannot simply be described by using only the first elastic modes (but require a good representation of the quasi-static responses). Usually, the wind tunnel measurements of the unsteady pressure field applied to a structure with complex geometry are not sufficient for constructing a statistically converged estimation of the extreme values of the dynamical responses. Such a convergence is necessary for the estimation of the equivalent static loads in order to reproduce the extreme dynamical responses induced by the wind effects taking into account the non-Gaussianity of the random unsteady pressure field. In this work, (1) a generator of realizations of the non-Gaussian unsteady pressure field is constructed by using the realizations that are measured in the boundary layer wind tunnel; this generator based on a polynomial chaos representation allows for generating a large number of independent realizations in order to obtain the convergence of the extreme value statistics of the dynamical responses, (2) a reduced-order model with quasi-static acceleration terms is constructed, which allows for accelerating the convergence of the structural dynamical responses by using only a small number of elastic modes of the structure, (3) a novel probabilistic method is proposed for estimating the equivalent static wind loads induced by the wind effects on complex structures that are described by finite element models, preserving the non-Gaussian property and without introducing the concept of responses envelopes. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel
Cooper, Rachel Gray. "Augmented Neural Network Surrogate Models for Polynomial Chaos Expansions and Reduced Order Modeling." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103423.
Full textMaster of Science
The world is an elaborate system of relationships between diverse processes. To accurately represent these relationships, increasingly complex models are defined to better match what is physically seen. These complex models can lead to issues when trying to use them to predict a realistic outcome, either requiring immensely powerful computers to run the simulations or long amounts of time to present a solution. To fix this, surrogates or approximations to these complex models are used. These surrogate models aim to reduce the resources needed to calculate a solution while remaining as accurate to the more complex model as possible. One way to make these surrogate models is through neural networks. Neural networks try to simulate a brain, making connections between some input and output given to the network. In the case of surrogate modeling, the input is some current state of the true process, and the output is what is seen later from the same system. But much like the human brain, the reasoning behind why choices are made when connecting the input and outputs is often largely unknown. Within this paper, we seek to add meaning to neural network surrogate models in two different ways. In the first, we change what each piece in a neural network represents to build large polynomials (e.g., $x^5 + 4x^2 + 2$) to approximate the larger complex system. We show that the building of these polynomials via neural networks performs much better than traditional ways to construct them. For the second, we guide the choices made by the neural network by enforcing restrictions in what connections it can make. We do this by using additional information from the larger system to ensure the connections made focus on the most important information first before trying to match the less important patterns. This guiding process leads to more information being captured when the surrogate model is compressed into only a few dimensions compared to traditional methods. Additionally, it allows for a faster learning time compared to similar surrogate models without the information.
Bourgey, Florian. "Stochastic approximations for financial risk computations." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX052.
Full textIn this thesis, we investigate several stochastic approximation methods for both the computation of financial risk measures and the pricing of derivatives.As closed-form expressions are scarcely available for such quantities, %and because they have to be evaluated daily, the need for fast, efficient, and reliable analytic approximation formulas is of primal importance to financial institutions.We aim at giving a broad overview of such approximation methods and we focus on three distinct approaches.In the first part, we study some Multilevel Monte Carlo approximation methods and apply them for two practical problems: the estimation of quantities involving nested expectations (such as the initial margin) along with the discretization of integrals arising in rough forward variance models for the pricing of VIX derivatives.For both cases, we analyze the properties of the corresponding asymptotically-optimal multilevel estimatorsand numerically demonstrate the superiority of multilevel methods compare to a standard Monte Carlo.In the second part, motivated by the numerous examples arising in credit risk modeling, we propose a general framework for meta-modeling large sums of weighted Bernoullirandom variables which are conditional independent of a common factor X.Our generic approach is based on a Polynomial Chaos Expansion on the common factor together withsome Gaussian approximation. L2 error estimates are given when the factor X is associated withclassical orthogonal polynomials.Finally, in the last part of this dissertation, we deal withsmall-time asymptotics and provide asymptoticexpansions for both American implied volatility and American option prices in local volatility models.We also investigate aweak approximations for the VIX index inrough forward variance models expressed in termsof lognormal proxiesand derive expansions results for VIX derivatives with explicit coefficients
Lebon, Jérémy. "Towards multifidelity uncertainty quantification for multiobjective structural design." Phd thesis, Université de Technologie de Compiègne, 2013. http://tel.archives-ouvertes.fr/tel-01002392.
Full textRiahi, Hassen. "Analyse de structures à dimension stochastique élevée : application aux toitures bois sous sollicitation sismique." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00881187.
Full textKnani, Habiba. "Backward stochastic differential equations driven by Gaussian Volterra processes." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0014.
Full textThis thesis treats of backward stochastic differential equations (BSDE) driven by a class of Gaussian Volterra processes that includes multifractional Brownian motion and multifractional Ornstein-Uhlenbeck processes. In the first part we study multidimensional BSDE with generators that are linear functions of the solution. By means of an Itoˆ formula for Volterra processes, a linear second order partial differential equation (PDE) with terminal condition is associated to the BSDE. Under an integrability condition on a functional of the second moment of the Volterra process in a neighbourhood of the terminal time, we solve the associated PDE explicitely and deduce the solution of the linear BSDE. We discuss an application in the context of self-financing trading stategies. The second part of the thesis treats of non-linear BSDE driven by the same class of Gaussian Volterra processes. The main results are the existence and uniqueness of the solution in a space of regular functionals of the Volterra process, and a comparison theorem for the solutions of BSDE. We give two proofs for the existence and uniqueness of the solution, one is based on the associated PDE and a second one without making reference to this PDE, but with probabilistic and functional theoretic methods. Especially this second proof is technically quite complex, and, due to the absence of mar- tingale properties in the context of Volterra processes, requires to work with different norms on the underlying Hilbert space that is defined by the kernel of the Volterra process. For the construction of the solution we need the notion of quasi-conditional expectation, a Clark-Ocone type formula and another Itoˆ formula for Volterra processes. Contrary to the more classical cases of BSDE driven by Brownian or fractional Brownian motion, an assumption on the behaviour of the kernel of the driv- ing Volterra process is in general necessary for the wellposedness of the BSDE. For multifractional Brownian motion this assumption is closely related to the behaviour of the Hurst function
Milica, Žigić. "Primene polugrupa operatora u nekim klasama Košijevih početnih problema." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2014. https://www.cris.uns.ac.rs/record.jsf?recordId=90322&source=NDLTD&language=en.
Full textThe doctoral dissertation is devoted to applications of the theoryof semigroups of operators on two classes of Cauchy problems. In the firstpart, we studied parabolic stochastic partial differential equations (SPDEs),driven by two types of operators: one linear closed operator generating aC0−semigroup and one linear bounded operator with Wick-type multipli-cation. All stochastic processes are considered in the setting of Wiener-Itôchaos expansions. We proved existence and uniqueness of solutions for thisclass of SPDEs. In particular, we also treated the stationary case when thetime-derivative is equal to zero. In the second part, we constructed com-plex powers of C−sectorial operators in the setting of sequentially completelocally convex spaces. We considered these complex powers as the integralgenerators of equicontinuous analytic C−regularized resolvent families, andincorporated the obtained results in the study of incomplete higher or frac-tional order Cauchy problems.
Dora, Seleši. "Uopšteni stohastički procesi u beskonačno-dimenzionalnim prostorima sa primenama na singularne stohastičke parcijalne diferencijalne jednačine." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2007. https://www.cris.uns.ac.rs/record.jsf?recordId=6018&source=NDLTD&language=en.
Full textSubject of the dissertation are various classes of generalizedstochastic processes and their applications to solving singular stochasticpartial di®erential equations. Basically, the dissertation can be divided intotwo parts. The ¯rst part (Chapter 2) is devoted to structural characteri-zations of generalized random processes in terms of chaos expansions andintegral representations. The second part of the dissertation (Chapter 3)involves applications of the obtained results to solving a stochastic Dirichletproblem, where multiplication is modeled by the Wick product, and thecoe±cients of the elliptic di®erential operator are Colombeau generalizedrandom processes.
Jornet, Sanz Marc. "Mean square solutions of random linear models and computation of their probability density function." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/138394.
Full text[ES] Esta tesis trata el análisis de ecuaciones diferenciales con parámetros de entrada aleatorios, en la forma de variables aleatorias o procesos estocásticos con cualquier tipo de distribución de probabilidad. En modelización, los coeficientes de entrada se fijan a partir de datos experimentales, los cuales suelen acarrear incertidumbre por los errores de medición. Además, el comportamiento del fenómeno físico bajo estudio no sigue patrones estrictamente deterministas. Es por tanto más realista trabajar con modelos matemáticos con aleatoriedad en su formulación. La solución, considerada en el sentido de caminos aleatorios o en el sentido de media cuadrática, es un proceso estocástico suave, cuya incertidumbre se tiene que cuantificar. La cuantificación de la incertidumbre es a menudo llevada a cabo calculando los principales estadísticos (esperanza y varianza) y, si es posible, la función de densidad de probabilidad. En este trabajo, estudiamos modelos aleatorios lineales, basados en ecuaciones diferenciales ordinarias con y sin retardo, y en ecuaciones en derivadas parciales. La estructura lineal de los modelos nos permite buscar ciertas soluciones probabilísticas e incluso aproximar su función de densidad de probabilidad, lo cual es un objetivo complicado en general. Una parte muy importante de la disertación se dedica a las ecuaciones diferenciales lineales de segundo orden aleatorias, donde los coeficientes de la ecuación son procesos estocásticos y las condiciones iniciales son variables aleatorias. El estudio de esta clase de ecuaciones diferenciales en el contexto aleatorio está motivado principalmente por su importante papel en la Física Matemática. Empezamos resolviendo la ecuación diferencial de Legendre aleatorizada en el sentido de media cuadrática, lo que permite la aproximación de la esperanza y la varianza de la solución estocástica. La metodología se extiende al caso general de ecuaciones diferenciales lineales de segundo orden aleatorias con coeficientes analíticos (expresables como series de potencias), mediante el conocido método de Fröbenius. Se lleva a cabo un estudio comparativo con métodos espectrales basados en expansiones de caos polinomial. Por otro lado, el método de Fröbenius junto con la simulación de Monte Carlo se utilizan para aproximar la función de densidad de probabilidad de la solución. Para acelerar el procedimiento de Monte Carlo, se proponen varios métodos de reducción de la varianza basados en reglas de cuadratura y estrategias multinivel. La última parte sobre ecuaciones diferenciales lineales de segundo orden aleatorias estudia un problema aleatorio de tipo Poisson de difusión-reacción, en el que la función de densidad de probabilidad es aproximada mediante un esquema numérico de diferencias finitas. En la tesis también se tratan ecuaciones diferenciales ordinarias aleatorias con retardo discreto y constante. Estudiamos el caso lineal y autónomo, cuando el coeficiente de la componente no retardada i el parámetro del término retardado son ambos variables aleatorias mientras que la condición inicial es un proceso estocástico. Se demuestra que la solución determinista construida con el método de los pasos y que involucra la función exponencial retardada es una solución probabilística en el sentido de Lebesgue. Finalmente, el último capítulo lo dedicamos a la ecuación en derivadas parciales lineal de advección, sujeta a velocidad y condición inicial estocásticas. Resolvemos la ecuación en el sentido de media cuadrática y damos nuevas expresiones para la función de densidad de probabilidad de la solución, incluso en el caso de velocidad no Gaussiana.
[CAT] Aquesta tesi tracta l'anàlisi d'equacions diferencials amb paràmetres d'entrada aleatoris, en la forma de variables aleatòries o processos estocàstics amb qualsevol mena de distribució de probabilitat. En modelització, els coeficients d'entrada són fixats a partir de dades experimentals, les quals solen comportar incertesa pels errors de mesurament. A més a més, el comportament del fenomen físic sota estudi no segueix patrons estrictament deterministes. És per tant més realista treballar amb models matemàtics amb aleatorietat en la seua formulació. La solució, considerada en el sentit de camins aleatoris o en el sentit de mitjana quadràtica, és un procés estocàstic suau, la incertesa del qual s'ha de quantificar. La quantificació de la incertesa és sovint duta a terme calculant els principals estadístics (esperança i variància) i, si es pot, la funció de densitat de probabilitat. En aquest treball, estudiem models aleatoris lineals, basats en equacions diferencials ordinàries amb retard i sense, i en equacions en derivades parcials. L'estructura lineal dels models ens fa possible cercar certes solucions probabilístiques i inclús aproximar la seua funció de densitat de probabilitat, el qual és un objectiu complicat en general. Una part molt important de la dissertació es dedica a les equacions diferencials lineals de segon ordre aleatòries, on els coeficients de l'equació són processos estocàstics i les condicions inicials són variables aleatòries. L'estudi d'aquesta classe d'equacions diferencials en el context aleatori està motivat principalment pel seu important paper en Física Matemàtica. Comencem resolent l'equació diferencial de Legendre aleatoritzada en el sentit de mitjana quadràtica, el que permet l'aproximació de l'esperança i la variància de la solució estocàstica. La metodologia s'estén al cas general d'equacions diferencials lineals de segon ordre aleatòries amb coeficients analítics (expressables com a sèries de potències), per mitjà del conegut mètode de Fröbenius. Es duu a terme un estudi comparatiu amb mètodes espectrals basats en expansions de caos polinomial. Per altra banda, el mètode de Fröbenius juntament amb la simulació de Monte Carlo són emprats per a aproximar la funció de densitat de probabilitat de la solució. Per a accelerar el procediment de Monte Carlo, es proposen diversos mètodes de reducció de la variància basats en regles de quadratura i estratègies multinivell. L'última part sobre equacions diferencials lineals de segon ordre aleatòries estudia un problema aleatori de tipus Poisson de difusió-reacció, en què la funció de densitat de probabilitat és aproximada mitjançant un esquema numèric de diferències finites. En la tesi també es tracten equacions diferencials ordinàries aleatòries amb retard discret i constant. Estudiem el cas lineal i autònom, quan el coeficient del component no retardat i el paràmetre del terme retardat són ambdós variables aleatòries mentre que la condició inicial és un procés estocàstic. Es prova que la solució determinista construïda amb el mètode dels passos i que involucra la funció exponencial retardada és una solució probabilística en el sentit de Lebesgue. Finalment, el darrer capítol el dediquem a l'equació en derivades parcials lineal d'advecció, subjecta a velocitat i condició inicial estocàstiques. Resolem l'equació en el sentit de mitjana quadràtica i donem noves expressions per a la funció de densitat de probabilitat de la solució, inclús en el cas de velocitat no Gaussiana.
This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P. I acknowledge the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València.
Jornet Sanz, M. (2020). Mean square solutions of random linear models and computation of their probability density function [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138394
TESIS
Luo, Wuan. "Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations." Thesis, 2006. https://thesis.library.caltech.edu/1861/1/wuan_thesis.pdf.
Full textStochastic partial differential equations (SPDEs) are important tools in modeling complex phenomena, and they arise in many physics and engineering applications. Developing efficient numerical methods for simulating SPDEs is a very important while challenging research topic. In this thesis, we study a numerical method based on the Wiener chaos expansion (WCE) for solving SPDEs driven by Brownian motion forcing. WCE represents a stochastic solution as a spectral expansion with respect to a set of random basis. By deriving a governing equation for the expansion coefficients, we can reduce a stochastic PDE into a system of deterministic PDEs and separate the randomness from the computation. All the statistical information of the solution can be recovered from the deterministic coefficients using very simple formulae.
We apply the WCE-based method to solve stochastic Burgers equations, Navier-Stokes equations and nonlinear reaction-diffusion equations with either additive or multiplicative random forcing. Our numerical results demonstrate convincingly that the new method is much more efficient and accurate than MC simulations for solutions in short to moderate time. For a class of model equations, we prove the convergence rate of the WCE method. The analysis also reveals precisely how the convergence constants depend on the size of the time intervals and the variability of the random forcing. Based on the error analysis, we design a sparse truncation strategy for the Wiener chaos expansion. The sparse truncation can reduce the dimension of the resulting PDE system substantially while retaining the same asymptotic convergence rates.
For long time solutions, we propose a new computational strategy where MC simulations are used to correct the unresolved small scales in the sparse Wiener chaos solutions. Numerical experiments demonstrate that the WCE-MC hybrid method can handle SPDEs in much longer time intervals than the direct WCE method can. The new method is shown to be much more efficient than the WCE method or the MC simulation alone in relatively long time intervals. However, the limitation of this method is also pointed out.
Using the sparse WCE truncation, we can resolve the probability distributions of a stochastic Burgers equation numerically and provide direct evidence for the existence of a unique stationary measure. Using the WCE-MC hybrid method, we can simulate the long time front propagation for a reaction-diffusion equation in random shear flows. Our numerical results confirm the conjecture by Jack Xin that the front propagation speed obeys a quadratic enhancing law.
Using the machinery we have developed for the Wiener chaos method, we resolve a few technical difficulties in solving stochastic elliptic equations by Karhunen-Loeve-based polynomial chaos method. We further derive an upscaling formulation for the elliptic system of the Wiener chaos coefficients. Eventually, we apply the upscaled Wiener chaos method for uncertainty quantification in subsurface modeling, combined with a two-stage Markov chain Monte Carlo sampling method we have developed recently.
Winokur, Justin Gregory. "Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification." Diss., 2015. http://hdl.handle.net/10161/9845.
Full textPolynomial chaos expansions provide an efficient and robust framework to analyze and quantify uncertainty in computational models. This dissertation explores the use of adaptive sparse grids to reduce the computational cost of determining a polynomial model surrogate while examining and implementing new adaptive techniques.
Determination of chaos coefficients using traditional tensor product quadrature suffers the so-called curse of dimensionality, where the number of model evaluations scales exponentially with dimension. Previous work used a sparse Smolyak quadrature to temper this dimensional scaling, and was applied successfully to an expensive Ocean General Circulation Model, HYCOM during the September 2004 passing of Hurricane Ivan through the Gulf of Mexico. Results from this investigation suggested that adaptivity could yield great gains in efficiency. However, efforts at adaptivity are hampered by quadrature accuracy requirements.
We explore the implementation of a novel adaptive strategy to design sparse ensembles of oceanic simulations suitable for constructing polynomial chaos surrogates. We use a recently developed adaptive pseudo-spectral projection (aPSP) algorithm that is based on a direct application of Smolyak's sparse grid formula, and that allows for the use of arbitrary admissible sparse grids. Such a construction ameliorates the severe restrictions posed by insufficient quadrature accuracy. The adaptive algorithm is tested using an existing simulation database of the HYCOM model during Hurricane Ivan. The {\it a priori} tests demonstrate that sparse and adaptive pseudo-spectral constructions lead to substantial savings over isotropic sparse sampling.
In order to provide a finer degree of resolution control along two distinct subsets of model parameters, we investigate two methods to build polynomial approximations. The two approaches are based with pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids. The control of the error along different subsets of parameters may be needed in the case of a model depending on uncertain parameters and deterministic design variables. We first consider a nested approach where an independent adaptive sparse grid pseudo-spectral projection is performed along the first set of directions only, and at each point a sparse grid is constructed adaptively in the second set of directions. We then consider the application of aPSP in the space of all parameters, and introduce directional refinement criteria to provide a tighter control of the projection error along individual dimensions. Specifically, we use a Sobol decomposition of the projection surpluses to tune the sparse grid adaptation. The behavior and performance of the two approaches are compared for a simple two-dimensional test problem and for a shock-tube ignition model involving 22 uncertain parameters and 3 design parameters. The numerical experiments indicate that whereas both methods provide effective means for tuning the quality of the representation along distinct subsets of parameters, adaptive PSP in the global parameter space generally requires fewer model evaluations than the nested approach to achieve similar projection error.
In order to increase efficiency even further, a subsampling technique is developed to allow for local adaptivity within the aPSP algorithm. The local refinement is achieved by exploiting the hierarchical nature of nested quadrature grids to determine regions of estimated convergence. In order to achieve global representations with local refinement, synthesized model data from a lower order projection is used for the final projection. The final subsampled grid was also tested with two more robust, sparse projection techniques including compressed sensing and hybrid least-angle-regression. These methods are evaluated on two sample test functions and then as an {\it a priori} analysis of the HYCOM simulations and the shock-tube ignition model investigated earlier. Small but non-trivial efficiency gains were found in some cases and in others, a large reduction in model evaluations with only a small loss of model fidelity was realized. Further extensions and capabilities are recommended for future investigations.
Dissertation
Lin, Yu-Tuan, and 林玉端. "Implementations of Tailored Finite Point Method and Polynomial Chaos Expansion for Solving Problems Related to Fluid Dynamics, Image Processing and Finance." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/40488536171794178165.
Full text國立中興大學
應用數學系所
104
In this dissertation, we study the tailored finite point method (TFPM) and polynomial chaos expansion (PCE) scheme for solving partial differential equations (PDEs). These PDEs are related to fluid dynamics, imaging processing and finance problems. In the first part, we concern on quasilinear time-dependent Burgers'' equations with small coefficients of viscosity. The selected basis functions for the TFPM method automatically fit the properties of the local solution in time and space simultaneously. We apply the Hopf-Cole transformation to derive the first TFPM-I scheme. For the second scheme, we approximate the solution by using local exact solutions and consider iterated processes to attain numerical solutions to the original form of the Burgers'' equation. The TFPM-II is particularly suitable for a solution with steep gradients or discontinuities. More importantly, the TFPM obtained numerical solutions with reasonable accuracy even on relatively coarse meshes for Burgers'' equations. In the second part, we employ the application of the TFPM in an anisotropic convection-diffusion (ACD) filter for image denoising. A quadtree structure is implemented in order to allow multi-level storage during the denoising and compression process. The ACD filter exhibits the potential to get a more accurate approximated solution to the PDEs. In the third part, we regard the TFPM for Black-Scholes equations, European option pricing. We compare the performance of our algorithm with other popular numerical schemes. The numerical experiments using the TFPM is more efficient and accurate compared to other well-known methods. In the last part, we present the polynomial chaos expansion (PCE) for stochastic PDEs. We provide a review of the theory of generalized polynomial chaos expansion (gPCE) and arbitrary polynomial chaos expansion (aPCE) including the case analysis of test problems. We demonstrate the accuracy of the gPCE and aPCE for the Black-Scholes model with the log-normal random volatilities. Furthermore, we employ the aPCE scheme for arbitrary distributions of uncertainty volatilities with short term price data. This is the forefront of adopting the polynomial chaos expansion in the randomness of volatilities in financial mathematics.
(5930765), Pratik Kiranrao Naik. "History matching of surfactant-polymer flooding." Thesis, 2019.
Find full textDutta, Parikshit. "New Algorithms for Uncertainty Quantification and Nonlinear Estimation of Stochastic Dynamical Systems." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-9951.
Full textSchulte, Matthias. "Malliavin-Stein Method in Stochastic Geometry." Doctoral thesis, 2013. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2013031910717.
Full textDeng, Jian. "Stochastic collocation methods for aeroelastic system with uncertainty." Master's thesis, 2009. http://hdl.handle.net/10048/557.
Full textTitle from pdf file main screen (viewed on Sept. 3, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Applied Mathematics, Department of Mathematical and Statistical Sciences, University of Alberta." Includes bibliographical references.
Fluck, Manuel. "Stochastic methods for unsteady aerodynamic analysis of wings and wind turbine blades." Thesis, 2017. http://hdl.handle.net/1828/7981.
Full textGraduate
0538
0548
mfluck@uvic.ca
Ozen, Hasan Cagan. "Long Time Propagation of Stochasticity by Dynamical Polynomial Chaos Expansions." Thesis, 2017. https://doi.org/10.7916/D8WH32C5.
Full textMandur, Jasdeep Singh. "Robust Algorithms for Optimization of Chemical Processes in the Presence of Model-Plant Mismatch." Thesis, 2014. http://hdl.handle.net/10012/8526.
Full text