Academic literature on the topic 'Chaotic behvaior in systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chaotic behvaior in systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chaotic behvaior in systems"

1

Ping, Zhou, Cheng Yuan-Ming, and Kuang Fei. "Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)." Chinese Physics B 19, no. 9 (2010): 090503. http://dx.doi.org/10.1088/1674-1056/19/9/090503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Altmann, Eduardo G., Jefferson S. E. Portela, and Tamás Tél. "Leaking chaotic systems." Reviews of Modern Physics 85, no. 2 (2013): 869–918. http://dx.doi.org/10.1103/revmodphys.85.869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chlouverakis, Konstantinos E., and J. C. Sprott. "Chaotic hyperjerk systems." Chaos, Solitons & Fractals 28, no. 3 (2006): 739–46. http://dx.doi.org/10.1016/j.chaos.2005.08.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Freckleton, Rob P. "Chaotic mating systems." Trends in Ecology & Evolution 17, no. 11 (2002): 493–95. http://dx.doi.org/10.1016/s0169-5347(02)02626-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jafari, Sajad, and Tomasz Kapitaniak. "Special chaotic systems." European Physical Journal Special Topics 229, no. 6-7 (2020): 877–86. http://dx.doi.org/10.1140/epjst/e2020-000017-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Ping, and Rui Ding. "Chaotic synchronization between different fractional-order chaotic systems." Journal of the Franklin Institute 348, no. 10 (2011): 2839–48. http://dx.doi.org/10.1016/j.jfranklin.2011.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

USHIO, Toshimitsu. "Control of Chaotic Systems." Journal of Japan Society for Fuzzy Theory and Systems 7, no. 3 (1995): 475–85. http://dx.doi.org/10.3156/jfuzzy.7.3_475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zakharov, Ivan S., S. I. Ilyin, V. M. Dovgal, and I. A. Saraev. "Chaotic Systems: Automaton Model." Telecommunications and Radio Engineering 69, no. 3 (2010): 207–12. http://dx.doi.org/10.1615/telecomradeng.v69.i3.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pecora, Louis M., and Thomas L. Carroll. "Synchronization in chaotic systems." Physical Review Letters 64, no. 8 (1990): 821–24. http://dx.doi.org/10.1103/physrevlett.64.821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tanner, Gregor, and Dieter Wintgen. "Quantization of chaotic systems." Chaos: An Interdisciplinary Journal of Nonlinear Science 2, no. 1 (1992): 53–59. http://dx.doi.org/10.1063/1.165897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Chaotic behvaior in systems"

1

Che, Dzul-Kifli Syahida. "Chaotic dynamical systems." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.

Full text
Abstract:
In this work, we look at the dynamics of four different spaces, the interval, the unit circle, subshifts of finite type and compact countable sets. We put our emphasis on chaotic dynamical system and exhibit sufficient conditions for the system on the interval, the unit circle and subshifts of finite type to be chaotic in three different types of chaos. On the interval, we reveal two weak conditions’s role as a fast track to chaotic behavior. We also explain how a strong dense periodicity property influences chaotic behavior of dynamics on the interval, the unit circle and subshifts of finite
APA, Harvard, Vancouver, ISO, and other styles
2

Baek, Seung-Jong. "Synchronization in chaotic systems." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7728.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.<br>Thesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
3

Tang, Xian Zhu. "Transport in chaotic systems." W&M ScholarWorks, 1996. https://scholarworks.wm.edu/etd/1539623882.

Full text
Abstract:
This dissertation addresses the general problem of transport in chaotic systems. Typical fluid problem of the kind is the advection and diffusion of a passive scalar. The magnetic field evolution in a chaotic conducting media is an example of the chaotic transport of a vector field. In kinetic theory, the collisional relaxation of a distribution function in phase space is also an advection-diffusion problem, but in a higher dimensional space.;In a chaotic flow neighboring points tend to separate exponentially in time, exp({dollar}\omega t{dollar}) with {dollar}\omega{dollar} the Liapunov expon
APA, Harvard, Vancouver, ISO, and other styles
4

Bäcker, Arnd. "Eigenfunctions in chaotic quantum systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1213275874643-50420.

Full text
Abstract:
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic sta
APA, Harvard, Vancouver, ISO, and other styles
5

Wiklund, Kjell Ottar. "Multifractal properties of chaotic systems." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bernhard, Michael A. "Introduction to chaotic dynamical systems." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23708.

Full text
Abstract:
The emerging discipline known as "chaos theory" is a relatively new field of study with a diverse range of applications (economics, biology, meteorology, etc.). Despite this, there is not as yet a universally accepted definition for "chaos" as it applies to gen- eral dynamical systems. Various approaches range from topological methods of a qualitative description, to physical notions of randomness, information, and entropy in crgodic theory, to the development of computational definitions and algorithms designed to obtain quantitative information. This thesis develops some of the current defi
APA, Harvard, Vancouver, ISO, and other styles
7

Santoboni, Giovanni. "Synchronisation of coupled chaotic systems." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Daolin. "Flexible control of chaotic systems." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frisk, Martin. "Synchronization in chaotic dynamical systems." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-287624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bäcker, Arnd. "Eigenfunctions in chaotic quantum systems." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23663.

Full text
Abstract:
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic sta
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Chaotic behvaior in systems"

1

Casati, Giulio, ed. Chaotic Behavior in Quantum Systems. Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2443-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zelinka, Ivan, Sergej Celikovsky, Hendrik Richter, and Guanrong Chen, eds. Evolutionary Algorithms and Chaotic Systems. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10707-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wiggins, Stephen. Chaotic Transport in Dynamical Systems. Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-3896-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Banerjee, Tanmoy, and Debabrata Biswas. Time-Delayed Chaotic Dynamical Systems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70993-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rasband, S. Neil. Chaotic dynamics of nonlinear systems. Wiley, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wiggins, Stephen. Chaotic transport in dynamical systems. Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bernhard, Michael A. Introduction to chaotic dynamical systems. Naval Postgraduate School, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zelinka, Ivan. Evolutionary Algorithms and Chaotic Systems. Springer-Verlag Berlin Heidelberg, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wiggins, Stephen. Chaotic Transport in Dynamical Systems. Springer New York, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

H, Skiadas Christos, and Dimotikalis Ioannis, eds. Chaotic systems: Theory and applications. World Scientific, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Chaotic behvaior in systems"

1

Costa, David G., and Paul J. Schulte. "Chaotic Systems." In An Invitation to Mathematical Biology. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40258-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goertzel, Ben. "Linguistic Systems." In Chaotic Logic. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goertzel, Ben. "Belief Systems." In Chaotic Logic. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goertzel, Ben. "Self-Generating Systems." In Chaotic Logic. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kato, Hisao. "Chaotic Continua in Chaotic Dynamical Systems." In Topological Dynamics and Topological Data Analysis. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0174-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chadli, Mohammed. "Chaotic Systems Reconstruction." In Evolutionary Algorithms and Chaotic Systems. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10707-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crisanti, Andrea, Giovanni Paladin, and Angelo Vulpiani. "Chaotic Dynamical Systems." In Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84942-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chirikov, Boris V. "Chaotic Quantum Systems." In Mathematical Physics X. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77303-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eubank, Stephen G., and Farmer J. Doyne. "Modeling Chaotic Systems." In Introduction to Nonlinear Physics. Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2238-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suykens, Johan, Mustak Yalçın, and Joos Vandewalle. "Chaotic Systems Synchronization." In Chaos Control. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44986-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chaotic behvaior in systems"

1

Thoa, Tran Thi, and Yan Pei. "Chaotic Evolution Algorithm with Multiple Chaotic Systems." In 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2020. http://dx.doi.org/10.23919/sice48898.2020.9240472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carroll, Thomas L., and Louis M. Pecora. "Synchronizing chaotic systems." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Louis M. Pecora. SPIE, 1993. http://dx.doi.org/10.1117/12.162696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ushiki, S. "Chaotic Dynamical Systems." In RIMS Conference. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814536165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Graham, R. "Quantized Chaotic Systems." In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.thc1.

Full text
Abstract:
Chaos is a typical form of dynamical behavior of classical nonlinear dynamical systems. In conservative Hamiltonian systems with f degrees of freedom chaos appears if the system is not intergrable and in some regions of phase space trajectories are not restricted to f-dimensional smooth manifolds. In dissipative systems chaos in the dynamical steady state appears if the system has a strange attractor in configuration space.
APA, Harvard, Vancouver, ISO, and other styles
5

Jian Zhang, Jian Cheng, and Guangxia Li. "Chaotic spread-spectrum sequences using chaotic quantization." In 2007 International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, 2007. http://dx.doi.org/10.1109/ispacs.2007.4445818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

NONNENMACHER, STÉPHANE. "QUANTIZED OPEN CHAOTIC SYSTEMS." In Proceedings of the QMath11 Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350365_0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Petras, Ivo, and Dagmar Bednarova. "Fractional - order chaotic systems." In 2009 IEEE 14th International Conference on Emerging Technologies & Factory Automation. ETFA 2009. IEEE, 2009. http://dx.doi.org/10.1109/etfa.2009.5347112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, S. "Complex and chaotic systems." In Critical Review Collection. SPIE, 1994. http://dx.doi.org/10.1117/12.171193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MERCÊS RAMOS, M., and PEDRO SARREIRA. "CHAOTIC DISCRETE LEARNING SYSTEMS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770752_0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Romeiras, Filipe J., Edward Ott, Celso Grebogi, and W. P. Dayawansa. "Controlling Chaotic Dynamical Systems." In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791549.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Chaotic behvaior in systems"

1

Jen, E., M. Alber, R. Camassa, et al. Applied mathematics of chaotic systems. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/257451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Hua O., and Eyad H. Abed. Bifurcation Control of Chaotic Dynamical Systems. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada454958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abarbanel, H. D. Topics in Pattern Formation and Chaotic Systems. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada265922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grebogi, C., and J. A. Yorke. The study of effects of small perturbations on chaotic systems. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5955609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bryant, P. H. Studies of nonlinear and chaotic phenomena in solid state systems. Office of Scientific and Technical Information (OSTI), 1987. http://dx.doi.org/10.2172/5708439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grebogi, C., and J. A. Yorke. The study of effects of small perturbations on chaotic systems. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6214490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cuomo, Kevin M., Alan V. Oppenheim, and Steven H. Isabelle. Spread Spectrum Modulation and Signal Masking Using Synchronized Chaotic Systems. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada459567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Narducci, L. M. Instabilities and Chaotic Behavior of Active and Passive Laser Systems. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada153366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grebogi, C., and J. A. Yorke. Study of effects of small perturbations on chaotic systems. Progress report, January 1993--January 1994. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/674821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grebogi, C., and J. A. Yorke. Study of effects of small perturbations on chaotic systems. [Univ. of Maryland, College Park, Maryland]. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/6603692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!